免疫检查点抑制剂所致肝损伤的诊断和治疗进展
The Advancement in Diagnosis and Therapy of Liver Injury Induced by Immune Checkpoint Inhibitors
DOI: 10.12677/ACM.2021.1110680, PDF, HTML, XML, 下载: 348  浏览: 783 
作者: 沈致文, 万赤丹*:华中科技大学同济医学院附属协和医院肝胆外科,湖北 武汉
关键词: 免疫检查点抑制剂免疫不良反应肝损伤Immune Checkpoint Inhibitors Immune-Related Adverse Effects Liver Injury
摘要: 以免疫检查点抑制剂为代表的免疫疗法应用在多种进展期实体肿瘤的治疗中,展现出了良好的前景。免疫相关不良反应的发生也随着免疫检查点抑制剂的应用逐渐上升。免疫检查点抑制剂所致肝损伤是与免疫治疗相关的重要不良反应之一,可能造成严重不良预后。本篇综述主要讨论免疫检查点抑制剂相关肝损伤的流行病学,机制及诊治进展。
Abstract: The application of immunotherapy in the treatment of multiple advanced tumors, represented by immune checkpoint inhibitors (ICIs), has demonstrated promising prospects. However, the rates of immune-related adverse effects are gradually increasing with the application of ICIs. Liver injury induced by immune checkpoint inhibitors is a major adverse effect related to immunotherapy, which may lead to poor prognosis. This review aims to discuss the advancement in epidemiology, mechanism, diagnosis and therapy of ICIs-induced liver injury.
文章引用:沈致文, 万赤丹. 免疫检查点抑制剂所致肝损伤的诊断和治疗进展[J]. 临床医学进展, 2021, 11(10): 4628-4634. https://doi.org/10.12677/ACM.2021.1110680

1. 背景

自2011年第一个免疫检查点抑制剂药物(immune checkpoint inhibitors, ICIs) Ipilimumab被批准用于黑色素瘤至今,免疫治疗作为一种广谱的抗肿瘤治疗,在多种实体肿瘤的治疗中展现出了良好的前景 [1]。目前,美国食品和药物管理局(FDA)已批准三种PD-1抑制剂(nivolumab、cemiplimab和pembrolizumab)、三种PD-L1抑制剂(atezolizumab、durvalumab和avelumab)和一种CTLA-4抑制剂(Ipilimumab)用于多种恶性肿瘤。与传统的肿瘤治疗主要针对肿瘤细胞本身相比,免疫治疗的主要机制是增强或恢复机体免疫系统对肿瘤的监测和杀伤作用 [2]。然而,当免疫系统被重新激活时,可能会发生免疫耐受失衡。免疫疗法通过重新激活免疫系统导致的新的不良反应的出现,称为免疫相关不良反应(Immune-related adverse events, irAEs) [3] [4]。近期一项纳入3678患者的meta分析显示,接受免疫治疗的肿瘤患者中,irAEs的总发生率为76%,高级别的irAEs为28%,导致治疗中断的irAEs发生率为9% [5]。肝脏是irAEs的常见靶器官,在接受抗CTLA-4治疗的患者中,其发生率在5%到10%之间,在接受抗PD-1治疗患者中其发生率在15%,在接受抗PD-1和抗CTLA-4联合治疗的患者中,其发生率为30% [6] [7],ICIs所致肝损伤的早期症状通常较轻微,诊断较为困难,而如果没有进行及时干预,可能导致严重不良后果并危及患者生命 [8]。本文主要从流行病学、机制、表现、预测、治疗等方面对ICIs所致肝损伤进行全面的综述。

