全身炎症反应标志物Lp-PLA2的研究进展
Research Progress of Lp-PLA2: A Marker of Systemic Inflammatory Response
DOI: 10.12677/ACM.2021.1111754, PDF, HTML, XML, 下载: 376  浏览: 918 
作者: 张 振, 李 飞:延安大学附属医院心内科,陕西 延安
关键词: 炎症反应Lp-PLA2研究进展Inflammatory Response Lp-PLA2 The Research Progress
摘要: 动脉粥样硬化及其表现即心血管疾病(CVD)仍是世界范围内发病率和死亡率最高的疾病。脂蛋白相关磷脂酶A2 (lipoprotein associated phospholipase A2, Lp-PLA2)是一种新颖而独特的生物标志物,对血管炎症和动脉粥样硬化具有高度特异性。本篇文章对Lp-PLA2的研究进展进行了分析总结。
Abstract: Atherosclerosis and its manifestation, cardiovascular disease (CVD), remain the leading cause of morbidity and mortality in the world. Lp-pla2 (lP-PLA2) is a novel and unique biomarker with high specificity for vascular inflammation and atherosclerosis. This article reviews the research progress of LP-PLA2.
文章引用:张振, 李飞. 全身炎症反应标志物Lp-PLA2的研究进展[J]. 临床医学进展, 2021, 11(11): 5112-5118. https://doi.org/10.12677/ACM.2021.1111754

1. 概述

早在1980年Farr [1] 等首次证实人血浆中存在一种酶,可以强效催化促炎磷脂PAF的sn-2酯键水解,从而减弱其生物活性,并且可以被丝氨酸酯酶抑制剂显著抑制。随后该酶被命名为血小板活化因子乙酰水解酶或PAF-AH (EC3.1.1.47),为分子量大小为45.4 kDa的单体蛋白,属于PLA2的VIIA亚家族,来源于造血源细胞(如:单核细胞/巨噬细胞、肝库普弗细胞、肥大细胞、血小板)。在血液中主要结合低密度脂蛋白而运输,少部分结合高密度脂蛋白而运输(占酶总活性 < 20%)。血浆PAF-AH与其他PLA2不同,PAF-AH特异作用于底物磷脂sn-2位置的短酰基(Cn < 6)。由于PAF-AH能够表现出磷脂酶A2的特性,并通过与LDL和HDL结合在血液中循环,PAF-AH也被Tew等 [2] 称为Lp-PLA2。除了Lp-PLA2具有PAF-AH活性之外,人血浆对氧磷酶1 (PON1)、卵磷脂–胆固醇酰基转移酶(LCAT)也表现出PAF-AH样活性,共同组成类似功能的催化活性池。

2. Lp-PLA2与动脉粥样硬化

Lp-PLA2有两种,即循环系统中分泌的Lp-PLA2和动脉粥样硬化斑块内分泌的Lp-PLA2。Lp-PLA2主要由动脉粥样硬化斑块中的巨噬细胞产生后进入循环系统,并转化为分泌的Lp-PLA2 [3] [4]。生物学上,分泌的Lp-PLA2主要与LDL的ApoB部分结合,并将LDL水解成溶血磷酰胆碱(Lyso-PC)和花生四烯酸。而在动脉粥样硬化斑块中,Lp-PLA2将oxLDL水解成Lyso-PC和氧化非酯化脂肪酸(oxNEFAs) [5]。Lp-PLA2最初被认为是一种产生抗动脉粥样硬化的酶。Lp-PLA2过表达的有效性已经在不同的动物模型中进行了验证。第一个记录Lp-PLA2的抗炎作用的研究是由Tjoelker等在1995年进行的 [6]。此后,Morgan和同事报道,与对照组相比,在心肌缺血再灌注损伤的兔中,输注重组Lp-PLA2减少了白细胞浸润,减少了心肌坏死 [7]。在载脂蛋白–脂蛋白E缺乏的小鼠模型中,人Lp-PLA2的腺病毒基因转移减少了巨噬细胞的浸润和活性氧的产生 [8]。然而,除了产生抗动脉粥样硬化的证据外,从科学到临床范围的大量研究也一致表明,Lp-PLA2不仅参与动脉硬化的发生和进展,而且与斑块破裂和心血管事件的发生有关。例如,在载脂蛋白–脂蛋白E缺乏的小鼠模型中,减弱Lp-PLA2表达可显著改善炎症反应,并阻止斑块形成 [9]。在患有糖尿病和肝炎的猪模型中,抑制Lp-PLA2活性可有效预防冠状动脉病变进展 [10]。在Woscops [11] 的临床试验中,结果表明Lp-PLA2升高似乎是冠心病(CHD)的一个危险因素,这强烈提示Lp-PLA2对动脉粥样硬化发生和CV风险评估的影响。

