系统生物学在生物修复中的应用
Applications of Systems Biology in Bioremediation
DOI: 10.12677/IJE.2021.104062, PDF, HTML, XML, 下载: 329  浏览: 452  科研立项经费支持
作者: 赵宇通, 曹晓晖, 庄 华:陕西地建土地工程技术研究院有限责任公司,陕西 西安;陕西省土地工程建设集团有限责任公司,陕西 西安;自然资源部退化及未利用土地整治工程重点实验室,陕西 西安;陕西省土地整治工程技术研究中心室,陕西 西安;陕西地建土地工程质量检测有限责任公司,陕西 西安
关键词: 系统生物学生物修复基因编辑Systems Biology Bioremediation Metabolic Engineering
摘要: 近年来,由于工业的发展和农业的进步,环境中污染物的多样性和数量急剧增加。为了有效降解空气、土壤、地下水和地表水等不同区域的污染物,开发了一种利用微生物的经济、环保的修复方法。相比于传统的污染治理手段,通过利用微生物的代谢来中和或者移除环境中的污染物,生物修复具有更经济、更稳定和对环境友好等优点。
Abstract: Owing to the growth of industrial and the improvement of agricultural, the diversity and quantity of contaminants in environment have a dramatically increasing in recent years. For effectively degrading these contaminants from different areas including air, soils and ground and surface water, an economic and eco-friendly remediation method by utilizing microorganisms was devel-oped.As a discipline that explores the inherent laws of biology, systems biology explores important biological information such as gene expression, enzyme production and action, biosynthetic pathways, and microbial secondary metabolites. Through this information, the existing metabolic pathways of microorganisms under the pressure of different pollutants can be modified to achieve the purpose of metabolizing pollutants.
文章引用:赵宇通, 曹晓晖, 庄华. 系统生物学在生物修复中的应用[J]. 世界生态学, 2021, 10(4): 538-544. https://doi.org/10.12677/IJE.2021.104062

1. 背景介绍

在过去的几十年中,工农业的快速发展给人们带来巨大的便利的同时,也带来了大量的工农业产生的废弃物,排入了环境当中,导致环境中的污染物的种类和数量提高,从而对环境中的生命健康造成影响。在农田中过度使用农药和化肥,造成了空气、陆地和水的污染。同时,数量众多的工厂有意或无意向环境中排放了有毒的无机的和有机的化学物,还有大量的重金属,对环境产生严重的影响 [1] [2]。这些问题主要多发于一些大力发展工农业但没有健全的环境监管框架的发展中国家,通常,这些发展中国家的环境污染大都来源于人类活动 [3] [4]。

现在主要的环境污染物有化学溶剂、油漆、工业副产品、石油、碳氢化合物,多环芳烃(PAHs),硝基芳香族化合物,工业溶剂,多氯联苯(PCBs),三氯乙烯(TCE),邻苯二甲酸酯,苯,乙苯,甲苯和苯乙烯二甲苯(BTEX),重金属和农药(表1) [5] [6] [7]。除了这些旧有的污染物,一些新型污染物例如碳纳米材料(碳纳米管、石墨烯、金属纳米颗粒等)也对环境有着不好的影响(表1) [8] [9]。环境问题现在已经是世界性难题,每年都有数以亿计的人类的健康受到影响。保持健康环境和治理严重污染地点中最重要的就是把污染物从废弃物中分离出去,以防止它们扩散到环境中。

Table 1. Emerging pollutants

表1. 新兴污染物

传统污染治理方法利用污染物的理化性质,通过凝固、过滤、焚烧、蒸发、氧化还原、反渗透、化学沉淀、电化学处理和离子交换方法等将污染物浓度降低来减缓对环境的危害( [10] - [15] )。然而,由于繁琐治理过程带来的高消费和消耗大量化学试剂所带来的环境二次污染,都限制着传统修复方法的发展 [16] [17]。

2. 系统生物学在生物修复中的应用

生命科学中的系统生物学(systems biology, SB)和代谢工程学(metabolic engineering, ME)在很多科学领域,通过运用微观的视角来探究内在的生命运作机制,都证明了其具有的发展潜力。因此,环境科学家也将系统生物学应运在了生物修复中。图1用示意图的方式展示了一系列通过系统生物学搭配代谢工程的方法来加强对污染物的中和或者降解。通过对分子、细胞、种群、群落和生态系统等多种层面生物性进程进行分析。系统生物学可用于对复杂的生物系统的研究和探索其中冗杂的通路和内在联系 [18]。这种途径最终可提供很多有效的生物过程的详细信息,从而通过代谢工程来改变微生物的代谢途径,最终可以用这种新型微生物来中和独特的污染物 [19]。

