|
[1]
|
Maleki, H. (2016) Recent Advances in Aerogels for Environmental Remediation Applications: A Review. Chemical Engineering Journal, 300, 98-118. [Google Scholar] [CrossRef]
|
|
[2]
|
Kistler, S.S. (1932) Coherent Expanded Aerogels. Rubber Chemistry and Technology, 5, 600-603. [Google Scholar] [CrossRef]
|
|
[3]
|
Wang, X., Wu, Z., Zhi, M. and Hong, Z. (2018) Synthesis of High Temperature Resistant ZrO2-SiO2 Composite Aerogels via “Thiol-ene” Click Reaction. Journal of Sol-Gel Science and Technology, 87, 734-742. [Google Scholar] [CrossRef]
|
|
[4]
|
Akimov, Y.K. (2003) Fields of Application of Aerogels (Review). Instruments and Experimental Techniques, 46, 287- 299. [Google Scholar] [CrossRef]
|
|
[5]
|
Aravind, P.R., Mukundan, P., Krishna Pillai, P. and Warrier, K.G.K. (2006) Mesoporous Silica-Alumina Aerogels with High Thermal Pore Stability through Hybrid Sol-Gel Route Followed by Subcritical Drying. Microporous and Mesoporous Materials, 96, 14-20. [Google Scholar] [CrossRef]
|
|
[6]
|
Baumann, T.F., Gash, A.E., Chinn, S.C., Sawvel, A.M., Maxwell, R.S. and Satcher, J.H. (2005) Synthesis of High-Surface-Area Alumina Aerogels without the Use of Alkoxide Precursors. Chemistry of Materials, 17, 395-401. [Google Scholar] [CrossRef]
|
|
[7]
|
Du, X., Kleitz, F., Li, X., Huang, H., Zhang, X. and Qiao, S.-Z. (2018) Disulfide-Bridged Organosilica Frameworks: Designed, Synthesis, Redox-Triggered Biodegradation, and Nanobiomedical Applications. Advanced Functional Materials, 28, Article ID: 1707325. [Google Scholar] [CrossRef]
|
|
[8]
|
Du, X., Li, X., Xiong, L., Zhang, X., Kleitz, F. and Qiao, S.Z. (2016) Mesoporous Silica Nanoparticles with Organo- Bridged Silsesquioxane Framework as Innovative Platforms for Bioim-aging and Therapeutic Agent Delivery. Biomaterials, 91, 90-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lebedev, A.E., Menshutina, N.V., Khudeev, I.I. and Ka-myshinsky, R.A. (2021) Investigation of Alumina Aerogel Structural Characteristics at Different Precur-sor-Water-Ethanol Ratio. Journal of Non-Crystalline Solids, 553, Article ID: 120475. [Google Scholar] [CrossRef]
|
|
[10]
|
Zou, W., Wang, X., Wu, Y., Zu, G., Zou, L., Zhang, R., Yao, X. and Shen, J. (2017) Highly Thermally Stable Alumina-Based Aerogels Modified by Partially Hydrolyzed Aluminum Tri-Sec-Butoxide. Journal of Sol-Gel Science and Technology, 84, 507-514. [Google Scholar] [CrossRef]
|
|
[11]
|
Li, M., Jiang, H., Xu, D., Hai, O. and Zheng, W. (2016) Low Density and Hydrophobic Silica Aerogels Dried under Ambient Pressure Using a New Co-Precursor Method. Journal of Non-Crystalline Solids, 452, 187-193. [Google Scholar] [CrossRef]
|
|
[12]
|
Ji, X., Zhou, Q., Qiu, G., Peng, B., Guo, M. and Zhang, M. (2017) Synthesis of an Alumina Enriched Al2O3-SiO2 Aerogel: Reinforcement and Ambient Pressure Drying. Journal of Non-Crystalline Solids, 471, 160-168. [Google Scholar] [CrossRef]
|
|
[13]
|
Zhang, S., Cai, W., Yu, J., Ji, C. and Zhao, N. (2017) A Facile One-Pot Cation-Anion Double Hydrolysis Approach to the Synthesis of Supported MgO/γ-Al2O3 with Enhanced Adsorption Performance towards CO2. Chemical Engineering Journal, 310, 216-225. [Google Scholar] [CrossRef]
|
|
[14]
|