3. Lp-PLA2基因多态性和冠心病

Lp-PLA2的活性和质量在不同种族之间是不同的,而位于6p21-p12染色体上的Lp-PLA2编码基因(PLA2G7)的变异是导致这一现象的主要原因。此外,许多关于PLA2G7单核苷酸多态性(SNP)的研究表明,不同种族中相似变异的生物学功能完全相反 [12] [13] [14]。例如,在中国汉族人群中发现V279F变异(PLA2G7、rs16874954)和CVD之间存在显著关联,表明罕见等位基因F的携带者增加了心血管事件的风险 [15],这与Yamada [16] 和Shimokata [17] 报道的日本人群一致。然而,在韩国人群中,V279F变异导致了一个出乎意料相反的结果 [18]。Ninio E.和同事报道了A379V变型(PLA2G7, rs1051931),其中丙氨酸被缬氨酸取代,导致Lp-PLA2功能改变,从而增强抗动脉粥样硬化作用 [19]。有趣的是,在Liu和同事进行的研究中 [20],结果是相当矛盾的。他们发现,在中国台湾汉族人群中,A379V变异与Lp-PLA2活性和冠状动脉粥样硬化的严重程度显著相关。最近,一项包括12项研究的荟萃分析显示 [21],在欧洲血统的人群中,在7个SNPs中,A379V变异与Lp-PLA2活性的关联最强,然而,PLA2G7变异与心血管风险标志物、冠状动脉粥样硬化或冠心病之间没有显著相关性。据我们所知,不同研究之间的这些差异可能至少部分归因于以下机制。首先,这是种族的主要差异。其次,每个研究之间的受试者的临床特征并不总是具有可比性,因此,与相同的PLA2G7变异相关的结果可能相当相反。第三,研究对象间PLA2G7变异频率的不同也可能是导致差异的原因。最后但并非最不重要的是,除PLA2G7本身以外的遗传变异也可能影响Lp-PLA2的活性或质量。Lp-PLA2被认为是动脉粥样硬化一级或二级预防的风险标志物。即使在对传统危险因素进行多变量调整后,Lp-PLA2水平升高也与心血管事件风险增加有关。目前,在成人治疗小组III (ATP III)指南中,Lp-PLA2已被推荐作为评估未来CV风险的传统危险因素的辅助因素。尽管darapladib (最先进的Lp-PLA2抑制剂)未能降低两项大型III期临床试验的主要终点事件的发生率,但Lp-PLA2的研究尚未终止。在一项对老年高血压患者的研究中发现,Lp-PLA2水平高于健康志愿者,其水平随血压升高而升高,可能与血压水平越高动脉粥样硬化风险越大冠状动脉病变越严重有关,符合以往研究结果 [22]。更引人注目的是,最近的临床和临床前研究显示,Lp-PLA2抑制对糖尿病、肿瘤及一些其他疾病显示出很好的治疗效果。这一证据表明,Lp-PLA2是一个可靠的生物标志物,而不是心血管疾病的因果危险因素,但这一观点仍有待证实 [23]。关于Lp-PLA2的研究还在继续。

