[1]
|
Nnoby, R. (1997) Carbon Cycle: Inside the Black Box. Nature, 388, 522-523. https://doi.org/10.1038/41441
|
[2]
|
IPCC (2004) Climate Change 2004. Cambridge University Press, Cambridge.
|
[3]
|
中华人民共和国. 中华人民共和国气候变化第二次两年更新报告[EB/OL].
http://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf, 2019-07-01.
|
[4]
|
宋长春, 宋艳宇, 王宪伟, 等. 气候变化下湿地生态系统碳、氮循环研究进展[J]. 湿地科学, 2018, 16(3): 424-431.
|
[5]
|
Matthews, E. and Fung, I. (1987) Methane Emission from Natural Wetlands: Global Distribution, Area, and Environmental Characteristics of Sources. Global Biogeochemical Cycles, 1, 61-86. https://doi.org/10.1029/GB001i001p00061
|
[6]
|
刘子刚. 湿地生态系统碳储存和温室气体排放研究[J]. 地理科学, 2004, 24(5): 634-639.
|
[7]
|
Joos, F. and Spahni, R. (2008) Rates of Change in Natural and Anthropogenic Radiative Forcing over the Past 20,000 Years. Proceedings of the National Academy of Sciences of the United States of America, 105, 1425-1430.
https://doi.org/10.1073/pnas.0707386105
|
[8]
|
Dlugokencky, E. and Tans, P. (2021) Trends in Atmospheric Carbon Dioxide. National Oceanic and Atmospheric Administration, Earth System Research Laboratory. http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
|
[9]
|
Schlesinger, W.H. and Bernhardt, E.S. (1998) Biogeochemistry: An Analysis of Global Change. The Quarterly Review of Biology, 73, 353-423.
|
[10]
|
Lawler, A. (1998) Research Lime Light Falls on Carbon Cycle. Science, 280, 1683-1684.
https://doi.org/10.1126/science.280.5370.1683
|
[11]
|
Friedlingstein, P., O’Sullivan, M., Jones, M.W., et al. (2020) Global Carbon Budget 2020. Earth System Science Data, 12, 3269-3340. https://doi.org/10.5194/essd-12-3269-2020
|
[12]
|
王效科, 白艳莹, 欧阳志云, 等. 全球碳循环中的失汇及其形成原因[J]. 生态学报, 2002(1): 94-103.
|
[13]
|
Siegenthaler, U. and Sarmiento, J.L. (1993) Atmospheric Carbon Dioxide and the Ocean. Nature, 365, 119-125.
https://doi.org/10.1038/365119a0
|
[14]
|
Keeling, C.D., Bacastow, R.B., Carter, A.F., et al. (1989) A Three-Dimensional Model of Atmospheric CO2 Transport Based on Observed Winds. Analysis of Observational Data. American Geophysical Union (AGU), 55, 165-236.
https://doi.org/10.1029/GM055p0165
|
[15]
|
Houghton, R.A. (1995) Effects of Land-Use Change, Surface Temperature, and CO2 Concentration on Terreatrialstortes of Carbon. In: Woodwell, Ed., Biotic Feedbacks in the Global Climatic System, Oxford University Press, London, 333-350.
|
[16]
|
蒋高明, 渠春梅. 北京山区辽东栎林中几种木本植物光合作用对CO2浓度升高的响应[J]. 植物生态学报, 2000, 24(2): 204-208.
|
[17]
|
Dhakhwa, G.B., Campbell, C.L., Leduc, S.K., et al. (1997) Maize Growth: Assessing the Effects of Global Warming and CO2 Fertilization with Crop Models. Agricultural & Forest Meteorology, 87, 253-272.
https://doi.org/10.1016/S0168-1923(97)00030-0
|
[18]
|
Rogers, H.H., Runion, G.B. and Krupa, S.V. (1994) Plant Res-ponses to Atmospheric CO2 Enrichment with Emphasis on Roots and the Rhizosphere. Environmental Pollution, 83, 155-189. https://doi.org/10.1016/0269-7491(94)90034-5
|
[19]
|
Friedlingstein, P., Fung, I., Holland, E., et al. (1995) On the Contribution of CO2 Fertilization to the Missing Biospheric Sink. Global Biogeochemical Cycles, 9, 541-556. https://doi.org/10.1029/95GB02381
|
[20]
|
Cao, M.K. and Woodward, F.I. (1998) Dynamic Responses of Terrestrial Ecosystem Carbon Cycling to Global Climate Change. Nature, 393, 249-252. https://doi.org/10.1038/30460
|
[21]
|
Fan, S., Gloor, M., Mahlman, J., et al. (1999) North American Carbon Sink. Science, 283, 1815.
