血清镁离子与2型糖尿病及其并发症相关性研究进展
Research Progress on Correlation between Serum Magnesium Ion and Type 2 Diabetes Mellitus and Its Complications
DOI: 10.12677/ACM.2021.1110649, PDF, HTML, XML, 下载: 281  浏览: 483 
作者: 高晓莉:青海大学研究生院,青海 西宁;江 彤:青海大学附属医院内分泌科,青海 西宁
关键词: 2型糖尿病并发症作用机制Type 2 Diabetes Mellitus Magnesium Complications Mechanism
摘要: 2型糖尿病发病率逐年升高,其并发症常常严重危害人们的健康,镁离子是人体内重要的阳离子,参与人体内多种酶联反应。已经有研究表明人体内血清镁离子水平的变化参与2型糖尿病的发生发展,近年来还有研究发现血清镁离子水平的变化与2型糖尿病的并发症如视网膜病变、糖尿病肾病和心血管并发症的发生有关,近几年也有关于利用镁剂治疗2型糖尿病及其并发症的研究。本文就镁离子在2型糖尿病及其并发症中的作用研究作一综述,为未来2型糖尿病的治疗提供新的思路。
Abstract: The incidence of type 2 diabetes is increasing year by year, and its complications often seriously harm people’s health. Magnesium ion is an important cation in human body and participates in a variety of enzyme linked reactions in human body. Research has shown that the change of serum level of magnesium ions in the human body participates in the development of type 2 diabetes, and in recent years the study found that the change of the serum magnesium levels is related to the type 2 diabetes complications such as retinopathy, diabetic nephropathy, and associated cardiovascular complications. And there are also studies on the use of magnesium in the treatment of type 2 diabetes and its complications. This article reviews the role of magnesium ion in type 2 diabetes and its complications, and provides new ideas for the treatment of type 2 diabetes in the future.
文章引用:高晓莉, 江彤. 血清镁离子与2型糖尿病及其并发症相关性研究进展[J]. 临床医学进展, 2021, 11(10): 4431-4436. https://doi.org/10.12677/ACM.2021.1110649

1. 引言

随着经济水平的提高,2型糖尿病(Type 2 diabetes mellitus, T2DM)的发病率逐年上升并且趋于年轻化,其并发症严重威胁生命健康 [1]。尽管越来越多的口服降糖药和各种类型胰岛素应用于临床,但是延缓其并发症的发展仍是目前T2DM治疗的瓶颈。Mg2+是人体内重要的阳离子之一,其作为辅酶因子参与许多生化反应,并具有调节肌肉收缩、参与糖代谢和心肌电活动等重要生理功能。越来越多的研究表明,Mg2+在T2DM的发生发展中扮演重要角色,本文就近期Mg2+影响T2DM发生发展的具体机制作一综述,可能为T2DM的治疗提供新思路。

2. 血清Mg2+与T2DM的关系

T2DM的发病机制主要包括早期胰岛素抵抗(Insulin Resistance, IR)和后期胰腺β细胞分泌胰岛素功能降低,其中IR被认为是T2DM特征。Mg2+作为人体重要的微量元素,是糖代谢过程中重要辅助因子之一 [2],因此,血清Mg2+含量失调通过影响糖代谢等生化反应从而参与的T2DM进展。有研究发现,T2DM血糖控制不良的患者,血清Mg2+降低可能与糖化血红蛋白呈剂量依赖性 [3],血清Mg2+水平还可预测空腹血糖、餐后血糖和糖化血红蛋白变化趋势 [4]。Spiga等 [5] 研究发现Mg2+水平和空腹血糖、2小时后血糖、空腹胰岛素成显著负相关,并且血清Mg2+每增加1 mg/dL,T2DM风险显著降低约20%。有研究显示,T2DM患者糖代谢异常导致血清Mg2+水平降低,而血清Mg2+降低又可通过加重胰岛素抵抗、抑制胰岛素释放等途径使血糖进一步升高,二者互为因果形成恶性循环,并且Mg2+水平降低还促进糖尿病并发症的进展。