2. ICIs所致肝损伤的流行病学

ICIs所致肝损伤主要取决于免疫治疗药物种类、剂量和肝脏基础疾病情况。总体而言,ICIs所致肝损伤发生率在4%~37%左右,其中高级别不良反应发生率在1%~16%左右 [9] - [14]。女性发生率要高于男性 [15]。接受多药联合治疗的患者的肝损伤发生率高于单药治疗的患者,高剂量治疗患者肝损伤发生率高于低剂量治疗患者。存在慢性肝炎或者肝硬化等肝脏基础疾病的患者发生ICIs所致肝损伤可能性更大,同时严重肝损伤发生率也更高 [16]。不同药物之间ICIs所致肝损伤的发生率存在显著的差异。一项晚期黑色素瘤免疫治疗的研究显示,接受抗PD-1单药治疗患者4%至7%出现了ALT水平升高,而1%出现了ALT ≥ 3级升高。在同一研究中,接受抗CTLA-4单药治疗的患者,分别有4%和2%出现ALT升高和≥3级的ALT升高。而两者联合使用分别有19%和6%的患者出现ALT升高和≥3级的ALT升高 [9] [10]。既往有研究报道,在免疫治疗过程中,免疫相关不良反应的发生可能与更好的肿瘤预后相关,其中免疫相关皮肤不良反应的发生与肿瘤预后的关系最为明显 [17] [18]。然而,在免疫治疗过程中,肝损伤的发生可能预示着不良预后。有报道指出,ICIs治疗后出现肝功能障碍的患者比无肝功能障碍的患者有更差的预后,肝功能障碍患者的无进展生存期(64天vs 122天)和总生存期(184天vs 427天)均明显下降 [19]。因此,ICIs所致肝损伤需要引起更多的重视。

3. ICIs所致肝损伤机制

ICIs所致肝损伤的发生机制尚未完全明确,仍有待进一步研究。既往研究显示ICIs所致肝损伤的发生,主要可能与肿瘤组织和健康组织的共有抗原引起CD4+和CD8+T细胞错误的对正常的肝细胞或胆管细胞发起免疫攻击有关。多种其他炎症细胞如中性粒细胞、单核细胞、巨噬细胞和B细胞等,也参与ICIs所致肝损伤的过程 [20]。导致肝细胞损伤的主要机制是细胞死亡相关配体的表达、胞质内颗粒的胞吐作用或介导细胞的坏死和凋亡的细胞因子的产生 [20]。肝细胞损伤的特征性表现为坏死的肝细胞被T细胞为主的单核细胞的环状聚集包围,多灶性肝细胞凋亡和气球样变性也可出现 [20]。肝组织损伤的主要形式是小叶性肝炎,伴或者不伴有融合性坏死。与经典的自身免疫性肝炎相比,门脉和交界区的炎症较轻,浆细胞浸润不明显,主要以CD3 (CD8)+T细胞浸润为主,肝细胞“玫瑰花环”样改变、穿入现象和胆道堵塞等表现亦较少见 [21]。许多患者主要表现为小叶炎症伴有点状或融合性肝细胞坏死,在一部分患者中也观察到了3区坏死和嗜酸性小体形成。ICIs所致肝损伤患者中,超一半的患者主要表现为胆汁淤积而不是肝细胞坏死,一些患者甚至可能出现非阻塞性胆管扩张或狭窄性胆管炎 [22]。胆管损伤的机制与肝细胞损伤不同,大胆管损伤主要表现为肝外胆管扩张和增厚而无小叶间胆管损伤。小胆管损伤主要表现为小叶间胆管侵犯、导管内微脓肿形成和胆管上皮增生 [23] [24]。大胆管炎的组织病理学特征是内皮炎性浸润和肝外胆管非中心性弥漫性纤维化,小胆管病理主要表现为门脉炎症、胆管损伤(如细胞质空泡化、胆管退行性变、上皮内淋巴细胞浸润、导管周围淋巴细胞浸润、导管周围纤维化等)、管状增生、胆汁淤积和少见的胆管消失 [24]。总体而言,ICIs所致的胆管炎主要表现为非胆道梗阻的局部肝内外胆管扩张和胆管壁弥漫性增厚,以及胆道CD8+T细胞浸润,少数表现为胆道狭窄 [25] [26]。一些少见的组织病理类型也有报道,如肉芽肿性肝炎,单纯胆管内胆汁淤积等 [23]。不同免疫治疗药物可能造成损伤的机制不同,抗CTLA-4治疗的患者更容易出现肉芽肿性炎症伴严重的小叶坏死以及中心静脉内皮炎。而抗PD-1/PD-L1治疗的患者通常没有肉芽肿性炎症,中心静脉内皮炎也比较罕见。这可能是由于抗CTLA-4抗体对Treg信号通路的影响导致静脉内皮炎的发生 [27]。