Figure 1. Systems biology and metabolic engineering are combined used in bioremediation

图1. 系统生物学和代谢工程合并运用于生物修复中

作为一门探索生物内在规律的学科,系统生物学探索了基因表达,酶的生成和作用,生物合成通路,微生物次级代谢产物等重要的生物信息。通过这些信息,对现有的处于不同污染物压力下的微生物的代谢途径做出修改从而达到代谢污染物的目的。基因组学、蛋白质组学、转录组学和代谢组学这些也被广泛应运在系统生物学的研究中 [20] [21] [22]。通过与高通量技术及计算机算法相结合,系统生物学可获得大量全面的关于细胞的认知,并且有能力来预知细胞活动 [23]。

代谢工程最初是作为一门新兴学科由James E. Bailey于1991年提出。通过优化基因和管理细胞代谢进程来提升微生物产物产量及生产率、使微生物生产出新的产物来对生物修复做出贡献、扩大微生物的可生长底物的范围或者促进底物的吸收,以及提高微生物整体的稳健性 [24]。通常,实现这些目标需要对细胞或者几种不同生物间由酶聚集而成的生成路线的天然代谢途径做出修改。由于具有相同的目标,系统生物学和代谢工程有着很大的重合度。两个学科是相辅相成并且无法分开的,甚至还被归入了同一个学科——系统代谢工程中 [25]。

为了优化生物修复,对现有污染物压力诱导下的微生物的细胞过程、微生物群落多样性和代谢活性必须被描述出来 [26]。此外,鉴于生物修复的最终目标是从环境中去除有毒的化合物,因此一次成功的修复需要了解所有可能对环境中微生物的细胞内活动或者细胞与细胞间的反应产生影响的因素。同时,如果在生物修复期间需要选择一个合适的系统生物学研究手段,那么必须考虑一些因素包括成本、时间、劳动力和需要探求的目标 [27]。如果主要关注的是获知环境中微生物的多样性,那么就需要运用到基因组学、代谢组学和表型组学这些“组学”。如果想要探究的主要目标是细胞内反应所需要的功能基因和细胞内基因的表达、代谢途径和功能蛋白质等,转录组学,蛋白质组学和质谱等技术是所需要的 [28] [29]。当需要得到一些微生物分泌的小分子的信息时,需要用到核磁共振(NMR),解吸电喷雾电离(DESI)和基质辅助激光解吸离子化(MALDI)等技术 [30] [31]。为了确认酶在一个复杂的微生物群落中的作用,蛋白质组学、代谢组学和功能基因组微阵列可以提供有效的见解。

3. 系统生物学中的主要技术

系统生物学中各种“组学”可为代谢工程选择合适的方法,通过合并应用下一代测序技术和全新的算法以及计算工具来挖掘数据,使得人们对细胞与细胞及细胞与它们居住环境之间的动态相互作用有了一个更深的理解 [27] [32]。此外,合适的基因类数据也使得人们对微生物代谢外源性化学物质的发展过程有了新的见解 [33]。

许多微生物群落中细胞途径,酶和编码基因的不完整信息的获知限制了它们在矿化过程中的使用 [34]。然而,基因组学可以提供许多基因方面的信息例如当微生物暴露在外源性污染物中时DNA及RNA的表达情况,从而克服上诉局限性。这项技术包括着使用不同算法及工具来进行基因组测序和生物信息学分析。根据最新统计,已经有370,196种生物进行了基因测序,并且有超过40,000个测序项目依旧在世界各地进行(http://www.genomesonline.org)。此外,好几种用于生物修复的微生物的全基因组已经通过测序方法而被获知 [35] [36] [37]。Belda等人(2016)对于Pseudomonas sp. KT2440这种土壤腐生杆菌的基因组(6.2MB)进行了测序,发现在它的基因上编码了脱氢酶,氧化还原酶,加氧酶,铁氧还蛋白,细胞色素,谷胱甘肽转移酶,硫代谢蛋白和药物外排泵等在对降解工业废水中几种化学物有着重要作用的酶和蛋白质。另一种假单胞菌Pseudomonas putida CSV86的模板基因组测序则被用来检测负责降解萘的基因在染色体上的位置 [38]。此外,产脲节杆菌Arthrobacter sp. strains LS16和YC-RL1两种菌株的全基因组测序也是显示它们的代谢通路是可以作用于在双酚A,联苯和对二甲苯等芳香化合物的生物修复中 [38] [39]。