由于胰岛β细胞抗氧化能力较弱,容易受到活性氧和氧化应激的影响,各种促炎因子的释放导致胰岛β细胞损伤、凋亡从而导致其功能障碍。越来越多的研究证实活性氧和氧化应激会导致IR、胰岛素分泌不足和葡萄糖利用受损,成为T2DM的主要发病机制之一 [6]。有研究表明Mg2+与氧化应激和炎症反应有关 [7],氧化应激是由于体内产生的活性氧与机体内源性抗氧化能力失衡导致。作为一种具有抗炎特性的物质,Mg2+降低会显著促进促炎分子的分泌,如白介素-1β (IL-β)、IL-6、肿瘤坏死因子-α (TNF-α)等,抑制谷胱甘肽过氧化物酶、过氧化氢酶和超氧化物歧化酶等抗氧化酶的表达,并降低体内谷胱甘肽、维生素C、维生素E等抗氧化剂的含量和活性,从而导致氧化应激的发生。因此,血清Mg2+表达降低后其抑制氧化应激和炎症反应能力减弱,进而导致胰岛β细胞功能障碍。

葡萄糖在葡萄糖激酶的作用下转化为6-磷酸葡萄糖,6-磷酸葡萄糖进一步参与分解代谢并产生ATP,ATP/ADP比例增加抑制了ATP敏感的K+通道(KATP),进而引发了细胞膜去极化使得L型Ca2+通道激活导致胰岛素释放。其中KATP在胰岛β细胞释放胰岛素过程中起至关重要的作用。Mg2+作为腺嘌呤核苷酸的辅因子,可以直接影响葡萄糖激酶的活性 [8],研究表明了低镁可以损害葡萄糖激酶功能,使得6-磷酸葡萄糖的形成及ATP在胰岛β细胞中的累积减少,从而损害了KATP通道的正常关闭及打开,导致胰岛素释放的正常阶段受到干扰,破环胰岛β的正常功能从而进一步导致T2DM的发生及进展。

胰岛素受体(insulin receptor, INSR)属于酪氨酸激酶(tyrosine kinase, TK)受体家族,由两个α-亚基和两个β亚基共同组成。胰岛素信号转导过程中存在INSR内β亚基自体磷酸化,Mg2+浓度对INSR的自磷酸化和其他信号酶的活性至关重要,研究表明Mg2+可通过激活INSR的TK结构域中β亚基 [9]。同时Mg2+作为TK的辅因子,通过增加受体对ATP的亲和力来增强TK的活性 [10],参与胰岛素的信号转导,在葡萄糖和胰岛素代谢中起重要作用。作为三磷酸腺苷镁复合物的组成部分Mg2+参与了所有的磷酸转移反应 [11],在Mg2+缺乏的情况下INSR的自身磷酸化及胰岛素受体相关激酶的磷酸化减少 [12]。故低镁血症可能通过影响TK活性缺陷、INSR自身磷酸化减少等作用使T2DM患者的胰岛素抵抗进一步恶化。另外有研究表明 [13] Mg2+降低会通过一系列反应导致基础胰岛素分泌增加,随着长期慢性的胰岛素分泌增加导致高胰岛素血症从而进一步导致IR持续存在。同时有研究表明胰岛素可以促进Mg2+的排泄与代谢,导致高胰岛素血症患者出现低镁血症 [14],形成恶性循环。Yang等 [15] 研究表明了膳食镁摄入量与胰岛素抵抗之间存在负相关和剂量效应关系。