4. Lp-PLA2与糖尿病微血管病

糖尿病微血管病变的发病机制与多方面因素有关,近几年来研究发现炎症反应、炎性因子在糖尿病微血管病变的发生发展过程中扮演重要角色。DR是指糖尿病患者合并发生的因微循环异常所引起的一组视网膜病变,DR患者根据眼底表现分为非增生性糖尿病性视网膜病变(NPDR)和增生性糖尿病性视网膜病变(PDR)。NPDR的眼底表现包括视网膜静脉扩张、微血管瘤、深层和浅层出血、硬性渗出、棉絮斑等。由于血–视网膜屏障的破坏,血浆成分向视网膜组织渗漏,导致视网膜水肿,当水肿发生于黄斑部时,则引起中心视力下降。2型糖尿病及PDR患者存在高水平炎症反应,炎症反应与糖尿病及其血管并发症的发生及发展有密切关系,在2型糖尿病并发的微血管病变中,炎症反应是近年来PDR研究的热点 [24] [25] [26]。最近的一项流行病学研究表明,糖尿病PDR患者的血浆Lp-PLA2的活性高于健康个体和糖尿病NPDR患者。此外,Lp-PLA2的增加与DR的严重程度相关 [27]。糖尿病合并肾脏病发病机制中多元醇通路,蛋白激酶C系统,氧化应激,非酶糖基化学说占很大程度,炎症反应也有一定作用,炎症反应可引发机体氧化应激,使LDL氧化为OX-LDL,后者可直接损伤血管内皮细胞。糖尿病肾脏病是糖尿病重要微血管并发症之一,也是糖尿病患者主要死因之一。多项临床研究都证明,Lp-PLA2水平与糖尿病紧密相关。李婷婷 [28] 研究发现,高Lp-PLA2水平与DKD呈正相关,是糖尿病肾脏病的危险因素,与T2DM患者糖尿病肾脏病的发生和发展有关,检测Lp-PLA2水平有助于糖尿病肾脏病的早期诊断和早期预防。同样,武仅 [29] 的研究显示,Lp-PLA2是微量白蛋白/肌酐的独立危险因素,且随T2DM患者糖尿病肾病的进展呈逐渐上升趋势。Lp-PLA2可能参与糖尿病肾病的发生发展过程,为预测、诊断及治疗糖尿病肾病提供新思路。张伟亚等人 [30] 的研究同样也提示,Lp-PLA2和Cys-C水平均可反映糖尿病肾脏病肾损伤程度。Lp-PLA2在糖尿病肾脏病早期明显升高,是早期糖尿病肾脏病的独立危险因素。Lp-PLA2和Cys-C联合检测可提高糖尿病肾脏病诊断效能,为早期诊断糖尿病肾脏病提供新方法。糖尿病足患者、糖尿病无并发症患者和健康体检者的Lp-PLA2。结果显示,糖尿病足患者的Lp-PLA2水平明显高于糖尿病非并发症患者和健康体检者(P < 0.05) [31]。

5. Lp-PLA2与肿瘤

Lp-PLA2在很多种肿瘤患者病灶中的表达含量较健康组织升高。与此同时,和来源于乳腺、肺等的原发肿瘤组织比较,具有侵袭性及转移性的病变组织中PLA2G7的含量是显著升高的 [32]。在Stafforini学者的文章中讨论了Lp-PLA2表达及功能变化相关的一些生物学效应。通过Lp-PLA2抑制剂抑制该酶的活性,发现了该酶可能参与了肿瘤病变进展的许多方面,如肿瘤细胞增殖、凋亡、侵袭、转移和血管生成 [33]。Vainioet等 [34] 发现PLA2G7在多数临床前列腺肿瘤中表达含量升高,并与ERG表达呈正相关(r = 0.66, P < .001),ERG这种基因可能在前列腺癌的发生发展过程扮演重要角色。进一步的实验研究证实,通过抑制PLA2G7的表达发现了Lp-PLA2在前列腺癌细胞中具有抗增殖、促凋亡和抗迁移作用,并且抑制PLA2G7联合他汀类药物对肿瘤具有协同抗增殖的效果 [35]。之外Xu等学者 [36] 证实,在PLA2G7被敲除的ApcMin/+小鼠中,肠息肉病以及结肠肿瘤的发生受到了明显的抑制作用。这些实验研究证实Lp-PLA2在结肠肿瘤发生中起因果作用,而通过抑制Lp-PLA2可能是一种新的肠道恶性肿瘤治疗手段。接下来需要更多的研究对Lp-PLA2在癌症进展中的作用进行更深入的阐述。