4. ICIs所致肝损伤的诊疗

4.1. 临床表现及诊断

ICIs所致肝损伤主要临床表现是肝功能相关指标的增高,包括但不限于丙氨酸氨基转移酶、天门冬氨酸氨基转移酶、胆红素等。因为肝脏强大的代偿作用,一般早期无特异性的临床症状及体征。出现严重不良反应患者可能出现腹水、肝性脑病等肝功能衰竭的表现 [28]。肝损伤的发生时间一般在用药后4~12周左右 [29],但也有报道显示免疫相关不良反应可能出现在免疫治疗结束几个月甚至数年之后,被称为延迟免疫不良反应 [30]。ICIs所致肝损伤的诊断是一种排除性的临床诊断,即在除外其他因素导致的肝损伤后才可考虑诊断为ICIs所致肝损伤。需要与其他病因导致的肝损伤,如病毒性肝炎、酒精性肝炎、非酒精性脂肪肝、缺血性肝炎、自身免疫性肝炎、肝原发及继发肿瘤等相鉴别。同时,免疫治疗多用于恶性肿瘤患者,有报道显示52.9%的肝损伤患者同时合并肿瘤肝转移,提示肝损伤也可能继发于转移或转移瘤的坏死,而非免疫治疗药物引起 [31]。其他免疫相关不良反应如免疫相关心脏损伤也可能引起丙氨酸氨基转移酶、天门冬氨酸氨基转移酶的升高,需与肝损伤相鉴别 [32]。在ICIs所致的肝损伤中,影像学异常通常表现为肝肿大、门静脉周围水肿、门静脉周围淋巴结肿大、门静脉周围T2高信号影和肝实质信号减弱等,但缺乏特异性表现 [33]。肝脏活检是诊断ICIs所致肝损伤的重要手段,但应特别注意与自身免疫性肝炎的组织学表现进行区分。