3. 血清Mg2+与T2DM并发症之间的关系

随着T2DM病程的进展,会出现一系列的慢性并发症危害人们健康,降低生活质量,持续高血糖会导致糖尿病患者出现微血管及大血管并发症,常见的慢性并发症有糖尿病肾病、视网膜病变、神经病变、血管病变等,可能导致肾功能衰竭、失明、神经损伤、心血管和周围血管疾病。已有研究表明了Mg2+摄入量与糖尿病并发症风险呈负相关,且血清Mg2+与血糖控制不佳及糖尿病并发症独立相关 [16]。一项横断面研究中发现合并有并发症的T2DM患者的血清Mg2+水平降低,并且随着并发症数量的增加呈降低趋势 [17]。Zhang等 [16] 进行的一项研究表明了血清Mg2+浓度与糖尿病肾病和糖尿病视网膜病变具有相关性,且血清Mg2+降低与男性罹患糖尿病神经病变和女性罹患糖尿病大血管病变有关。

糖尿病肾病是常见的T2DM微血管并发症之一,是终末期肾病的主要病因,其主要病理特征是肾小球硬化和间质纤维化,自由基和活性氧的过度产生会诱发糖尿病肾病的发生发展 [18]。持续的微量蛋白尿是糖尿病肾病进展的关键因素,与炎症及氧化应激反应密切相关,蛋白尿会导致肾小管细胞损伤,导致促炎因子大量表达,促炎因子的表达进一步导致肾细胞损伤、肾小管间质损伤和纤维化 [19],从而导致糖尿病肾病的发生及进展。Mg2+是维持线粒体功能的必需微量元素,具有抗氧化、抗炎、抗凋亡的重要功能,可以作为线粒体抗氧化剂 [20],细胞内缺乏Mg2+会增加线粒体活性氧的产生,同时抑制抗氧化防御系统,最终导致氧化应激的发生加剧糖尿病肾病的发生及进展。一些研究人员表明低Mg2+不但与2型糖尿病有关,还与更快的肾功能恶化密切相关。Feng等 [21] 研究发现了T2DM和糖尿病肾病患者的血清Mg2+显著低于健康个体,且血清Mg2+是糖尿病肾病的独立预测因子。Bherwani等 [22] 研究了100名T2DM患者,结果表明糖尿病肾病患者的低镁血症患病率明显高于无肾病的T2DM患者。

糖尿病视网膜病变与长期血糖控制不佳及T2DM病程长短有关。糖尿病视网膜病变在早期阶段通常无明显临床症状,故早诊早治尤为重要。糖尿病视网膜病变在临床上可分为两个阶段:即非增殖性糖尿病视网膜病变期和增殖性糖尿病视网膜病变期,最常见的导致视力丧失原因是糖尿病性黄斑水肿 [23]。持续性高血糖在视网膜微血管损伤的发病机制中起重要作用,高血糖通过多种代谢途径引起血管损伤,包括多元醇途径、晚期糖基化终产物积累、蛋白激酶C途径、己糖胺途径和肾素–血管紧张素系统途径 [24]。有研究证实了炎症及氧化应激在糖尿病视网膜病变的发病机制中也起着重要作用 [25] [26] [27],已知Mg2+具有抗炎特性,故Mg2+缺乏后其抗炎作用减弱,可能通过上述途径参与微血管损伤,加重糖尿病视网膜病变的进展。一项病例对照研究证实了合并有糖尿病视网膜病变患者相对于无糖尿病视网膜病变的T2DM患者存在显著的低镁血症 [28]。

糖尿病周围神经病变是T2DM常见的晚期并发症,其病程是慢性进行性的,使患者生活质量明显下降且带给患者极大的经济负担。糖尿病周围神经病变也是糖尿病足溃疡的重要独立危险因素。有研究表明了糖尿病周围神经病变的患者血清Mg2+显著降低,且低镁血症患者的足部溃疡率显著升高 [29],补充Mg2+后神经传导和足部溃疡会得到改善 [30] [31],但是其具体机制还有待进一步研究。

