#### 期刊菜单

The Partial Derivative Teaching of Multivariate Functions Based on the Problem-Driven Method
DOI: 10.12677/AE.2021.116326, PDF, HTML, XML, 下载: 86  浏览: 119  科研立项经费支持

Abstract: According to the characteristics of high abstraction of advanced mathematics, more and more attention has been paid to the problem-driven teaching method of advanced mathematics curriculum. In this paper, the partial derivative of multivariate function in advanced mathematics is taken as an example to fully discuss that posing proper questions is one of the effective methods to improve students’ learning efficiency in class. The problem-driven teaching method requires teachers to carefully organize a series of questions according to the teaching content, and guide students to think positively and deeply understand the essential characteristics and core ideas of the teaching content. At the same time, students ask questions through thinking. Such a virtuous circle of teaching mode is not only conducive to improve the efficiency of classroom teaching, but also to a certain extent can stimulate and increase the motivation of students to consciously seek knowledge.

1. 引言

2. 讲解课堂新知识之前，适当提出问题，激发学生思考，从而理解课堂新知识

2.1. 教师设置问题

2.2. 学生自己产生疑问

${\mathrm{lim}}_{\Delta p\to 0}\frac{T\left({p}_{0}+\Delta p\right)-T\left({p}_{0}\right)}{\Delta p}={\mathrm{lim}}_{\Delta p\to 0}\frac{Q\left({p}_{0}+\Delta p,{r}_{0}\right)-Q\left({p}_{0},{r}_{0}\right)}{\Delta p}$

${T}^{\prime }\left({p}_{0}\right)={\mathrm{lim}}_{\Delta p\to 0}\frac{Q\left({p}_{0}+\Delta p,{r}_{0}\right)-Q\left({p}_{0},{r}_{0}\right)}{\Delta p}$

2.3. 激发学生进一步深入思考

3. 在概念基础之上，适当提出问题，引导学生深入理解相关性质定理

4. 回顾已学知识，引导学生拓宽思路并提问

 [1] 梁利端, 陈科委. 素质教育下线性代数教学法的实践和研究[J]. 黑龙江科技信息, 2008(16): 138. [2] 赵慧斌. 问题驱动是线性代数有效的教学法之一[J]. 高等数学研究, 2008(11): 91-94. [3] 李尚志. 从问题出发引入线性代数概念[J]. 高等数学研究, 2008(9): 6-15. [4] 李尚志. 线性代数精彩应用案例(之一) [J]. 大学数学, 2006, 22(3): 1-8. [5] 施良方. 学习论[M]. 北京: 人民教育出版社, 2003. [6] 张奠宙, 张荫南. 新概念: 用问题驱动的数学教学[J]. 高等数学研究, 2004, 7(3): 8-11.