|
[1]
|
Karp, J.M. and Langer, R. (2007) Development and Therapeutic Applications of Advanced Biomaterials. Current Opin-ion in Biotechnology, 18, 454-459. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Smith, L.A., Liu, X. and Ma, P.X. (2008) Tissue Engineering with Nano-Fibrous Scaffolds. Soft Matter, 4, 2144-2149. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Liu, Y., Lim, J. and Teoh, S.-H. (2013) Review: Development of Clinically Relevant Scaffolds for Vascularised Bone Tissue Engineering. Biotechnology Advances, 31, 688-705. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Farokhi, M., Mottaghitalab, F., Samani, S., Shokrgozar, M.A., Kundu, S.C., Reis, R.L., Fattahi, Y. and Kaplan, D.L. (2018) Silk Fibroin/Hydroxyapatite Composites for Bone Tissue Engineering. Biotechnology Advances, 36, 68-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Nilforoushzadeh, M.A., Zare, M., Zarrintaj, P, Alizadeh, E., Taghiabadi, E., Heidari-Kharaji, M., Amirkhani, M.A., Saeb, M.R. and Mozafari, M. (2018) Engineering the Niche for Hair Regeneration—A Critical Review. Nanomedicine: Nanotechnology, Biology and Medicine, 15, 70-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sefat, F., Youseffi, M., Khaghani, S.A., Soon, C.F. and Javid, F. (2016) Effect of Transforming Growth Factor-β3 on Mono and Multilayer Chondrocytes. Cytokine, 83, 118-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zarrintaj, P., Bakhshandeh, B., Saeb, M.R., Sefat, F., Rezaeian, I., Ganjali, M.R., Ramakrishna, S. and Mozafari, M. (2018) Oligoaniline-Based Conductive Biomaterials for Tissue Engi-neering. Acta Biomaterialia, 72, 16-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zarrintaj, P., Ahmadi, Z., Saeb, M.R. and Mozafari, M. (2018) Poloxamer-Based Stimuli-Responsive Biomaterials. Materials Today: Proceedings, 5, 15516-15523. [Google Scholar] [CrossRef]
|
|
[9]
|
Farokhi, M., Mottaghitalab, F., Fatahi, Y., Saeb, M.R., Zarrintaj, P., Kundu, S.C. and Khademhosseini, A. (2019) Silk Fibroin Scaffolds for Common Cartilage Injuries: Possibilities for Future Clinical Applications. European Polymer Journal, 115, 251-267. [Google Scholar] [CrossRef]
|
|
[10]
|
Sukmana, I. (2012) Bioactive Polymer Scaffold for Fabrica-tion of Vascularized Engineering Tissue. Journal of Artificial Organs, 15, 215-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Guo, B.L., Finne-Wistrand, A. and Albertsson, A.C. (2011) Versatile Functionalization of Polyester Hydrogels with Electroactive Aniline Oligomers. Journal of Polymer Science Part A: Polymer Chemistry, 49, 2097-2105. [Google Scholar] [CrossRef]
|
|
[12]
|
Bassett, C.A.L. and Becker, R.O. (1962) Generation of Electric Potentials by Bone in Response to Mechanical Stress. Science, 137, 1063-1064. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ning, C., Zhou, Z., Tan, G., Zhu, Y. and Mao, C. (2018) Electroactive Polymers for Tissue Regeneration: Developments and Perspectives. Progress in Polymer Science, 81, 144-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Leppik, L., Zhihua, H., Mobini, S., Parameswaran, V.T., Eischen-Loges, M., Slavici, A., Helbing, J., Pindur, L., Oliveira, K.M. and Bhavsar, M.B. (2018) Combining Electrical Stimulation and Tissue Engineering to Treat Large Bonedefects in a Rat Model. Scientific Reports, 8, Article No. 6307. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hopley, E.L., Salmasi, S., Kalaskar, D.M. and Seifalian, A.M. (2014) Carbon Nanotubes Leading the Way Forward in New Generation 3D Tissue Engineering. Biotechnology Advanc-es, 32, 1000-1014. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Goenka, S., Sant, V. and Sant, S. (2014) Graphene-Based Nanomaterials for Drug Delivery and Tissue Engineering. Journal of Controlled Release, 173, 75-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Fan, Z.J., Wang, J.Q., Wang, Z.F., Ran, H.Q., Li, Y., Niu, L.Y., Gong, P.W., Liu, B. and Yang, S.R. (2014) One-Pot Synthesis of Graphene/Hydroxyapatite Nanorod Composite for Tissue Engineering. Carbon, 66, 407-416. [Google Scholar] [CrossRef]