4.2. 免疫相关不良反应标志物

早期irAEs的准确识别和管理,对患者的预后和总生存期至关重要。通过风险因素筛选最有可能发生irAEs的患者,可以避免严重的不良反应事件发生并降低治疗成本。irAEs的预测因子相关研究报道比较少。2017年Daly等提出了严重的irAEs的潜在风险因素包括自身免疫性疾病家族史、肿瘤浸润和位置、既往病毒感染(如HIV或肝炎等)以及同时使用具有已知自身免疫不良反应事件的药物(如抗心律失常药、抗生素、抗惊厥药或抗精神病药等 [34]。除了一些潜在风险因素以外,许多临床指标被提出可能与不良反应的发生相关,尽管前景看好,但由于样本量小、随访时间和标记物缺乏特异性,预测效果仍有待进一步验证。在临床上,比较常见血细胞和血清学相关指标包括T细胞谱系,辅助性T细胞(Treg),嗜酸性粒细胞,中性粒细胞,IL-6,IL-7,sMICA,血清自身抗体,可溶性血清蛋白等 [35]。例如,tocilizumab可以靶向抑制IL-6,故IL-6的降低可能预示着相关不良反应事件的发生风险升高 [36],在一项针对使用 ipilimumab 的黑色素瘤患者的研究中也有同样的现象 [37]。然而,血清学相关指标的特异性较差,目前在临床中应用较少。近来随着基因检测技术的发展,一些特殊基因位置的表达水平也可能用于免疫相关不良反应的预测。基因标志物包括CD177、CEACAM1、CARD12、CCL3、CCR3、CXCL1、F5、FAM210B、GADD45A、IL18BP、IL2RA、IL5、IL8、MMP9、Ptgs2、SOCS3、TLR9和UBE2C等的高表达可能与免疫相关不良反应事件相关,并可用于对不良反应的严重程度进行区分。如在ipilimumab治疗黑色素瘤患者的临床试验中,发现中性粒细胞相关基因CD177的表达明显高于未发生胃肠道不良反应组,同时其在级别更高的胃肠不良反应组中的表达亦高于低级别的不良反应组 [36]。肿瘤微环境中肿瘤和健康组织之间的共同抗原,较高的肿瘤负荷等都与免疫不良反应事件相关,但其检测需要反复的侵入性组织活检,无法常规进行。如肿瘤组织中肌钙蛋白和肌间蛋白的高表达与免疫相关心肌炎的发生密切相关,这可能是因为共同抗原的作用导致的 [1]。肠道菌群也可作为免疫治疗疗效和不良反应事件的标志物。有研究报道肠道微生物菌群丰度是免疫相关不良反应事件的独立相关因素 [35] [36]。在接受Ipilimumab治疗后,患者微生物群丰度下降与免疫相关结肠炎的发生有关 [38]。遗憾的是至今为止仍然没有专门的标志物用于预测ICIs所致肝损伤,有学者提出肠道微生物的基因组可能与之相关,但缺乏相关数据支持。

4.3. 免疫检查点抑制剂所致肝损伤分级

目前临床上较多使用的ICIs所致肝损伤的分级系统是根据不良事件通用术语标准(CTCAE) V5.0制定。根据转氨酶和胆红素两个指标,CTCAE标准将irAEs分为低级别不良反应(1~2级)、高级别不良反应(3~4级)和致死性不良反应(5级),该标准主要通过AST或者ALT是否大于5倍正常值上限或者总胆红素是否大于3倍正常值上限来对低级别和高级别不良反应进行区分 [8]。该标准使用较为简单,目前已被多个中心采用以进行ICIs所致肝损伤的评估。但近来有学者提出该标准无法准确反映肝损伤的严重程度。例如,对未出现胆红素升高、凝血功能障碍及相关临床症状的患者,仅以AST大于五倍正常值上限而将患者归于高级别的不良反应并停止ICIs治疗可能为患者预后带来不良影响。鉴于此,有学者提出将ICIs所致肝损伤归于特殊类型的药物损伤以采用美国药物肝损伤标准(DILIN),但目前尚缺乏不同分级标准有效性的对比研究。