Zu, G., Shen, J., Wei, X., Ni, X., Zhang, Z., Wang, J. and Liu, G. (2011) Preparation and Characterization of Monolithic Alumina Aerogels. Journal of Non-Crystalline Solids, 357, 2903-2906. [Google Scholar] [CrossRef]
|
|
[15]
|
Xu, L., Jiang, Y., Feng, J., Feng, J. and Yue, C. (2015) Infrared-Opacified Al2O3-SiO2 Aerogel Composites Reinforced by SiC-Coated Mullite Fibers for Thermal Insulations. Ceramics International, 41, 437-442. [Google Scholar] [CrossRef]
|
|
[16]
|
Zhang, X., Zhang, R. and Zhao, C. (2020) Ultra-Small Sepio-lite Fiber Toughened Alumina Aerogel with Enhanced Thermal Stability and Machinability. Journal of Porous Materials, 27, 1535-1546. [Google Scholar] [CrossRef]
|
|
[17]
|
Gash, A.E., Tillotson, T.M., Satcher Jr., J.H., Hrubesh, L.W. and Simpson, R.L. (2001) New Sol-Gel Synthetic Route to Transition and Main-Group Metal Oxide Aerogels Using Inorganic Salt Precursors. Journal of Non-Crystalline Solids, 285, 22-28. [Google Scholar] [CrossRef]
|
|
[18]
|
Gao, H., Zhang, Z., Shi, Z., Zhang, J., Zhi, M. and Hong, Z. (2018) Synthesis of High-Temperature Resistant Monolithic Zirconia-Based Aerogel via Facile Water Glass Assisted Sol-Gel Method. Journal of Sol-Gel Science and Technology, 85, 567-573. [Google Scholar] [CrossRef]
|
|
[19]
|
Yu, H., Jiang, Y., Lu, Y., Li, X., Zhao, H., Ji, Y. and Wang, M. (2019) Quartz Fiber Reinforced Al2O3-SiO2 Aerogel Composite with Highly Thermal Stability by Ambient Pressure Drying. Journal of Non-Crystalline Solids, 505, 79-86. [Google Scholar] [CrossRef]
|
|
[20]
|
Juhl, S.J., Dunn, N.J.H., Carroll, M.K., Anderson, A.M., Bruno, B.A., Madero, J.E. and Bono, M.S. (2015) Epoxide- Assisted Alumina Aerogels by Rapid Supercritical Extraction. Journal of Non-Crystalline Solids, 426, 141-149. [Google Scholar] [CrossRef]
|
|
[21]
|
Wen, S., Ren, H., Zhu, J., Bi, Y. and Zhang, L. (2019) Fabrication of Al2O3 Aerogel-SiO2 Fiber Composite with Enhanced Thermal Insulation and High Heat Resistance. Journal of Porous Materials, 26, 1027-1034. [Google Scholar] [CrossRef]
|
|
[22]
|
Shafi, S., Navik, R., Ding, X. and Zhao, Y. (2019) Improved Heat Insulation and Mechanical Properties of Silica Aerogel/Glass Fiber Composite by Impregnating Silica Gel. Journal of Non-Crystalline Solids, 503-504, 78-83. [Google Scholar] [CrossRef]
|
|
[23]
|
Garay Martinez, R., Goiti, E., Reichenauer, G., Zhao, S., Koebel, M. and Barrio, A. (2016) Thermal Assessment of Ambient Pressure Dried Silica Aerogel Composite Boards at Laboratory and Field Scale. Energy and Buildings, 128, 111- 118. [Google Scholar] [CrossRef]
|
|
[24]
|
Yamashita, H., Ogami, T. and Kanamura, K. (2018) Hydrothermal Synthesis of Hollow Al2O3 Microfibers for Thermal Insulation Materials. Bulletin of the Chemical Society of Japan, 91, 741-746. [Google Scholar] [CrossRef]
|
|
[25]
|
Wang, G., Zhao, J., Mark, L.H., Wang, G., Yu, K., Wang, C., Park, C.B. and Zhao, G. (2017) Ultra-Tough and Super Thermal-Insulation Nanocellular PMMA/TPU. Chemical Engineering Journal, 325, 632-646. [Google Scholar] [CrossRef]
|
|
[26]
|