6. Lp-PLA2与其他疾病

除了Lp-PLA2对传统心血管疾病的影响外,其作用还被确定用于以CVD为并发症的各种疾病。最新一项研究表明,Lp-PLA2是一种潜在的慢性肾脏病合并颈动脉粥样硬化狭窄预后和诊断生物标志物 [37]。Lp-PLA2是影响下肢动脉硬化闭塞症(ASO)发生的危险因素,且随着其血浆浓度的升高,下肢动脉硬化闭塞的程度加重,血浆Lp-PLA2可作为评估ASO的早期检测指标 [38]。Lp-PLA2水平在HIV感染患者中异常高,并在基于抗逆转录病毒治疗或蛋白酶抑制剂的治疗后进一步升高 [39]。此外,Lp-PLA2与HIV相关CVD的一些危险因素相关,如颈动脉内膜中膜厚度(cIMT)和CAC219。此外,对牙周病患者治疗可显著降低Lp-PLA2水平,可能导致全身炎症反应的下调,最有可能降低CVD发展的风险 [40] [41]。此外,在流行病学研究中证实,血浆Lp-PLA2水平与非酒精性脂肪性肝病(NAFLD)之间存在正相关和负相关,而Lp-PLA2似乎保护受试者免受NAFLD的发生和进展 [42] [43]。对于某些疾病,如Rett综合症和自闭症谱系障碍(ASDs)与健康对照组相比,Lp-PLA2仅与ASDs患者呈显著的负相关,从而被确定为一种新的血清生物标志物,用于鉴别诊断 [44]。在患有阻塞性睡眠呼吸暂停(OSA)和肥胖患者中,Lp-PLA2水平的升高可能会对内皮完整性产生不利影响,而OSA治疗后内皮完整性会升高。因此,血浆Lp-PLA2活性水平可能为肥胖或OSA存在下,动脉粥样硬化和血管功能障碍的儿童提供一个可靠的动脉粥样硬化风险生物标志物 [45]。类似地,血浆Lp-PLA2活性在抗磷脂抗体患者中主要呈上调状态,提示Lp-PLA2可作为抗磷脂综合征患者的危险炎症因子 [46]。在一项类风湿关节炎(RA)患者队列研究中,基线Lp-PLA2质量与疾病严重程度和亚临床动脉粥样硬化(包括基线和随访时的IMT和血流介导扩张)显著相关 [47]。此外,一项前瞻性纵向队列研究确定血浆Lp-PLA2活性和质量与腹主动脉瘤(AAA)发生风险独立显著相关 [48]。Lp-PLA2可以作为颈动脉事件风险预测因子,也与脑梗死的发生及病情严重程度相关 [49] [50]。Lp-PLA2与这些疾病之间的某些关系相继被发现,然而还需要进一步的研究来更深入地了解这种关联。

7. 总结

综上所述,基于目前的基础和临床研究结果,Lp-PLA2似乎是一种有价值的生物标志物,可以更好地鉴别中、高CV风险的患者。尽管加强了干预措施,但大多数患者仍有较高的残余CV风险,Lp-PLA2可以识别易破裂斑块和评估未来CV风险。此外,Lp-PLA2与心血管疾病以外疾病的相关性逐渐被人们发现,它的更多临床价值等待研究人员继续探索。