4.4. 免疫检查点抑制剂所致肝损伤的监测及治疗

ICIs所致肝损伤的治疗原则是加强监测,及时停止用药,必要时使用免疫抑制药物治疗。当存在ICIs所致肝损伤可能时,应加强对患者血液学指标的监测,频率可至每周1次甚至每天1次。目前指大部分指南推荐对2级以上ICIs所致肝损伤暂时停止用药,对发生3级及以上肝损伤者则建议永久停用药物。但中国临床肿瘤协会指南建议对3级肝损伤患者,可在肝酶恢复至1级且激素减量至10 mg时后重新进行免疫治疗。恢复用药的主要风险是再次出现免疫相关不良反应或者加重不良反应的严重程度,但研究显示不良反应缓减后再次使用ICIs,并不一定会导致不良反应的再次发生。在一组因严重不良反应事件停止抗CTLA-4和抗PD-1联合治疗的黑色素瘤患者中,恢复抗PD-1治疗后,17%患者再次出现了肝损伤 [39]。而另一项报告显示,因严重不良反应事件的停用ipilimumab的患者,在恢复后再次接受PD-1抑制剂治疗时,不良反应事件没有再次出现 [40]。鉴于恢复免疫药物的使用后,再次肝损伤发生的可能性依然存在 [41],重新开始ICIs治疗需要临床医生仔细权衡停药导致的肿瘤学上的风险和再次发生不良反应的风险,同时谨慎选择用药方案(包括种类、剂量、时间、预防性免疫抑制药物使用等)。指南建议对2级ICIs所致肝损伤患者使用口服糖皮质激素,对高级别免疫治疗所致肝损伤患者使用静脉糖皮质激素 [8] [42]。然而,糖皮质激素在ICIs所致肝损伤中的应用仍存在争议 [43]。一项系统评价显示,糖皮质激素的应用并不能促进ICIs所致肝损伤的恢复,但会使患者发生严重感染的风险增加7.7倍 [43]。因此,有学者认为对于2级及以下ICIs所致肝损伤不建议常规使用糖皮质激素,而对于3级ICIs所致肝损伤建议在停用免疫药物没有改善时,才开始口服激素治疗,对4级肝损伤才建议开始静脉激素治疗 [44]。对于糖皮质激素无法控制患者,指南建议可考虑霉酚酸酯(MMF)或者硫唑嘌呤,治疗无效的患者可考虑加用他克莫司或抗胸腺细胞免疫球蛋白。既往一些文献报道英夫利昔单抗可用于治疗免疫治疗引起的严重肝损伤,但由于其本身肝毒性的存在,不建议常规应用于糖皮质激素难治性肝损伤的治疗 [45]。但是最近有真实世界报道在有限剂量下英夫利昔单抗可有效治疗irAE并且不会引起肝毒性,对于难治性的ICIs所致的肝损伤具有较好的疗效 [46]。对于有胆汁淤积表现的肝损伤患者,有报道显示采用熊去氧胆酸治疗可以改善胆汁淤积表现 [31]。

5. 总结

ICIs所致的肝损伤是肿瘤免疫治疗中一种重要的并发症,对于其认识仍较少。随着免疫治疗药物的运用越来越广泛,ICIs所致的肝损伤发生的可能性也随之升高。ICIs所致肝损伤的发生的机制和影响仍缺乏足够的研究。虽然其发生机制及组织病理学表现与药物性肝损伤相似,但是ICIs所致肝损伤仍存在其特殊性和复杂性。目前对ICIs所致肝损伤的诊疗方案仍不够完善,需要进一步循证依据的支持。发生ICIs导致的肝损伤后,药物停用与免疫抑制药物应用对肿瘤患者的影响仍需要更加精确的评估。临床医生对于免疫治疗带来的系统性影响仍需要更充分的认知,以寻找对患者最合适的诊疗方案,降低irAEs的发生率和严重程度,获得最佳疗效。