转录组学主要用于研究反应环境中的污染物而上调和下调的基因的差异表达,同时也用来推断过往未被研究过的基因的作用。基因芯片和RNA测序等技术可以被应用于量化一系列的预定序列。当研究微生物群落的转录时,首先需要分离并放大细胞的mRNA,并通过mRNA生成cDNA文库,接着对完整的cDNA进行测序或者使用基因芯片对cDNA进行杂交 [40]。除了基因组学和转录组学外,蛋白质组学也是一门很有研究价值的技术。并且同基因组学相比,蛋白质组学更具复杂性,因为蛋白质在不同的细胞中随时间变化是不同的 [41]。

4. 结论

相比于传统的污染治理手段,通过利用微生物的代谢来中和或者移除环境中的污染物,生物修复具有更经济、更稳定和对环境友好等优点。微生物包括细菌、真菌及古生菌,都有着不错的中和污染物的能力,这主要依靠于它们自身所产生酶的细胞代谢过程。污染物被这些微生物所攻击导致完全降解或者转化为较少危害类型的产物。然而,生物修复也存在着低适应性,耗时过长,过分依赖微生物对污染物的生物利用度等缺点。作为一门探索生物内在规律的学科,系统生物学探索了基因表达,酶的生成和作用,生物合成通路,微生物次级代谢产物等重要的生物信息。通过这些信息,对现有的处于不同污染物压力下的微生物的代谢途径做出修改从而达到代谢污染物的目的。