参考文献

[1] Farr, R.S., Cox, C.P., Wardlow, M.L., et al. (1980) Preliminary Studies of an Acid-Labile Factor (ALF) in Human Sera That Inactivates Platelet-Activating Factor (PAF). Clinical Immunology & Immunopathology, 15, 318-330.
https://doi.org/10.1016/0090-1229(80)90044-6
[2] Tew, D.G., Southan, C., Rice, S.Q.J., et al. (1996) Purification, Properties, Sequencing, and Cloning of a Lipoprotein-Associated, Serine-Dependent Phospholipase Involved in the Oxidative Modification of Low-Density Lipoproteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 16, 591.
https://doi.org/10.1161/01.ATV.16.4.591
[3] Corson, M.A., Jones, P.H. and Davidson, M.H. (2008) Review of the Evidence for the Clinical Utility of Lipoprotein-Associated Phospholipase A2 as a Cardiovascular Risk Marker. American Journal of Cardiology, 101, S41-S50.
https://doi.org/10.1016/j.amjcard.2008.04.018
[4] Lavi, S., McConnell, J.P., Rihal, C.S., et al. (2007) Local Production of Lipoprotein-Associated Phospholipase A2 and Lysophosphatidylcholine in the Coronary Circulation: Association with Early Coronary Atherosclerosis and Endothelial Dysfunction in Humans. Circulation, 115, 2715-2721.
https://doi.org/10.1161/CIRCULATIONAHA.106.671420
[5] Ridker, P.M., Cushman, M., Stampfer, M.J., et al. (1997) Inflammation, Aspirin, and the Risk of Cardiovascular Disease in Apparently Healthy Men. New England Journal of Medicine, 336, 973-979.
https://doi.org/10.1056/NEJM199704033361401
[6] Tjoelker, L.W., Wilder, C., Eberhardt, C., et al. (1995) Anti-Inflammatory Properties of a Platelet-Activating Factor Acetylhydrolase. Nature, 374, 549-553.
https://doi.org/10.1038/374549a0
[7] Morgan, E.N., Boyle, E.M., Yun, W., et al. (1999) Platelet-Activating Factor Acetylhydrolase Prevents Myocardial Ischemia-Reperfusion Injury. Circulation, 100, 365-368.
https://doi.org/10.1161/01.CIR.100.suppl_2.II-365
[8] Theilmeier, G., De Geest, B., Van Veldhoven, P.P., et al. (2000) HDL-Associated PAF-AH Reduces Endothelial Adhesiveness in apoE−/−Mice. The FASEB Journal, 14, 2032-2039.
https://doi.org/10.1096/fj.99-1029com
[9] Wang, W., Zhang, J., Wu, W., et al. (2011) Inhibition of Lipoprotein-Associated Phospholipase A2 Ameliorates Inflammation and Decreases Atherosclerotic Plaque Formation in ApoE-Deficient Mice. PLoS ONE, 6, e23425.
https://doi.org/10.1371/journal.pone.0023425
[10] Wilensky, R.L., Shi, Y.I., Mohler, E.R., et al. (2008) Inhibition of Lipoprotein-Associated Phospholipase A2 Reduces Complex Coronary Atherosclerotic Plaque Development. Nature Medicine, 14, 1059-1066.
https://doi.org/10.1038/nm.1870
[11] Packard, C.J., O’Reilly, D.S.J., Caslake, M.J., et al. (2000) Lipoprotein-Associated Phospholipase A2 as an Independent Predictor of Coronary Heart Disease. New England Journal of Medicine, 343, 1148-1155.
https://doi.org/10.1056/NEJM200010193431603
[12] Hoffmann, M.M., Winkler, K., Renner, W., et al. (2009) Genetic Variants and Haplotypes of Lipoprotein Associated Phospholipase A2 and Their Influence on Cardiovascular Disease (The Ludwigshafen Risk and Cardiovascular Health Study). Journal of Thrombosis and Haemostasis, 7, 41-48.
https://doi.org/10.1111/j.1538-7836.2008.03216.x
[13] Hou, L., Chen, S., Yu, H., et al. (2009) Associations of PLA2G7 Gene Polymorphisms with Plasma Lipoprotein-Associated Phospholipase A2 Activity and Coronary Heart Disease in a Chinese Han Population: The Beijing Atherosclerosis Study. Human Genetics, 125, 11-20.
https://doi.org/10.1007/s00439-008-0587-4