NOTES

*通讯作者。

参考文献

[1] Johnson, D.B., et al. (2016) Fulminant Myocarditis with Combination Immune Checkpoint Blockade. The New England Journal of Medicine, 375, 1749-1755.
https://doi.org/10.1056/NEJMoa1609214
[2] Morgado, M., et al. (2020) Management of the Adverse Effects of Immune Checkpoint Inhibitors. Vaccines (Basel), 8, 575.
https://doi.org/10.3390/vaccines8040575
[3] Ramos-Casals, M., et al. (2020) Immune-Related Adverse Events of Checkpoint Inhibitors. Nature Reviews Disease Primers, 6, 38.
https://doi.org/10.1038/s41572-020-0160-6
[4] Bagchi, S., Yuan, R. and Engleman, E.G. (2021) Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annual Review of Pathology: Mechanisms of Disease, 16, 223-249.
https://doi.org/10.1146/annurev-pathol-042020-042741
[5] Wang, R., Lin, N., Mao, B.B. and Wu, Q. (2021) The Efficacy of Immune Checkpoint Inhibitors in Advanced Hepatocellular Carcinoma: A Meta-Analysis Based on 40 Cohorts Incorporating 3697 Individuals. Journal of Cancer Research and Clinical Oncology.
https://doi.org/10.1007/s00432-021-03716-1
[6] Finn, R.S., et al. (2020) Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. The New England Journal of Medicine, 382, 1894-1905.
https://doi.org/10.1056/NEJMoa1915745
[7] Abu-Sbeih, H. and Wang, Y. (2020) Hepatobiliary Adverse Events. Advances in Experimental Medicine and Biology, 1244, 271-276.
https://doi.org/10.1007/978-3-030-41008-7_14
[8] Brahmer, J.R., et al. (2018) Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. Journal of Clinical Oncology, 36, 1714-1768.
https://doi.org/10.1200/JCO.2017.77.6385
[9] Wolchok, J.D., et al. (2017) Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. The New England Journal of Medicine, 377, 1345-1356.
https://doi.org/10.1056/NEJMoa1709684
[10] Mok, T.S.K., et al. (2019) Pembrolizumab versus Chemotherapy for Previously Untreated, PD-L1-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomised, Open-Label, Controlled, Phase 3 Trial. The Lancet, 393, 1819-1830.
https://doi.org/10.1016/S0140-6736(18)32409-7
[11] Rini, B.I., et al. (2019) Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. The New England Journal of Medicine, 380, 1116-1127.
https://doi.org/10.1056/NEJMoa1816714
[12] El-Khoueiry, A.B., et al. (2017) Nivolumab in Patients with Advanced Hepatocellular Carcinoma (CheckMate 040): An Open-Label, Non-Comparative, Phase 1/2 Dose Escalation and Expansion Trial. The Lancet, 389, 2492-2502.
https://doi.org/10.1016/S0140-6736(17)31046-2
[13] Zhu, A.X., et al. (2018) Pembrolizumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib (KEYNOTE-224): A Non-Randomised, Open-Label Phase 2 Trial. The Lancet Oncology, 19, 940-952.
https://doi.org/10.1016/S1470-2045(18)30351-6
[14] Duffy, A.G., et al. (2017) Tremelimumab in Combination with Ablation in Patients with Advanced Hepatocellular Carcinoma. Journal of Hepatology, 66, 545-551.
https://doi.org/10.1016/j.jhep.2016.10.029
[15] Kitagataya, T., et al. (2020) Prevalence, Clinical Course, and Predictive Factors of Immune Checkpoint Inhibitor Monotherapy-Associated Hepatitis in Japan. Journal of Gastroenterology and Hepatology, 35, 1782-1788.
https://doi.org/10.1111/jgh.15041
[16] De Martin, E., Michot, J.-M., Rosmorduc, O., Guettier, C. and Samuel, D. (2020) Liver Toxicity as a Limiting Factor to the Increasing Use of Immune Checkpoint Inhibitors. JHEP Reports, 2, Article ID: 100170.
https://doi.org/10.1016/j.jhepr.2020.100170