基金项目

陕西省创新能力支撑计划资助(项目编号:2021PT-053)。

参考文献

[1] Cheng, Z. (2016) The Spatial Correlation and Interaction between Manufacturing Agglomeration and Environmental Pollution. Ecological Indicators, 61, 1024-1032.
https://doi.org/10.1016/j.ecolind.2015.10.060
[2] Larsson, D.J. (2014) Pollution from Drug Manufacturing: Review and Perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, Article ID: 20130571.
https://doi.org/10.1098/rstb.2013.0571
[3] Francová, A., Chrastný, V., Šillerová, H., Vítková, M., Kocourková, J. and Komárek, M. (2017) Evaluating the Suitability of Different Environmental Samples for Tracing Atmospheric Pollution in Industrial Areas. Environmental Pollution, 220, 286-297.
https://doi.org/10.1016/j.envpol.2016.09.062
[4] Nigam, V.K. and Shukla, P. (2015) Enzyme Based Biosensors for Detection of Environmental Pollutants—A Review. Journal of Microbiolog and Biotechnology, 25, 1773-1781.
https://doi.org/10.4014/jmb.1504.04010
[5] Deblonde, T., Cossu-Leguille, C. and Hartemann, P. (2011) Emerging Pollutants in Wastewater: A Review of the Literature. International Journal of Hygiene and Environmental Health, 214, 442-448.
https://doi.org/10.1016/j.ijheh.2011.08.002
[6] Perelo, L.W. (2010) In Situ and Bioremediation of Organic Pol-lutants in Aquatic Sediments. Journal of Hazardous Materials, 177, 81-89.
https://doi.org/10.1016/j.jhazmat.2009.12.090
[7] Xu, X., Cheng, Y., Zhang, T., Ji, F. and Xu, X. (2016) Treat-ment of Pharmaceutical Wastewater Using Interior Micro-Electrolysis/Fenton Oxidation-Coagulation and Biological Degradation. Chemosphere, 152, 23-30.
https://doi.org/10.1016/j.chemosphere.2016.02.100
[8] Chen, M., Qin, X. and Zeng, G. (2017) Biodiversity Change behind Wide Applications of Nanomaterials? Nano Today, 17, 11-13.
https://doi.org/10.1016/j.nantod.2017.09.001
[9] Chen, M., Zeng, G., Xu, P., Yan, M., Xiong, W. and Zhou, S. (2017) Interaction of Carbon Nanotubes with Microbial Enzymes: Conformational Transitions and Potential Toxicity. Environmental Science: Nano, 4, 1954-1960.
https://doi.org/10.1039/C7EN00512A
[10] Aksoy, D.O., Aytar, P., Toptaş, Y., Çabuk, A., Koca, S. and Koca, H. (2014) Physical and Physicochemical Cleaning of Lignite and the Effect of Cleaning on Biodesulfurization. Fuel, 132, 158-164.
https://doi.org/10.1016/j.fuel.2014.04.090
[11] Erdem, M. and Özverdi, A. (2011) Environmental Risk Assessment and Stabilization/Solidification of Zinc Extraction Residue: II. Stabilization/Solidification. Hydrometallurgy, 105, 270-276.
https://doi.org/10.1016/j.hydromet.2010.10.014
[12] Kanadasan, J. and Razak, H.A. (2015) Engineering and Sustainability Performance of Self-Compacting Palm Oil Mill Incinerated Waste Concrete. Journal of Cleaner Pro-duction, 89, 78-86.
https://doi.org/10.1016/j.jclepro.2014.11.002
[13] Porcelli, N. and Judd, S. (2010) Chemical Cleaning of Potable Water Membranes: A Review. Separation and Purification Technology, 71, 137-143.
https://doi.org/10.1016/j.seppur.2009.12.007
[14] Shi, X., Tal, G., Hankins, N.P. and Gitis, V. (2014) Fouling and Cleaning of Ultrafiltration Membranes: A Review. Journal of Water Process Engineering, 1, 121-138.
https://doi.org/10.1016/j.jwpe.2014.04.003
[15] Vasudevan, S. and Oturan, M.A. (2014) Electrochemistry: As Cause and Cure in Water Pollution—An Overview. Environmental Chemistry Letters, 12, 97-108.
https://doi.org/10.1007/s10311-013-0434-2
[16] Bhalara, P.D., Punetha, D. and Balasubramanian, K. (2014) A Review of Potential Remediation Techniques for Uranium (VI) Ion Retrieval from Contaminated Aqueous Environment. Journal of Environmental Chemical Engineering, 2, 1621-1634.
https://doi.org/10.1016/j.jece.2014.06.007
[17] Dasgupta, J., Sikder, J., Chakraborty, S., Curcio, S. and Drioli, E. (2015) Remediation of Textile Effluents by Membrane Based Treatment Techniques: A State of the Art Review. Journal of Environmental Management, 147, 55-72.
https://doi.org/10.1016/j.jenvman.2014.08.008
[18] De Lorenzo, V. (2008) Systems Biology Approaches to Bio-remediation. Current Opinion in Biotechnology, 19, 579-589.
https://doi.org/10.1016/j.copbio.2008.10.004
[19] Sharma, B., Dangi, A.K. and Shukla, P. (2018) Contemporary Enzyme Based Technologies for Bioremediation: A Review. Journal of Environmental Management, 210, 10-22.
https://doi.org/10.1016/j.jenvman.2017.12.075
[20] Banerjee, C., Singh, P.K. and Shukla, P. (2016) Microalgal Bioengineering for Sustainable Energy Development: Recent Transgenesis and Metabolic Engineering Strategies. Bio-technology Journal, 11, 303-314.
https://doi.org/10.1002/biot.201500284
[21] Dangi, A.K., Dubey, K.K. and Shukla, P. (2017) Strategies to Improve Saccharomyces cerevisiae: Technological Advancements and Evolutionary Engineering. Indian Journal of Microbiology, 57, 378-386.
https://doi.org/10.1007/s12088-017-0679-8