炎症和内皮功能障碍在T2DM患者大血管并发症的进展中起关键作用。Zhang等 [32] 研究表明过量活性氧可导致血管过度收缩以及Ca2 +释放增强,而Ca2 +水平的增加反之又可进一步导致活性氧的产生增加。Mg2+作为钙拮抗剂可保护血管内皮免受氧化应激应激反应的损伤,并且Mg2+具有抗炎特性,可以刺激一氧化氮和前列环素的产生,扩张血管保护血管内皮细胞。因此Mg2+缺乏会增加细胞内Ca2 +水平,增加的细胞内Ca2 +促进肥大细胞脱颗粒从而导致血管内皮损伤 [33]。研究还证实了低浓度的Mg2+可以氧化低密度脂蛋白胆固醇,进而促进动脉粥样硬化和糖尿病大血管的发生 [34],而通过外源性补充Mg2+对血脂异常起积极作用 [35]。Rashvand S等在一项随机对照试验中表明,补充2个月镁剂可改善T2DM的血管内炎症和内皮功能障碍 [36]。

4. 结论

综上所述,血清Mg2+含量失调通过影响糖代谢、参与氧化应激和促进炎性介质分泌等诸多途径,在T2DM发生的核心环节即胰岛素抵抗和β细胞损伤发挥重要作用,并且血清Mg2+降低与T2DM并发症的发生发展有显著的相关性,补充Mg2+有助于改善T2DM患者血糖水平。因此,随着进一步对Mg2+作用于T2DM机制的深入研究,可能为未来T2DM的治疗和预防提供新的思路。