[17] Daniello, L., et al. (2021) Therapeutic and Prognostic Implications of Immune-Related Adverse Events in Advanced Non-Small-Cell Lung Cancer. Frontiers in Oncology, 11, Article ID: 703893.
https://doi.org/10.3389/fonc.2021.703893
[18] Zhong, L., Wu, Q., Chen, F.C., Liu, J.J. and Xie, X.H. (2021) Immune-Related Adverse Events: Promising Predictors for Efficacy of Immune Checkpoint Inhibitors. Cancer Immunology, Immunotherapy, 70, 2559-2576.
https://doi.org/10.1007/s00262-020-02803-5
[19] Yokohama, K., et al. (2020) Liver Dysfunction Is Associated with Poor Prognosis in Patients after Immune Checkpoint Inhibitor Therapy. Scientific Reports, 10, Article No. 14470.
https://doi.org/10.1038/s41598-020-71561-2
[20] Affolter, T., et al. (2019) Inhibition of Immune Checkpoints PD-1, CTLA-4, and IDO1 Coordinately Induces Immune-Mediated Liver Injury in Mice. PLoS ONE, 14, e0217276.
https://doi.org/10.1371/journal.pone.0217276
[21] Fessas, P., et al. (2019) Immunotoxicity from Checkpoint Inhibitor Therapy: Clinical Features and Underlying Mechanisms. Immunology, 159, 167-177.
https://doi.org/10.1111/imm.13141
[22] Mizuno, K., et al. (2020) Real World Data of Liver Injury Induced by Immune Checkpoint Inhibitors in Japanese Patients with Advanced Malignancies. Journal of Gastroenterology, 55, 653-661.
https://doi.org/10.1007/s00535-020-01677-9
[23] Zen, Y., et al. (2020) Immune-Related Adverse Reactions in the Hepatobiliary System: Second-Generation Check-Point Inhibitors Highlight Diverse Histological Changes. Histopathology, 76, 470-480.
https://doi.org/10.1111/his.14000
[24] Pi, B., et al. (2021) Immune-Related Cholangitis Induced by Immune Checkpoint Inhibitors: A Systematic Review of Clinical Features and Management. European Journal of Gastroenterology & Hepatology.
https://doi.org/10.1097/MEG.0000000000002280
[25] Kawakami, H., et al. (2017) Imaging and Clinicopathological Features of Nivolumab-Related Cholangitis in Patients with Non-Small Cell Lung Cancer. Investigational New Drugs, 35, 529-536.
https://doi.org/10.1007/s10637-017-0453-0
[26] Onoyama, T., et al. (2020) Programmed Cell Death-1 Inhibitor-Related Sclerosing Cholangitis: A Systematic Review. World Journal of Gastroenterology, 26, 353-365.
https://doi.org/10.3748/wjg.v26.i3.353
[27] Takinami, M., et al. (2021) Comparison of Clinical Features between Immune-Related Sclerosing Cholangitis and Hepatitis. Investigational New Drugs.
https://doi.org/10.1007/s10637-021-01136-z
[28] Denaro, N., et al. (2021) Unusual Fatal Outcome Following Administration of a Combination of Anti-PD1 and Anti-CTLA4 in Metastatic Renal Cell Carcinoma: Liver Toxicity Case Report and a Literature Review. European Journal of Case Reports in Internal Medicine, 8, Article ID: 002639.
https://doi.org/10.12890/2021_002639
[29] Suzman, D.L., Pelosof, L., Rosenberg, A. and Avigan, M.I. (2018) Hepatotoxicity of Immune Checkpoint Inhibitors: An Evolving Picture of Risk Associated with a Vital Class of Immunotherapy Agents. Liver International, 38, 976-987.
https://doi.org/10.1111/liv.13746
[30] Couey, M.A., et al. (2019) Delayed Immune-Related Events (DIRE) after Discontinuation of Immunotherapy: Diagnostic Hazard of Autoimmunity at a Distance. Journal for ImmunoTherapy of Cancer, 7, Article No. 165.
https://doi.org/10.1186/s40425-019-0645-6
[31] Tsung, I., et al. (2019) Liver Injury Is Most Commonly Due to Hepatic Metastases Rather than Drug Hepatotoxicity during Pembrolizumab Immunotherapy. Alimentary Pharmacology & Therapeutics, 50, 800-808.