Wu, Y., Wang, X., Liu, L., Zhang, Z. and Shen, J. (2021) Alumina-Doped Silica Aerogels for High-Temperature Thermal Insulation. Gels, 7, 122. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Pierre, A.C. (2020) Applications of Sol-Gel Processing. In: Pierre, A.C., Ed., Introduction to Sol-Gel Processing, Springer International Publishing, Cham, 597-685. [Google Scholar] [CrossRef]
|
|
[28]
|
Ohshima, H. (2012) The Derjaguin-Landau-Verwey-Overbeek (DLVO) Theory of Colloid Stability. In: Ohshima, H., Ed., Electrical Phenomena at Interfaces and Biointerfaces: Fundamentals and Applications in Nano-, Bio-, and Environmental Sciences, John Wiley & Sons, Inc., Hoboken, 27-34. [Google Scholar] [CrossRef]
|
|
[29]
|
Li, T., Zhou, B., Du, A., Xiang, Y., Wu, S., Liu, M., Ding, W., Shen, J. and Zhang, Z. (2017) Microstructure Control of the Silica Aerogels via Pinhole Drying. Journal of Sol-Gel Science and Technology, 84, 96-103. [Google Scholar] [CrossRef]
|
|
[30]
|
Parale, V.G., Lee, K.-Y., Jung, H.-N.-R., Nah, H.-Y., Choi, H., Kim, T.-H., Phadtare, V.D. and Park, H.-H. (2018) Facile Synthesis of Hydrophobic, Thermally Stable, and Insulative Organically Modified Silica Aerogels Using Co-Pre- cursor Method. Ceramics International, 44, 3966-3972. [Google Scholar] [CrossRef]
|
|
[31]
|
Cai, H., Jiang, Y., Feng, J., Chen, Q., Zhang, S., Li, L. and Feng, J. (2020) Nanostructure Evolution of Silica Aerogels under Rapid Heating from 600 ˚C to 1300 ˚C via In-Situ TEM Observation. Ceramics International, 46, 12489-12498. [Google Scholar] [CrossRef]
|
|
[32]
|
Zu, G., Shen, J., Zou, L., Zou, W., Guan, D., Wu, Y. and Zhang, Y. (2017) Highly Thermally Stable Zirconia/Silica Composite Aerogels Prepared by Supercritical Deposition. Microporous and Mesoporous Materials, 238, 90-96. [Google Scholar] [CrossRef]
|
|
[33]
|
Randall, J.P., Meador, M.A.B. and Jana, S.C. (2011) Tailoring Mechanical Properties of Aerogels for Aerospace Applications. ACS Applied Materials & Interfaces, 3, 613-626. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Uyanna, O. and Najafi, H. (2020) Thermal Protection Systems for Space Vehicles: A Review on Technology Development, Current Challenges and Future Prospects. Acta Astronautica, 176, 341-356. [Google Scholar] [CrossRef]
|
|
[35]
|
Wang, X., Du, Y., Yang, H., Tian, S., Ge, Q., Huang, S. and Wang, M. (2021) Removal of Chloride Ions from Acidic Solution with Antimony Oxides. Journal of Industrial and En-gineering Chemistry, 93, 170-175. [Google Scholar] [CrossRef]
|
|
[36]
|
Chen, H., Sui, X.Y., Zhou, C.L., Wang, C.H., Yin, C.X. and Liu, F.T. (2016) Preparation and Characterization of Mullite Fiber-Reinforced Al2O3-SiO2 Aerogel Composites. Key Engineering Materials, 697, 360-363. [Google Scholar] [CrossRef]
|
|
[37]
|
Wu, X., Ding, J., Kong, Y., Sun, Z., Shao, G., Li, B., Wu, J., Zhong, Y., Shen, X. and Cui, S. (2018) Synthesis of a Novel Three-Dimensional Na2SO4@SiO2@Al2O3-SiO2 Phase Change Material Doped Aerogel Composite with High Thermal Resistance and Latent Heat. Ceramics International, 44, 21855-21865. [Google Scholar] [CrossRef]
|
|
[38]
|
Pierre, A.C. and Pajonk, G.M. (2002) Chemistry of Aerogels and Their Applications. Chemical Reviews, 102, 4243- 4266. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Brinker, C.J., Keefer, K.D., Schaefer, D.W. and Ashley, C.S. (1982) Sol-Gel Transition in Simple Silicates. Journal of Non-Crystalline Solids, 48, 47-64. [Google Scholar] [CrossRef]