https://doi.org/10.1126/science.283.5409.1815a
|
[22]
|
汪业勖, 赵士洞, 牛栋. 陆地土壤碳循环的研究动态[J]. 生态学杂志, 1999, 18(5): 29-35.
|
[23]
|
Reeburgh, W.S. (1997) Figures Summarizing the Global Cycles of Biogeochemically Important Elements. Bulletin of the Ecological Society of America, 78, 260-267.
|
[24]
|
Freeman, C., Evans, C.D., Monteith, D.T., et al. (2001) Export of Organic Carbon from Peat Soils. Nature, 412, 785-787. https://doi.org/10.1038/35090628
|
[25]
|
Ryan, M.G., Binkley, D., Fownes, J.H., et al. (2004) An Experimental Test of the Causes of Forest Growth Decline with Stand Age. Ecological Monograph, 74, 393-414. https://doi.org/10.1890/03-4037
|
[26]
|
梅雪英, 张修峰. 长江口湿地海三棱藨草的储碳、固碳功能研究——以崇明东滩为例[J]. 农业环境科学学报, 2007, 26(1): 360-363.
|
[27]
|
Dixon, R.K., Solomon, A.M., Brown, S., et al. (1994) Carbon Pools and Flux of Global Forest Ecosystems. Science, 263, 185-190. https://doi.org/10.1126/science.263.5144.185
|
[28]
|
Crill, P.M., Bartlett, K.B., Harriss, R.C., et al. (1988) Methane Flux from Minnesota Peatlands. Global Biogeochemical Cycles, 2, 371-384. https://doi.org/10.1029/GB002i004p00371
|
[29]
|
梅雪英, 张修峰. 长江口典型湿地植被储碳固碳功能研究[J]. 中国生态农业学报, 2008, 16(2): 269-272.
|
[30]
|
潘根兴. 中国土壤有机碳和无机碳库量研究[J]. 科技通报, 1999, 15(5): 330-332.
|
[31]
|
吴琴, 尧波, 幸瑞新, 等. 鄱阳湖典型湿地土壤有机碳分布及影响因子[J]. 生态学杂志, 2012, 31(2): 313-318.
|
[32]
|
张文菊, 吴金水, 肖和艾, 等. 三江平原典型湿地剖面有机碳分布特征与积累现状[J]. 地球科学进展, 2004, 19(4): 558-563.
|
[33]
|
满秀玲, 刘斌, 李奕. 小兴安岭草本泥炭沼泽土壤有机碳、氮和磷分布特征[J]. 北京林业大学学报, 2010, 32(6): 48-53.
|
[34]
|
张文菊. 典型湿地生态系统碳蓄积与碳循环模拟[D]: [博士学位论文]. 武汉: 华中农业大学, 2006.
|
[35]
|
Frolking, S. and Crill, P. (1994) Climate Controls on Temporal Variability of Methane Flux from a Poor Fen in Southeastern New Hampshire: Measurement and Modeling. Global Biogeochemical Cycles, 8, 385-397.
https://doi.org/10.1029/94GB01839
|
[36]
|
Boone, R.D., Nadelhoffer, K.J. and Canary, J.D. (1998) Roots Exert a Strong Influence on the Temperature Sensitivity of Soil Respiration. Nature, 396, 570-572. https://doi.org/10.1038/25119
|
[37]
|
Bubier, J.L., Bhatia, G., Moore, T.R., et al. (2003) Spatial and Temporal Variability in Growing-Season Net Ecosystem Carbon Dioxide Exchange at a Large Peatland in Ontario, Canada. Ecosystems, 6, 353-367.
|
[38]
|
Hirota, M., Tang, Y.H., Hu, Q., et al. (2006) Carbon Dioxide Dynamics and Controls in a Deep-Water Wetland on the Qinghai-Tibetan Plateau. Ecosystems, 9, 673-688. https://doi.org/10.1007/s10021-006-0029-x
|
[39]
|
杨钙仁, 张文菊, 童成立, 等. 温度对湿地沉积物有机碳矿化的影响[J]. 生态学报, 2005, 25(2): 243-248.