[14] Abuzeid, A.M., Hawe, E., Humphries, S.E. and Talmud, P.J. (2003) Association between the Ala379Val Variant of the Lipoprotein Associated Phospholipase A2 and Risk of Myocardial Infarction in the North and South of Europe. Atherosclerosis, 168, 283-288.
https://doi.org/10.1016/S0021-9150(03)00086-8
[15] Li, L., Qi, L., Lv, N., et al. (2011) Association between Lipoprotein-Associated Phospholipase A2 Gene Polymorphism and Coronary Artery Disease in the Chinese Han Population. Annals of Human Genetics, 75, 605-611.
https://doi.org/10.1111/j.1469-1809.2011.00666.x
[16] Yamada, Y., Ichihara, S., Fujimura, T., et al. (1998) Identification of the G994→T Missense Mutation in Exon 9 of the Plasma Platelet-Activating Factor Acetylhydrolase Gene as an Independent Risk Factor for Coronary Artery Disease in Japanese Men. Metabolism, 47, 177-181.
https://doi.org/10.1016/S0026-0495(98)90216-5
[17] Shimokata, K., Yamada, Y., Kondo, T., et al. (2004) Association of Gene Polymorphisms with Coronary Artery Disease in Individuals with or without Nonfamilial Hypercholesterolemia. Atherosclerosis, 172, 167-173.
https://doi.org/10.1016/j.atherosclerosis.2003.09.019
[18] Yangsoo, J., Yoen, K.O., Jeong, K.S., et al. (2006) The Val279Phe Variant of the Lipoprotein-Associated Phospholipase A2 Gene Is Associated with Catalytic Activities and Cardiovascular Disease in Korean Men. Journal of Clinical Endocrinology & Metabolism, 91, 3521-3527.
https://doi.org/10.1210/jc.2006-0116
[19] Ewa, N., David, T., Jean-Luc, C., et al. (2004) Platelet-Activating Factor-Acetylhydrolase and PAF-Receptor Gene Haplotypes in Relation to Future Cardiovascular Event in Patients with Coronary Artery Disease. Human Molecular Genetics, 13, 1341-1351.
https://doi.org/10.1093/hmg/ddh145
[20] Liu, P.Y., Li, Y.H., Wu, H.L., et al. (2006) Platelet-Activating Factor Acetylhydrolase A379V (Exon 11) Gene Polymorphism Is an Independent and Functional Risk Factor for Premature Myocardial Infarction. Journal of Thrombosis and Haemostasis, 4, 1023-1028.
https://doi.org/10.1111/j.1538-7836.2006.01895.x
[21] Casas, J.P., Ninio, E., Panayiotou, A., et al. (2010) PLA2G7 Genotype, Lipoprotein-Associated Phospholipase A2 Activity, and Coronary Heart Disease Risk in 10494 Cases and 15624 Controls of European Ancestry. Circulation, 121, 2284-2293.
https://doi.org/10.1161/CIRCULATIONAHA.109.923383
[22] 殷宇岗, 吕磊, 杨春. 老年高血压患者脂蛋白相关磷脂酶A2、胰高血糖素样肽-1、血清淀粉样蛋白A表达水平与冠状动脉病变的相关性[J]. 中华高血压杂志, 2020, 28(12): 1191-1194.
[23] Wallentin, L., Held, C., Armstrong, P.W., et al. (2016) Lipoprotein-Associated Phospholipase A2 Activity Is a Marker of Risk But Not a Useful Target for Treatment in Patients with Stable Coronary Heart Disease. Journal of the American Heart Association, 5, e003407.
[24] Kaur, C., Foulds, W.S. and Ling, E.A. (2008) Blood-Retinal Barrier in Hypoxic Ischaemic Conditions: Basic Concepts, Clinical Features and Management. Progress in Retinal & Eye Research, 27, 622-647.
https://doi.org/10.1016/j.preteyeres.2008.09.003
[25] Hall, A.P. (2006) Review of the Pericyte during Angiogenesis and Its Role in Cancer and Diabetic Retinopathy. Toxicologic Pathology, 34, 763-775.
https://doi.org/10.1080/01926230600936290
[26] Camera, A., Hopps, E. and Caimi, G. (2007) Diabetic Microangiopathy: Physiopathological, Clinical and Therapeutic Aspects. Minerva Endocrinologica, 32, 209-229.
[27] Moschos, M.M., Pantazis, P., Gatzioufas, Z., et al. (2016) Association between Platelet Activating Factor Acetylhydrolase and Diabetic Retinopathy: Does Inflammation Affect the Retinal Status? Prostaglandins & Other Lipid Mediators, 122, 69-72.
https://doi.org/10.1016/j.prostaglandins.2016.01.001