参考文献

[1] 吕若琦. 最新版“全球糖尿病地图”里的中国景象[J]. 江苏卫生保健, 2020(2): 56.
[2] Ozcaliskan, I.H., Sahin, H., Tanriverdi, F., et al. (2019) Association between Magnesium Status, Dietary Magnesium Intake, and Metabolic Control in Patients with Type 2 Diabetes Mellitus. The Journal of the American College of Nutrition, 38, 31-39.
https://doi.org/10.1080/07315724.2018.1476194
[3] 郭林池, 付传芳, 詹晓蓉. 镁离子、钾离子与2型糖尿病的相关性研究[J]. 哈尔滨医科大学学报, 2019, 53(2): 171-173.
[4] Veronese, N., Watutantrige-Fernando, S., Luchini, C., et al. (2016) Effect of Magnesium Supplementation on Glucose Metabolism in People with or at Risk of Diabetes: A Systematic Review and Meta-Analysis of Double-Blind Randomized Controlled Trials. European Journal of Clinical Nutrition, 70, 1354-1359.
https://doi.org/10.1038/ejcn.2016.154
[5] Spiga, R., Mannino, G.C., Mancuso, E., et al. (2019) Are Circulating Mg2+ Levels Associated with Glucose Tolerance Profiles and Incident Type 2 Diabetes? Nutrients, 11, 2460.
https://doi.org/10.3390/nu11102460
[6] Rehman, K. and Akash, M.S.H. (2017) Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked? Journal of Cellular Biochemistry, 118, 3577-3585.
https://doi.org/10.1002/jcb.26097
[7] Zheltova, A.A., Kharitonova, M.V., Iezhitsa, I.N., et al. (2016) Magnesium Deficiency and Oxidative Stress: An Update. Biomedicine (Taipei), 6, 20.
https://doi.org/10.7603/s40681-016-0020-6
[8] Gommers, L.M., Hoenderop, J.G., Bindels, R.J., et al. (2016) Hypomagnesemia in Type 2 Diabetes: A Vicious Circle? Diabetes, 65, 3-13.
https://doi.org/10.2337/db15-1028
[9] Günther, T. (2010) The Biochemical Function of Mg2+ in Insulin Secretion, Insulin Signal Transduction and Insulin Resistance. Magnesium Research, 23, 5-18.
https://doi.org/10.1684/mrh.2009.0195
[10] Akaya, J., Higashino, H. and Kobayashi, Y. (2004) Intracellular Magnesium and Insulin Resistance. Magnesium Research, 17, 126-136.
[11] Wu, J., Xun, P., Tang, Q., et al. (2017) Circulating Magnesium Levels and Incidence of Coronary Heart Diseases, Hypertension, and Type 2 Diabetes Mellitus: A Meta-Analysis of Prospective Cohort Studies. Nutrition Journal, 16, 60.
https://doi.org/10.1186/s12937-017-0280-3
[12] Romani, A.M., Matthews, V.D. and Scarpa, A. (2000) Parallel Stimulation of Glucose and Mg(2+) Accumulation by Insulin in Rat Hearts and Cardiac Ventricular Myocytes. Circulation Research, 86, 326-333.
https://doi.org/10.1161/01.RES.86.3.326
[13] Ashcroft, F.M., Puljung, M.C. and Vedovato, N. (2017) Neonatal Diabetes and the KATP Channel: From Mutation to Therapy. Trends in Endocrinology & Metabolism, 28, 377-387.
https://doi.org/10.1016/j.tem.2017.02.003
[14] Lima Mde, L., Cruz, T., Rodrigues, L.E., et al. (2009) Serum and Intracellular Magnesium Deficiency in Patients with Metabolic Syndrome—Evidences for Its Relation to Insulin Resistance. Diabetes Research and Clinical Practice, 83, 257-262.
https://doi.org/10.1016/j.diabres.2008.11.019
[15] Yang, N., He, L., Li, Y., et al. (2020) Reduced Insulin Resistance Partly Mediated the Association of High Dietary Magnesium Intake with Less Metabolic Syndrome in a Large Chinese Population. Diabetes, Metabolic Syndrome and Obesity, 13, 2541-2550.
https://doi.org/10.2147/DMSO.S257884
[16] Zhang, Y., Li, Q., Xin, Y., et al. (2018) Association between Serum Magnesium and Common Complications of Diabetes Mellitus. Technology and Health Care, 26, 379-387.
https://doi.org/10.3233/THC-174702
[17] Joy, S.S., George, T.P. and Siddiqui, K. (2019) Low Magnesium Level as an Indicator of Poor Glycemic Control in Type 2 Diabetic Patients with Complications. Diabetology & Metabolic Syndrome, 13, 1303-1307.
https://doi.org/10.1016/j.dsx.2019.02.001
[18] Farrokhian, A., Bahmani, F., Taghizadeh, M., et al. (2016) Selenium Supplementation Affects Insulin Resistance and Serum hs-CRP in Patients with Type 2 Diabetes and Coronary Heart Disease. Hormone and Metabolic Research, 48, 263-268.
https://doi.org/10.1055/s-0035-1569276
[19] Navarro-González, J.F., Mora-Fernández, C., Muros de Fuentes, M., et al. (2011) Inflammatory Molecules and Pathways in the Pathogenesis of Diabetic Nephropathy. Nature Reviews Nephrology, 7, 327-340.
https://doi.org/10.1038/nrneph.2011.51