|
[40]
|
Silvola, J., Alm, J., Ahlholm, U., et al. (1996) CO2 Fluxes from Peat in Boreal Mires under Varying Temperature and Moisture Conditions. Journal of Ecology, 84, 219-228. https://doi.org/10.2307/2261357
|
[41]
|
Hogber, G.P., Nordgen, A., Buchmann, N., et al. (2001) Large-Scale Forest Girdling Shows That Current Photosynthesis Drives Soil Respiration. Nature, 411, 789-792. https://doi.org/10.1038/35081058
|
[42]
|
Oechel, W.C., Vourlitis, G.L., Hastings, S.J., et al. (1998) The Effect of Water Table Manipulation and Elevated Temperature on the Net CO2 Flux of Wet Sedge Tundra Ecosystems. Global Change Biology, 4, 77-90.
https://doi.org/10.1046/j.1365-2486.1998.00110.x
|
[43]
|
Freeman, C., Lock, M.A. and Reynolds, B. (1992) Flux of CO2, CH4 and N2O from a Welsh Peatland Following Simulation of Water Table Drawdown: Potential Feedback to Climate Change. Biogeochemistry, 19, 51-60.
https://doi.org/10.1007/BF00000574
|
[44]
|
Updegraff, K., Pastor, J., Bridgham, S.D., et al. (1995) Environmental and Substrate Controls over Carbon and Nitrogen Mineralization in Northern Wetlands. Ecological Applications, 5, 151-163. https://doi.org/10.2307/1942060
|
[45]
|
Kumaraswamy, S., Rath, A.K. and Sethunathan, N. (2000) Wetland Rice Soils as Sources and Sinks of Methane: A Review and Prospects for Research. Biology and Fertility of Soils, 31, 449-461.
https://doi.org/10.1007/s003740000214
|
[46]
|
Mer, J.L. and Roger, P. (2001) Production, Oxidation, Emission and Consumption of Methane by Soils: A Review. European Journal of Soil Biology, 37, 25-50. https://doi.org/10.1016/S1164-5563(01)01067-6
|
[47]
|
Whiting, G.J. and Chanton, J.P. (1993) Primary Production Control of Methane Emissions from Wetlands. Nature, 364, 794-795. https://doi.org/10.1038/364794a0
|
[48]
|
Rinne, J., Riutta, T., Pihlatie, M., et al. (2007) Annual Cycle of Methane Emission from a Boreal Fen Measured by the Eddy Covariance Technique. Tellus, 59, 449-457. https://doi.org/10.1111/j.1600-0889.2007.00261.x
|
[49]
|
王德宣. 若尔盖高原与三江平原沼泽湿地CH4排放差异的主要环境影响因素[J]. 湿地科学, 2003, 1(1): 63-67.
|
[50]
|
Saarnio, S., Alm, J., Silvola, J., et al. (1997) Seasonal Variation in CH4 Emissions and Production and Oxidation Potentials at Microsites on an Oligotrophic Pine Fen. Oecologia, 110, 414-422. https://doi.org/10.1007/s004420050176
|
[51]
|
Saarnio, S., Saarinen, T., Vasander, H., et al. (2001) A Moderate Increase in the Annual CH4 Efflux by Raised CO2 or NH4NO3 Supply in a Boreal Oligotrophic Mire. Global Change Biology, 6, 137-144.
https://doi.org/10.1046/j.1365-2486.2000.00294.x
|
[52]
|
Ding, W., Cai, Z. and Tsuruta, H. (2005) Plant Species Effects on Methane Emissions from Freshwater Marshes. Atmospheric Environment, 39, 3199-3207. https://doi.org/10.1016/j.atmosenv.2005.02.022
|
[53]
|
Ericson, D.J. and Taylor, J.A. (2013) 3-D Tropospheric CO Modelling: The Possible Influence of the Ocean. Geophysical Research Letters, 19, 1955-1958. https://doi.org/10.1029/92GL01475
|
[54]
|
Zuo, Y. and Jones, R.D. (1997) Photochemistry of Natural Dissolved Organic Matter in Lake and Wetland Waters-Production of Carbon Monoxide. Water Research, 31, 850-858. https://doi.org/10.1016/S0043-1354(96)00316-8
|
[55]
|
郭洋, 李香兰, 王秀君, 等. 干旱半干旱区农田土壤碳垂直剖面分布特征研究[J]. 土壤学报, 2016, 53(6): 1433-1443.