[22] Kumar Singh, P. and Shukla, P. (2014) Systems Biology as an Approach for Deciphering Microbial Interactions. Briefings in Functional Genomics, 14, 166-168.
https://doi.org/10.1093/bfgp/elu023
[23] Dai, Z. and Nielsen, J. (2015) Advancing Metabolic Engineering through Systems Biology of Industrial Microorganisms. Current Opinion in Biotechnology, 36, 8-15.
https://doi.org/10.1016/j.copbio.2015.08.006
[24] Nielsen, J., Fussenegger, M., Keasling, J., Lee, S.Y., Liao, J.C., Prather, K. and Palsson, B. (2014) Engineering Synergy in Biotechnology. Nature Chemical Biology, 10, 319.
https://doi.org/10.1038/nchembio.1519
[25] Lee, J.W., Na, D., Park, J.M., Lee, J., Choi, S. and Lee, S.Y. (2012) Systems Metabolic Engineering of Microorganisms for Natural and Non-Natural Chemicals. Nature Chemical Biology, 8, 536.
https://doi.org/10.1038/nchembio.970
[26] De Lorenzo, V. (2015) Systems and Synthetic Biology in Hy-drocarbon Microbiology: Tools. In: Hydrocarbon and Lipid Microbiology Protocols, Springer, Berlin, 1-7.
https://doi.org/10.1007/8623_2015_185
[27] Vilchez-Vargas, R., Junca, H. and Pieper, D.H. (2010) Metabolic Networks, Microbial Ecology and “Omics” Technologies: Towards Understanding in Situ Biodegradation Processes. Environmental Microbiology, 12, 3089-3104.
https://doi.org/10.1111/j.1462-2920.2010.02340.x
[28] Baweja, M., Singh, P.K. and Shukla, P. (2016) Enzyme Technology, Functional Proteomics, and Systems Biology toward Unraveling Molecular Basis for Functionality and Interactions in Biotechnological Processes. In: Shukla, P., Ed., Frontier Discoveries and Innovations in Interdisciplinary Microbiology, Springer, Berlin, 207-212.
https://doi.org/10.1007/978-81-322-2610-9_13
[29] Chakraborty, R., Wu, C.H. and Hazen, T.C. (2012) Systems Biology Approach to Bioremediation. Current Opinion in Biotechnology, 23, 483-490.
https://doi.org/10.1016/j.copbio.2012.01.015
[30] El Amrani, A., Dumas, A.-S., Wick, L.Y., Yergeau, E. and Berthomé, R. (2015) “Omics” Insights into PAH Degradation toward Improved Green Remediation Biotechnologies. Environmental Science and Technology, 49, 11281-11291.
https://doi.org/10.1021/acs.est.5b01740
[31] Godheja, J., Shekhar, S.K. and Modi, D. (2014) Advances in Mo-lecular Biology Approaches to Guage Microbial Communities and Bioremediation at Contaminated Sites. International Journal of Environmental Bioremediation and Biodegradation, 2, 167-177.
[32] Bouhajja, E., Agathos, S.N. and George, I.F. (2016) Metagenomics: Probing Pollutant Fate in Natural and Engineered Ecosystems. Biotechnology Ad-vances, 34, 1413-1426.
https://doi.org/10.1016/j.biotechadv.2016.10.006
[33] Shapir, N., Mongodin, E., Sadowsky, M., Daugherty, S., Nelson, K. and Wackett, L. (2007) Evolution of Catabolic Pathways: Genomic Insights into Microbial S-Triazine Metabolism. Journal of Bacteriology, 189, 674-682.
https://doi.org/10.1128/JB.01257-06
[34] Zhao, B. and Poh, C.L. (2008) Insights into Environmental Bioremedi-ation by Microorganisms through Functional Genomics and Proteomics. Proteomics, 8, 874-881.
https://doi.org/10.1002/pmic.200701005
[35] Lasa, A. and Romalde, J.L. (2017) Genome Sequence of Three Psychrobacter sp. Strains with Potential Applications in Bioremediation. Genomics Data, 12, 7-10.
https://doi.org/10.1016/j.gdata.2017.01.005
[36] Rahman, S.F., Kantor, R.S., Huddy, R., Thomas, B.C., Van Zyl, A.W., Harrison, S.T. and Banfield, J.F. (2017) Genome-Resolved Metagenomics of a Bioremediation System for Deg-radation of Thiocyanate in Mine Water Containing Suspended Solid Tailings. Microbiology Open, 6, e00446.
https://doi.org/10.1002/mbo3.446
[37] Yang, S., Yu, M. and Chen, J. (2017) Draft Genome Analysis of Dietzia sp. 111N12-1, Isolated from the South China Sea with Bioremediation Activity. Brazilian Journal of Microbiology, 48, 393-394.
https://doi.org/10.1016/j.bjm.2016.10.029
[38] Paliwal, V., Raju, S.C., Modak, A., Phale, P.S. and Purohit, H.J. (2014) Pseudomonas putida CSV86: A Candidate Genome for Genetic Bioaugmentation. PLoS ONE, 9, e84000.
https://doi.org/10.1371/journal.pone.0084000
[39] Ren, L., Jia, Y., Ruth, N., Zhao, B. and Yan, Y. (2016) Com-plete Genome Sequence of an Aromatic Compound Degrader Arthrobacter sp. YC-RL1. Journal of Biotechnology, 219, 34-35.
https://doi.org/10.1016/j.jbiotec.2015.12.008
[40] Zhu, Y., Ma, N., Jin, W., Wu, S. and Sun, C. (2017) Genomic and Transcriptomic Insights into Calcium Carbonate Biomineralization by Marine Actinobacterium Brevibacterium linens BS258. Frontiers in Microbiology, 8, 602.
https://doi.org/10.3389/fmicb.2017.00602
[41] Nzila, A., Ramirez, C.O., Musa, M.M., Sankara, S., Basheer, C. and Li, Q.X. (2018) Pyrene Biodegradation and Proteomic Analysis in Achromobacter xylosoxidans, PY4 Strain. In-ternational Biodeterioration and Biodegradation, 130, 40-47.
https://doi.org/10.1016/j.ibiod.2018.03.014