|
|
[40]
|
Soleimani Dorcheh, A. and Abbasi, M.H. (2008) Silica Aerogel; Synthesis, Properties and Characterization. Journal of Materials Processing Technology, 199, 10-26. [Google Scholar] [CrossRef]
|
|
[41]
|
Zhao, Y., Cao, Y., Yang, Y. and Wu, C. (2003) Rheological Study of the Sol-Gel Transition of Hybrid Gels. Macromolecules, 36, 855-859. [Google Scholar] [CrossRef]
|
|
[42]
|
Lu, X., Kanamori, K. and Nakanishi, K. (2020) Hierarchically Porous Monoliths Based on Low-Valence Transition Metal (Cu, Co, Mn) Oxides: Gelation and Phase Separation. National Science Review, 7, 1656-1666. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Livage, J., Henry, M. and Sanchez, C. (1988) Sol-Gel Chemistry of Transition Metal Oxides. Progress in Solid State Chemistry, 18, 259-341. [Google Scholar] [CrossRef]
|
|
[44]
|
Dervin, S. and Pillai, S.C. (2017) An Introduction to Sol-Gel Processing for Aerogels. In: Pillai, S.C. and Hehir, S., Eds., Sol-Gel Materials for Energy, Environment and Electronic Applications, Springer International Publishing, Cham, 1-22. [Google Scholar] [CrossRef]
|
|
[45]
|
Gash, A.E., Tillotson, T.M., Satcher, J.H., Poco, J.F., Hrubesh, L.W. and Simpson, R.L. (2001) Use of Epoxides in the Sol-Gel Synthesis of Porous Iron(III) Oxide Monoliths from Fe(III) Salts. Chemistry of Materials, 13, 999-1007. [Google Scholar] [CrossRef]
|
|
[46]
|
Gurav, J.L., Jung, I.-K., Park, H.-H., Kang, E.S. and Nadargi, D.Y. (2010) Silica Aerogel: Synthesis and Applications. Journal of Nanomaterials, 2010, Article ID: 409310. [Google Scholar] [CrossRef]
|
|
[47]
|
Mishra, D., Anand, S., Panda, R.K. and Das, R.P. (2000) Hydrothermal Preparation and Characterization of Boehmites. Materials Letters, 42, 38-45. [Google Scholar] [CrossRef]
|
|
[48]
|
Mikhaylov, V.I., Martakov, I.S., Gerasimov, E.Y. and Sitnikov, P.A. (2020) Study of Heteroaggregation and Properties of Sol-Gel AlOOH-Fe3O4 Composites. Heliyon, 6, e05825. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Baitalik, S., Panigrahi, D. and Kayal, N. (2017) Properties of Porous SiC Ceramics Processed by Gelation and Consolidation of Boehmite Coated SiC Suspensions. Transactions of the Indian Ceramic Society, 76, 222-227. [Google Scholar] [CrossRef]
|
|
[50]
|
Pakharukova, V.P., Shalygin, A.S., Gerasimov, E.Y., Tsybulya, S.V. and Martyanov, O.N. (2016) Structure and Morphology Evolution of Silica-Modified Pseudoboehmite Aerogels during Heat Treatment. Journal of Solid State Chemistry, 233, 294-302. [Google Scholar] [CrossRef]
|
|
[51]
|
Osaki, T., Nagashima, K., Watari, K. and Tajiri, K. (2007) Silica-Doped Alumina Cryogels with High Thermal Stability. Journal of Non-Crystalline Solids, 353, 2436-2442. [Google Scholar] [CrossRef]
|
|
[52]
|
Zhang, R., Ye, C. and Wang, B. (2018) Novel Al2O3-SiO2 Aerogel/Porous Zirconia Composite with Ultra-Low Thermal Conductivity. Journal of Porous Materials, 25, 171-178. [Google Scholar] [CrossRef]
|
|
[53]
|
Zhao, Y., Tang, G.H. and Du, M. (2015) Numerical Study of Ra-diative Properties of Nanoporous Silica Aerogel. International Journal of Thermal Sciences, 89, 110-120. [Google Scholar] [CrossRef]