|
[56]
|
郭振, 王小利, 段建军, 等. 长期施肥对黄壤性水稻土有机碳矿化的影响[J]. 土壤学报, 2018, 55(1): 225-235.
|
[57]
|
陈晓芬, 刘明, 江春玉, 等. 红壤性水稻土不同粒级团聚体有机碳矿化及其温度敏感性[J]. 土壤学报, 2019, 56(5): 1118-1127.
|
[58]
|
吴萌, 李忠佩, 冯有智, 等. 长期施肥处理下不同类型水稻土有机碳矿化的动态差异[J]. 中国农业科学, 2016, 49(9): 1705-1714.
|
[59]
|
Krogh, L., Noergaard, A., Hermansen, M., et al. (2003) Preliminary Estimates of Contemporary Soil Organic Carbon Stocks in Denmark Using Multiple Datasets and Four Scaling-Up Methods. Agriculture, Ecosystems & Environment, 96, 19-28. https://doi.org/10.1016/S0167-8809(03)00016-1
|
[60]
|
Post, W.M., Emanuel, W.R., Zinke, P.L., et al. (1982) Soil Carbon Pools and World Life Zones. Nature, 298, 156-159.
https://doi.org/10.1038/298156a0
|
[61]
|
Oechel, W.C., Vourlitis, G.L., Hastings, S.J., et al. (2000) Acclimation of Ecosystem CO2 Exchange in the Alaskan Arctic in Response to Decadal Climate Warming. Nature, 406, 978-981. https://doi.org/10.1038/35023137
|
[62]
|
Wetzel, R.G. (1992) Gradient-Dominated Ecosystems: Sources and Regulatory Functions of Dissolved Organic Matter in Freshwater Ecosystems. Hdrobiologia, 229, 181-198. https://doi.org/10.1007/BF00007000
|
[63]
|
Moore, T.R., Roulet, N.T. and Waddington, J.M. (1998) Uncertainty in Predicting the Effect of Climatic Change on the Carbon Cycling of Canadian Peatlands. Climatic Change, 40, 229-245. https://doi.org/10.1023/A:1005408719297
|
[64]
|
Clair, T.A., Arp, P., Moore, T.R., et al. (2002) Gaseous Carbon Dioxide and Methane, as Well as Dissolved Organic Carbon Losses from a Small Temperate Wetland under a Changing Climate. Environmental Pollution, 116, 143-148.
https://doi.org/10.1016/S0269-7491(01)00267-6
|
[65]
|
Matthews, J.B.R., Annex, L.G., Masson, D.V., et al. (2018) Global Warming of 1.5˚C. An IPCC Special Report. Cambridge University Press, Cambridge, 541-562.
|
[66]
|
Macreadie, P.I., Nielsen, D.A., Kelleway, J.J., et al. (2017) Can We Manage Coastal Ecosystems to Sequester More Blue Carbon? Frontiers in Ecology and the Environment, 15, 206-213. https://doi.org/10.1002/fee.1484
|
[67]
|
Zhang, C., Ju, W., Chen, J., et al. (2013) China’s Forest Biomass Carbon Sink Based on Seven Inventories from 1973 to 2008. Climatic Change, 118, 933-948. https://doi.org/10.1007/s10584-012-0666-3
|
[68]
|
Xiao, D., Deng, L., Kim, D.G., et al. (2019) Carbon Budgets of Wetland Ecosystems in China. Global Change Biology, 25, 2061-2076. https://doi.org/10.1111/gcb.14621
|
[69]
|
Li, T., Zhang, W., Zhang, Q., et al. (2015) Impacts of Climate and Reclamation on Temporal Variations in CH4 Emissions from Different Wetlands in China: From 1950 to 2010. Biogeosciences, 12, 6853-6868.
https://doi.org/10.5194/bg-12-6853-2015
|
[70]
|
周宏春, 管永林. 生态经济: 新时代生态文明建设的基础与支撑[J]. 生态经济, 2020, 36(9): 13-24.
|