|
|
[18]
|
Abarrategi, A., Gutierrez, M.C., Moreno-Vicente, C., Hortiguela, M.J., Ramos, V., Lopez-Lacomba, J.L., Ferrer, M.L. and del Monte, F. (2008) Multiwall Carbon Nanotube Scaffolds for Tissue Engineering Purposes. Biomaterials, 29, 94-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Harrison, B.S. and Atala, A. (2007) Carbon Nanotube Ap-plications for Tissue Engineering. Biomaterials, 28, 344-353. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Nair, R.S., Ameer, J.M., Alison, M.R. and Anilkumar, T.V. (2017) A Gold Nanoparticle Coated Porcine Cholecyst-Derived Bioscaffold for cardiac Tissue Engineering. Col-loids and Surfaces B: Biointerfaces, 157, 130-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Shevach, M., Fleischer, S., Shapira, A. and Dvir, T. (2014) Gold Nanoparticle-Decellularized Matrix Hybrids for Cardiac Tissue Engineering. Nano Letters, 14, 5792-5796. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Shevach, M., Maoz, B.M., Feiner, R., Shapira, A. and Dvir, T. (2013) Nanoengineering Gold Particle Composite Fibers for Cardiac Tissue Engineering. Journal of Materials Chemistry B, 1, 5210-5217. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Bredas, J.L. and Street, G.B. (1985) Polarons, Bipolarons, and Solitons in Conducting Polymers. Accounts of Chemical Research, 18, 309-315. [Google Scholar] [CrossRef]
|
|
[24]
|
MacDiarmid, A., Chiang, J., Richter, A. and Epstein, A.J. (1987) Poly-aniline: A New Concept in Conducting Polymers. Synthetic Metals, 18, 285-290. [Google Scholar] [CrossRef]
|
|
[25]
|
MacDiarmid, A.G. (2001) “Synthetic Metals”: A Novel Role for Organic Polymers (Nobel Lecture). Angewandte Chemie International Edition, 40, 2581-2590. [Google Scholar] [CrossRef]
|
|
[26]
|
Ouyang, L., Jafari, M.J., Cai, W., Aguirre, L.E., Wang, C., Ederth, T. and Inganäs, O. (2018) The Contraction of PEDOT Films Formed on a Macromolecular Liquid-Like Surface. Journal of Materials Chemistry C, 6, 654-660. [Google Scholar] [CrossRef]
|
|
[27]
|
Checkol, F., Elfwing, A., Greczynski, G., Mehretie, S., Inganäs, O. and Admassie, S, (2018) Highly Stable and Efficient Lignin-PEDOT/PSS Composites for Removal of Toxic Metals. Advanced Sustainable Systems, 2, Article ID: 1700114. [Google Scholar] [CrossRef]
|
|
[28]
|
Harris, A.R. and Wallace, G.G. (2017) Organic Electrodes and Communications with Excitable Cells. Advanced Functional Materials, 28, Article ID: 1700587. [Google Scholar] [CrossRef]
|
|
[29]
|
Mawad, D., Stewart, E., Officer, D.L., Romeo, T., Wagner, P., Wagner, K. and Wallace, G.G. (2012) A Single Component Conducting Polymer Hydrogel as a Scaffold for Tissue Engineering. Advanced Functional Materials, 22, 2692-2699. [Google Scholar] [CrossRef]
|
|
[30]
|
Kaur, G., Adhikari, R., Cass, P., Bown, M. and Gunatillake, P. (2015) Electrically Conductive Polymers and Composites for Biomedical Applications. RSC Advances, 5, 37553-37567. [Google Scholar] [CrossRef]
|
|
[31]
|
Schmidt, C.E., Shastri, V.R., Vacanti, J.P. and Langer, R. (1997) Stim-ulation of Neurite Outgrowth Using an Electrically Conducting Polymer. Proceedings of the National Academy of Sci-ences of the United States of America, 94, 8948-8953. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ateh, D.D., Navsaria, H.A. and Vadgama, P. (2006) Polypyrrole-Based Conducting Polymers and Interactions with Biological Tis-sues. Journal of the Royal Society Interface, 3, 741-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Bendrea, A.-D., Cianga, L. and Cianga, I. (2011) Review Paper: Progress in the Field of Conducting Polymers for Tissue Engi-neering Applications. Journal of Biomaterials Applications, 26, 3-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ateh, D., Navsaria, H. and Vadgama, P. (2006) Polypyr-role-Based Conducting Polymers and Interactions with Biological Tissues. Journal of The Royal Society Interface, 3, 741-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, X., Gu, X., Yuan, C., Chen, S., Zhang, P., Zhang, T., Yao, J., Chen, F. and Chen, G. (2004) Evaluation of Biocompatibility of Polypyrrole in Vitro and in Vivo. Journal of Biomaterials Applications, 68A, 411-422. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, L., Wu, Y.B., Hu, T.L., Guo, B.L. and Ma, P.X. (2017) Electro-spun Conductive Nanofibrous Scaffolds for Engineering Cardiac Tissue and 3D Bioactuators. Acta Biomaterialia, 59, 68-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wang, L., Wu, Y.B., Guo, B.L. and Ma, P.X. (2015) Nanofiber Yarn/Hydrogel Core-Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation. ACS Nano, 9, 9167-9179. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Lukášek, J., Hauzerová, Š., Havlíčková, K., Strnadová, K., Mašek, K., Stuchlík, M., Stibor, I., Jenčová, V. and Řezanka, M. (2019) Cyclodextrin-Polypyrrole Coatings of Scaffolds for Tissue Engineering. Polymers, 11, Article No. 459. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Iyoda, M. and Shimizu, H. (2015) Multifunctional π-Expanded Oligothiophene Macrocycles. Chemical Society Reviews, 44, 6411-6424. [Google Scholar] [CrossRef]
|
|
[40]
|
Hussain, S.T., Abbas, F., Kausar, A. and Khan, M.R. (2013) New Polyaniline/Polypyrrole/Polythiophene and Functionalized Multiwalled Carbon Nanotube-Based Nanocomposites: Lay-er-by-Layer In Situ Polymerization. High Performance Polymers, 25, 70-78. [Google Scholar] [CrossRef]
|
|
[41]
|
Zhou, L., Yu, M., Chen, X., Nie, S., Lai, W.Y., Su, W., Cui, Z. and Huang, W. (2018) Ito-Free Flexible Electronics:Screen-Printed Poly (3, 4-Ethylenedioxythiophene): Poly (Sty-renesulfonate) Grids as ITO-Free Anodes for Flexible Organic Light-Emitting Diodes. Advanced Functional Materials, 28, Article ID: 1870072. [Google Scholar] [CrossRef]
|
|
[42]
|
Du, Z.J., Luo, X., Weaver, C. and Cui, X.T. (2015) Poly(3,4-Ethylenedioxythiophene)-Ionic Liquid Coating Improves Neural Recording and Stimulation Functionality of MEAs. Journal of Materials Chemistry C, 3, 6515-6524. [Google Scholar] [CrossRef]
|
|
[43]
|
Yang, B., Yao, F., Ye, L., Hao, T., Zhang, Y., Zhang, L., Dong, D., Fang, W., Wang, Y., Zhang, X., Wang, C. and Li, J. (2020) A Conductive PEDOT/Alginate Porous Scaffold as a Plat-form to Modulate the Biological Behaviors of Brown Adipose-Derived Stem Cells. Biomaterials Science, 8, 3173-3185. [Google Scholar] [CrossRef]
|
|
[44]
|
Hatchett, D.W., Josowicz, M. and Ianata, J. (1999) Comparision of Chemically and Electrochemically Synthesized Polyaniline Films. Journal of the Electrochemical Society, 146, 4535-4538. [Google Scholar] [CrossRef]
|
|
[45]
|
MacDiarmid, A.G., Huang, W., Humphrey, B.D. and Somasiri, N.L.D. (1985) Polyaniline: Protonic Acid Doping to the Metallic Regime. Molecular Crystals and Liquid Crystals, 125, 309-318. [Google Scholar] [CrossRef]
|
|
[46]
|
Li, L., Ge, J., Guo, B. and Ma, P.X. (2014) In Situ Forming Biodegradable Electroactive Hydrogels. Polymer Chemistry, 5, 2880-2890. [Google Scholar] [CrossRef]
|
|
[47]
|
Rahman, N.A., Feisst, V., Dickinson, M.E., Malmström, J., Dunbar, P.R. and Travas-Sejdic, J. (2013) Functional Polyaniline Nanofibre Mats for Human Adipose-Derived Stem Cell Prolif-eration and Adhesion. Materials Chemistry and Physics, 138, 333-341. [Google Scholar] [CrossRef]
|
|
[48]
|
Zarrintaj, P., Vahabi, H., Saeb, M.R. and Mozafari, M. (2019) Chapter 14: Application of Polyaniline and Its Derivatives. In: Mozafari, M. and Chauhan, N.P.S., Eds., Funda-mentals and Emerging Applications of Polyaniline, Elsevier, Amsterdam, 259-272. [Google Scholar] [CrossRef]
|
|
[49]
|
Zhao, X., Li, P., Guo, B. and Ma, P.X. (2015) Anti-bacterial and Conductive Injectable Hydrogels Based on Quaternized Chitosan-Graft-Polyaniline/Oxidized Dextran for Tissue Engineering. Acta Biomaterialia, 26, 236-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhang, X., Qi, H., Wang, S., Feng, L., Ji, Y., Tao, L., Li, S. and Wei, Y. (2012) Cellular Responses of Aniline Oligomers: A Preliminary Study. Toxicology Research, 1, 201-205. [Google Scholar] [CrossRef]