https://doi.org/10.1111/apt.15413
[32] Slawinski, G., et al. (2020) Immune Checkpoint Inhibitors and Cardiac Toxicity in Patients Treated for Non-Small Lung Cancer: A Review. International Journal of Molecular Sciences, 21, 7195.
https://doi.org/10.3390/ijms21197195
[33] Vani, V., Regge, D., Cappello, G., Gabelloni, M. and Neri, E. (2020) Imaging of Adverse Events Related to Checkpoint Inhibitor Therapy. Diagnostics (Basel), 10, 216.
https://doi.org/10.3390/diagnostics10040216
[34] Michot, J.M., et al. (2016) Immune-Related Adverse Events with Immune Checkpoint Blockade: A Comprehensive Review. European Journal of Cancer, 54, 139-148.
https://doi.org/10.1016/j.ejca.2015.11.016
[35] Xu, Y., Fu, Y., Zhu, B., Wang, J. and Zhang, B.C. (2020) Predictive Biomarkers of Immune Checkpoint Inhibitors-Related Toxicities. Frontiers in Immunology, 11, 2023.
https://doi.org/10.3389/fimmu.2020.02023
[36] Shahabi, V., et al. (2013) Gene Expression Profiling of Whole Blood in Ipilimumab-Treated Patients for Identification of Potential Biomarkers of Immune-Related Gastrointestinal Adverse Events. Journal of Translational Medicine, 11, 75.
https://doi.org/10.1186/1479-5876-11-75
[37] Valpione, S., et al. (2018) Sex and Interleukin-6 Are Prognostic Factors for Autoimmune Toxicity Following Treatment with Anti-CTLA4 Blockade. Journal of Translational Medicine, 16, 94.
https://doi.org/10.1186/s12967-018-1467-x
[38] Chaput, N., et al. (2019) Baseline Gut Microbiota Predicts Clinical Response and Colitis in Metastatic Melanoma Patients Treated with Ipilimumab. Annals of Oncology, 30, 2012.
https://doi.org/10.1093/annonc/mdz224
[39] Pollack, M.H., et al. (2018) Safety of Resuming Anti-PD-1 in Patients with Immune-Related Adverse Events (irAEs) during Combined Anti-CTLA-4 and Anti-PD1 in Metastatic Melanoma. Annals of Oncology, 29, 250-255.
https://doi.org/10.1093/annonc/mdx642
[40] Weber, J., et al. (2016) Phase I/II Study of Metastatic Melanoma Patients Treated with Nivolumab Who Had Progressed after Ipilimumab. Cancer Immunology Research, 4, 345-353.
https://doi.org/10.1158/2326-6066.CIR-15-0193
[41] Simonaggio, A., et al. (2019) Evaluation of Readministration of Immune Checkpoint Inhibitors after Immune-Related Adverse Events in Patients with Cancer. JAMA Oncology, 5, 1310-1317.
https://doi.org/10.1001/jamaoncol.2019.1022
[42] Puzanov, I., et al. (2017) Managing Toxicities Associated with Immune Checkpoint Inhibitors: Consensus Recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. Journal for ImmunoTherapy of Cancer, 5, 95.
https://doi.org/10.1186/s40425-017-0300-z
[43] Gauci, M.L., et al. (2018) Immune-Related Hepatitis with Immunotherapy: Are Corticosteroids Always Needed? Journal of Hepatology, 69, 548-550.
https://doi.org/10.1016/j.jhep.2018.03.034
[44] De Martin, E., et al. (2018) Characterization of Liver Injury Induced by Cancer Immunotherapy Using Immune Checkpoint Inhibitors. Journal of Hepatology, 68, 1181-1190.
https://doi.org/10.1016/j.jhep.2018.01.033
[45] Lombardi, A. and Mondelli, M.U. (2019) Review Article: Immune Checkpoint Inhibitors and the Liver, from Therapeutic Efficacy to Side Effects. Alimentary Pharmacology & Therapeutics, 50, 872-884.
https://doi.org/10.1111/apt.15449
[46] Araujo, D.V., et al. (2021) Real World Outcomes and Hepatotoxicity of Infliximab in the Treatment of Steroid-Refractory Immune-Related Adverse Events. Current Oncology, 28, 2173-2179.
https://doi.org/10.3390/curroncol28030201