|
|
[54]
|
Tang, G.H., Bi, C., Zhao, Y. and Tao, W.Q. (2015) Thermal Transport in Nano-Porous Insulation of Aerogel: Factors, Models and Outlook. Energy, 90, 701-721. [Google Scholar] [CrossRef]
|
|
[55]
|
Yang, X., Sun, Y., Shi, D. and Liu, J. (2011) Experimental Investigation on Mechanical Properties of a Fiber-Reinforced Silica Aerogel Composite. Materials Science and Engineering: A, 528, 4830-4836. [Google Scholar] [CrossRef]
|
|
[56]
|
Zhong, Y., Zhang, J., Wu, X., Shen, X., Cui, S. and Lu, C. (2017) Carbon-Fiber Felt Reinforced Carbon/Alumina Aerogel Composite Fabricated with High Strength and Low Thermal Conductivity. Journal of Sol-Gel Science and Technology, 84, 129-134. [Google Scholar] [CrossRef]
|
|
[57]
|
Song, X., Ma, Y., Wang, J., Liu, B., Yao, S., Cai, Q. and Liu, W. (2018) Homogeneous and Flexible Mullite Nanofibers Fabricated by Electrospinning through Diphasic Mullite Sol-Gel Route. Journal of Materials Science, 53, 14871- 14883. [Google Scholar] [CrossRef]
|
|
[58]
|
Liu, H., Zhou, X., Chen, Y., Li, T. and Pei, S. (2014) Titanium Dioxide Fibers Prepared by Sol-Gel Process and Centrifugal Spinning. Journal of Sol-Gel Science and Technology, 71, 102-108. [Google Scholar] [CrossRef]
|
|
[59]
|
Zhao, J.-J., Duan, Y.-Y., Wang, X.-D., Zhang, X.-R., Han, Y.-H., Gao, Y.-B., Lv, Z.-H., Yu, H.-T. and Wang, B.-X. (2013) Optical and Radiative Properties of Infrared Opacifier Particles Loaded in Silica Aerogels for High Temperature Thermal Insulation. International Journal of Thermal Sciences, 70, 54-64. [Google Scholar] [CrossRef]
|
|
[60]
|
Lei, Y., Chen, X., Song, H., Hu, Z. and Cao, B. (2017) Improvement of Thermal Insulation Performance of Silica Aerogels by Al2O3 Powders Doping. Ceramics International, 43, 10799-10804. [Google Scholar] [CrossRef]
|
|
[61]
|
Zu, G., Shen, J., Wang, W., Zou, L., Lian, Y., Zhang, Z., Liu, B. and Zhang, F. (2014) Robust, Highly Thermally Stable, Core-Shell Nanostructured Metal Oxide Aerogels as High-Temperature Thermal Superinsulators, Adsorbents, and Catalysts. Chemistry of Materials, 26, 5761-5772. [Google Scholar] [CrossRef]
|
|
[62]
|
Zou, W., Wang, X., Wu, Y., Zou, L., Zu, G., Chen, D. and Shen, J. (2019) Opacifier Embedded and Fiber Reinforced Alumina-Based Aerogel Composites for Ultra-High Temperature Thermal Insulation. Ceramics International, 45, 644- 650. [Google Scholar] [CrossRef]
|
|
[63]
|
Peng, F., Jiang, Y., Feng, J., Cai, H., Feng, J. and Li, L. (2021) Thermally Insulating, Fiber-Reinforced Alumina-Silica Aerogel Composites with Ultra-Low Shrinkage Up to 1500 ˚C. Chemical Engineering Journal, 411, Article ID: 128402. [Google Scholar] [CrossRef]
|
|
[64]
|
Dou, L., Zhang, X., Cheng, X., Ma, Z., Wang, X., Si, Y., Yu, J. and Ding, B. (2019) Hierarchical Cellular Structured Ceramic Nanofibrous Aerogels with Temperature-Invariant Superelasticity for Thermal Insulation. ACS Applied Materials & Interfaces, 11, 29056-29064. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Wang, W. (2014) Trimethylethoxysilane-Modified Super Heat-Resistant Alumina Aerogels for High-Temperature Thermal Insulation and Adsorption Applications. RSC advances, 4, 54864-54871. [Google Scholar] [CrossRef]
|