|
|
[51]
|
Qi, H., Liu, M., Xu, L., Feng, L., Tao, L., Ji, Y., Zhang, X. and Wei, Y. (2013) Biocompatibility Evaluation of Aniline Oligomers with Different End-Functional Groups. Toxicology Research, 2, 427-433. [Google Scholar] [CrossRef]
|
|
[52]
|
Ding, H., Zhong, M., Kim, Y.J., Pholpabu, P., Balasubramanian, A., Hui, C.M., He, H., Yang, H., Matyjaszewski, K. and Bettinger, C.J. (2014) Biologically Derived Soft Conducting Hydrogels Using Heparin-Doped Polymer Networks. ACS Nano, 8, 4348-4357. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Humpolíček, P., Radaszkiewicz, K.A., Capáková, Z., Pacherník, J., Bober, P., Kašpárková, V., Rejmontová, P., Lehocký, M., Ponížil, P. and Stejskal, J. (2018) Polyaniline Cryogels: Biocompati-bility of Novel Conducting Macroporous Material. Scientific Reports, 8, Article No. 135. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Voskerician, G., Shive, M.S., Shawgo, R.S., von Recum, H., Anderson, J.M., Cima, M.J., et al. (2003) Biocompatibility and Biofouling of MEMS Drug Delivery Devices. Bio-materials, 24, 1959-1967. [Google Scholar] [CrossRef]
|
|
[55]
|
Flamme, K., Popat, K.C., Leoni, L., Markiewicz, E., La Tempa, T.J., Roman, B.B., et al. (2007) Biocompatibility of Nanoporous Alumina Membranes for Immunoisolation. Bi-omaterials, 28, 2638-2645. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Zhang, M. and Ferrari, M. (1997) Reduction of Albumin Adsorption onto Silicon Surfaces by Tween 20. Biotechnology & Bioengineering, 56, 618-625. [Google Scholar] [CrossRef]
|
|
[57]
|
Ainslie, K.M. and Desai, T.A. (2012) Microtechnologies for Drug Delivery. In: Wright, J. and Burgess, D., Eds., Long Acting Injec-tions and Implants, Springer, Boston, 359-381. [Google Scholar] [CrossRef]
|
|
[58]
|
Tölli, M.A., Ferreira, M.P., Kinnunen, S.M., Rysä, J., Mäkilä, E.M., Szabó, Z., Serpi, R.E., Ohukainen, P.J., Välimäki, M.J. and Correia, A.M. (2014) In Vivo Biocompatibility of Porous Silicon Biomaterials for Drug Delivery to the Heart. Biomateri-als, 35, 8394-8405. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Tan, Y., Richards, D., Xu, R., Stew-art-Clark, S., Mani, S.K., Borg, T.K., Menick, D.R., Tian, B. and Mei, Y. (2015) Silicon Nanowire-Induced Maturation of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. Nano Letters, 15, 2765-2772. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Jogi, B.F., Sawant, M., Kulkarni, M. and Brahmankar, P. (2012) Disper-sion and Performance Properties of Carbon Nanotubes (CNTs) Based Polymer Composites: A Review. Journal of En-capsulation & Adsorption Sciences, 2, 69-78. [Google Scholar] [CrossRef]
|
|
[61]
|
Kobylko, M., Kociak, M., Sato, Y., Urita, K., Bonnot, A.M., Kasumov, A., et al. (2014) Ballistic- and Quantum-Conductor Carbon Nanotubes: A Reference Experiment Put to the Test. Physical Review B, 90, Article ID: 195431. [Google Scholar] [CrossRef]
|
|
[62]
|
Liu, Z. and Liang, X.J. (2012) Nano-Carbons as Theranostics. Theranostics, 2, 235-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Liu, L., Yang, C., Zhao, K., Li, J. and Wu, H.-C. (2013) Ultrashort Sin-gle-Walled Carbon Nanotubes in a Lipid Bilayer as a New Nanopore Sensor. Nature Communications, 4, Article No. 2989. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Liu, S. and Guo, X. (2012) Carbon Nanomaterials Field-Effect-Transistor-Based Biosensors. NPG Asia Materials, 4, Article No. e23. [Google Scholar] [CrossRef]
|
|
[65]
|
Wang, H. and Dai, H. (2013) ChemInform Abstract: Strongly Coupled Inorganic—Nano-Carbon Hybrid Materials for Energy Storage. ChemInform, 44, n.p. [Google Scholar] [CrossRef]
|
|
[66]
|
Kang, Y. (2017) Catalytic Nanomaterials for Energy Conversion and Storage. China Energy Materials Chemistry Symposium, Taiyuan, 9 June 2017, 1-2.