[20] Liu, M., Jeong, E.M., Liu, H., et al. (2019) Magnesium Supplementation Improves Diabetic Mitochondrial and Cardiac Diastolic Function. JCI Insight, 4, e123182.
https://doi.org/10.1172/jci.insight.123182
[21] Feng, J., Wang, H., Jing, Z., et al. (2021) Relationships of the Trace Elements Zinc and Magnesium with Diabetic Nephropathy-Associated Renal Functional Damage in Patients with Type 2 Diabetes Mellitus. Frontiers in Medicine (Lausanne), 8, Article ID: 626909.
https://doi.org/10.3389/fmed.2021.626909
[22] Bherwani, S., Jibhkate, S.B., Saumya, A.S., et al. (2017) Hypomagnesaemia: A Modifiable Risk Factor of Diabetic Nephropathy. Hormone Molecular Biology and Clinical Investigation, 29, 79-84.
https://doi.org/10.1515/hmbci-2016-0024
[23] Wang, W. and Lo, A.C.Y. (2018) Diabetic Retinopathy: Pathophysiology and Treatments. International Journal of Molecular Sciences, 19, 1816.
https://doi.org/10.3390/ijms19061816
[24] Brownlee, M. (2005) The Pathobiology of Diabetic Complications: A Unifying Mechanism. Diabetes, 54, 1615-1625.
https://doi.org/10.2337/diabetes.54.6.1615
[25] Yuuki, T., Kanda, T., Kimura, Y., et al. (2001) Inflammatory Cytokines in Vitreous Fluid and Serum of Patients with Diabetic Vitreoretinopathy. Journal of Diabetic Complications, 15, 257-259.
https://doi.org/10.1016/S1056-8727(01)00155-6
[26] Mahajan, N., Arora, P. and Sandhir, R. (2019) Perturbed Biochemical Pathways and Associated Oxidative Stress Lead to Vascular Dysfunctions in Diabetic Retinopathy. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 8458472.
https://doi.org/10.1155/2019/8458472
[27] Wu, Y., Tang, L. and Chen, B. (2014) Oxidative Stress: Implications for the Development of Diabetic Retinopathy and Antioxidant Therapeutic Perspectives. Oxidative Medicine and Cellular Longevity, 2014, Article ID: 752387.
https://doi.org/10.1155/2014/752387
[28] Hamdan, H.Z., Nasser, N.M., Adam, A.M., et al. (2015) Serum Magnesium, Iron and Ferritin Levels in Patients with Diabetic Retinopathy Attending Makkah Eye Complex, Khartoum, Sudan. Biological Trace Element Research, 165, 30-34.
https://doi.org/10.1007/s12011-015-0236-4
[29] Dasgupta, A., Sarma, D. and Saikia, U.K. (2012) Hypomagnesemia in Type 2 Diabetes Mellitus. Indian Journal of Endocrinology and Metabolism, 16, 1000-1003.
https://doi.org/10.4103/2230-8210.103020
[30] De Leeuw, I., Engelen, W., De Block, C., et al. (2004) Long Term Magnesium Supplementation Influences Favourably the Natural Evolution of Neuropathy in Mg-Depleted Type 1 Diabetic Patients (T1dm). Magnesium Research, 17, 109-114.
[31] Afzali, H., Jafari Kashi, A.H., Momen-Heravi, M., et al. (2019) The Effects of Magnesium and Vitamin E Co-Supplementation on Wound Healing and Metabolic Status in Patients with Diabetic Foot Ulcer: A Randomized, Double-Blind, Placebo-Controlled Trial. Wound Repair and Regeneration, 27, 277-284.
https://doi.org/10.1111/wrr.12701
[32] Zhang, X., Yan, S.M., Zheng, H.L., et al. (2014) A Mechanism Underlying Hypertensive Occurrence in the Metabolic Syndrome: Cooperative Effect of Oxidative Stress and Calcium Accumulation in Vascular Smooth Muscle Cells. Hormone and Metabolic Research, 46, 126-132.
https://doi.org/10.1055/s-0033-1355398
[33] Maier, J.A., Castiglioni, S., Locatelli, L., et al. (2021) Magnesium and Inflammation: Advances and Perspectives. Seminars in Cell and Developmental Biology, 115, 37-44.
https://doi.org/10.1016/j.semcdb.2020.11.002
[34] Agrawal, P., Arora, S., Singh, B., et al. (2011) Association of Macrovascular Complications of Type 2 Diabetes Mellitus with Serum Magnesium Levels. Diabetes & Metabolic Syndrome, 5, 41-44.
https://doi.org/10.1016/j.dsx.2010.12.003
[35] Ramadass, S., Basu, S. and Srinivasan, A.R. (2015) Serum Magnesium Levels as an Indicator of Status of Diabetes Mellitus Type 2. Diabetology & Metabolic Syndrome, 9, 42-45.
https://doi.org/10.1016/j.dsx.2014.04.024
[36] Rashvand, S., Mobasseri, M. and Tarighat-Esfanjani, A. (2019) The Effects of Choline and Magnesium Co-Supplementation on Metabolic Parameters, Inflammation, and Endothelial Dysfunction in Patients with Type 2 Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled Trial. The Journal of the American College of Nutrition, 38, 714-721.
https://doi.org/10.1080/07315724.2019.1599745