|
|
[67]
|
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Li, Y., Samad, Y.A., Polychronopoulou, K., Alhassan, S.M. and Liao, K. (2014) Highly Electrically Conductive Nanocomposites Based on Polymer Infused Graphene Sponges. Scientific Reports, 4, Article No. 4652. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Menaa, F., Abdelghani, A. and Menaa, B. (2015) Graphene Nanomaterials as Biocompatible and Conductive Scaffolds for Stem Cells: Impact for Tissue Engineering and Regenerative Medicine. Journal of Tissue Engineering and Regenerative Medicine, 9, 1321-1338. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Song, H.S., Kwon, O.S., Kim, J.-H., Conde, J. and Artzi, N. (2017) 3D hydrogel Scaffold Doped with 2D Graphene Materials for Biosensors and Bioelectronics. Biosensors and Bioelectronics, 89, 187-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Talebian, S., Mehrali, M., Raad, R., Safaei, F., Xi, J., Liu, Z. and Foroughi, J. (2020) Electrically Conducting Hydrogel Graphene Nanocomposite Biofibers for Biomedical Applications. Frontiers in Chemistry, 8, Article No. 88. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Iijima, S. (1991) Helical Microtubles of Graphitic Carbon. Nature, 354, 56-58. [Google Scholar] [CrossRef]
|
|
[73]
|
Huang, J., Liu, Y. and You, T. (2010) Carbon Nanofiber Based Electrochemical Biosensors: A Review. Analytical Methods, 2, 202-211. [Google Scholar] [CrossRef]
|
|
[74]
|
Perhun, T.I., Bychko, I.B. and Trypolsky, A.I. (2013) Catalytic Proper-ties of Graphene Material in the Hydrogenation of Ethylene. Theoretical and Experimental Chemistry, 48, 367-370. [Google Scholar] [CrossRef]
|
|
[75]
|
Bhattacharyya, S., Guillot, S., Dabboue, H., Tranchant, J.-F. and Salvetat, J.-P. (2008) Carbon Nanotubes as Structural Nanofibers for Hyaluronic Acid Hydrogel Scaffolds. Biomacro-molecules, 9, 505-509. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Jia, G., Wang, H., Yan, L., Wang, X., Pei, R. and Yan, T. (2005) Cyto-toxicity of Carbon Nanomaterials: Single-Wall Nanotube, Multi-Wall Nanotube and Fullerene. Environmental Science & Technology, 39, 1378-1383. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Shvedova, A.A., Castranova, V., Kisin, E.R., Schwegler-Berry, D., Mur-ray, A.R., Gandelsman, V.Z., et al. (2003) Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxici-ty Using Human Keratinocyte Cells. Journal of Toxicology and Environmental Health, Part A, 66, 1909-1926. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Cui, D.X., Tian, F.R., Ozkan, C.S., Wang, M. and Gao, H.J. (2005) Ef-fect of Single Wall Carbon Nanotubes on Human HEK293 Cells. Toxicology Letters, 55, 73-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Sperling, R.A., Rivera, Gil, P., Zhang, F., Zanella, M. and Parak, W.J. (2008) Biological Applications of Gold Nanoparticles. Chemical Society Reviews, 37, 1896-908. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
McKeon-Fischer, K.D. and Freeman, J.W. (2011) Characterization of Elec-trospun Poly(L-Lactide) and Gold Nanoparticle Composite Scaffolds for Skeletal Muscle Tissue Engineering. Journal of Tissue Engineering and Regenerative Medicine, 5, 560-568. [Google Scholar] [CrossRef] [PubMed]
|