[28] 李婷婷. Lp-PLA2与2型糖尿病肾脏疾病的相关性研究[D]: [硕士学位论文]. 南京: 南京医科大学, 2019.
[29] 武仅. 脂蛋白相关磷脂酶A2水平与2型糖尿病患者肾病分期的相关性分析[D]: [硕士学位论文]. 郑州: 郑州大学, 2019.
[30] 张伟亚, 卢宇, 张青青, 等. 脂蛋白相关磷脂酶A2和胱抑素C对糖尿病肾脏疾病早期诊断应用价值的研究[J]. 中国糖尿病杂志, 2021, 29(8): 601-605.
[31] 吴炎, 张睿, 黄冰, 廖淑萍. 糖尿病足患者血浆脂蛋白相关磷脂酶A2、D-二聚体和纤维蛋白原水平变化及临床意义[J]. 检验医学与临床, 2018, 15(14): 2175-2177.
[32] Lehtinen, L., Vainio, P., Wikman, H., et al. (2017) PLA2G7 Associates with Hormone Receptor Negativity in Clinical Breast Cancer Samples and Regulates Epithelial-Mesenchymal Transition in Cultured Breast Cancer Cells. The Journal of Pathology: Clinical Research, 3, 123-138.
https://doi.org/10.1002/cjp2.69
[33] Stafforini, D.M. (2015) Diverse Functions of Plasma PAF-AH in Tumorigenesis. Enzymes, 38, 157-179.
https://doi.org/10.1016/bs.enz.2015.09.005
[34] Vainio, P., Gupta, S., Ketola, K., et al. (2011) Arachidonic Acid Pathway Members PLA2G7, HPGD, EPHX2, and CYP4F8 Identified as Putative Novel Therapeutic Targets in Prostate Cancer. The American Journal of Pathology, 178, 525-536.
https://doi.org/10.1016/j.ajpath.2010.10.002
[35] Vainio, P., Lehtinen, L., Mirtti, T., et al. (2011) Phospholipase PLA2G7, Associated with Aggressive Prostate Cancer, Promotes Prostate Cancer Cell Migration and Invasion and Is Inhibited by Statins. Oncotarget, 2, 1176.
https://doi.org/10.18632/oncotarget.397
[36] Xu, C., Reichert, E.C., Nakano, T., et al. (2013) Deficiency of Phospholipase A2 Group 7 Decreases Intestinal Polyposis and Colon Tumorigenesis in Apc(Min/+) Mice. Cancer Research, 73, 2806-2816.
https://doi.org/10.1158/0008-5472.CAN-12-2374
[37] Qu, H., Zhang, G., Pan, J., et al. (2021) Evaluation of Lipoprotein-Associated Phospholipase A2 as a Prognostic Biomarker in Chronic Kidney Disease. Clinical Laboratory, 67-68.
https://doi.org/10.7754/Clin.Lab.2021.201114
[38] 穆妮热·约麦尔, 周志强, 周友栩, 吴成稳, 李飞, 梁晓丹, 康海涵. 脂蛋白相关磷脂酶A2水平与下肢动脉硬化闭塞症严重程度的相关性分析[J]. 中国临床新医学, 2021, 14(7): 705-709.
[39] Grinspoon, S. (2018) Novel Mechanisms and Anti-Inflammatory Strategies to Reduce Cardiovascular Risk in Human Immunodeficiency Virus. Transactions of the American Clinical and Climatological Association, 129, 140-154.
[40] Losche, W., Marshal, G.J., Apatzidou, D.A., et al. (2005) Lipoprotein-Associated Phospholipase A2 and Plasma Lipids in Patients with Destructive Periodontal Disease. Journal of Clinical Periodontology, 32, 640-644.
https://doi.org/10.1111/j.1600-051X.2005.00725.x
[41] Beck, J.D., Elter, J.R., Heiss, G., et al. (2001) Relationship of Periodontal Disease to Carotid Artery Intima-Media Wall Thickness: The Atherosclerosis Risk in Communities (ARIC) Study. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1816-1822.
https://doi.org/10.1161/hq1101.097803
[42] Colak, Y., Senates, E., Ozturk, O., et al. (2012) Association of Serum Lipoprotein-Associated Phospholipase A2 Level with Nonalcoholic Fatty Liver Disease. Metabolic Syndrome and Related Disorders, 10, 103-109.
https://doi.org/10.1089/met.2011.0111
[43] Liu, Z., Li, H., Zheng, Y., et al. (2018) Association of Lipoprotein-Associated Phospholipase A2 with the Prevalence of Nonalcoholic Fatty Liver Disease: A Result from the APAC Study. Scientific Reports, 8, Article No. 10127.
https://doi.org/10.1038/s41598-018-28494-8
[44] Hayek, J., Cervellati, I., Pecorelli, A. and Valacchi, G. (2017) Lactonase Activity and Lipoprotein-Phospholipase A2 as Possible Novel Serum Biomarkers for the Differential Diagnosis of Autism Spectrum Disorders and Rett Syndrome: Results from a Pilot Study. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 5694058.
https://doi.org/10.1155/2017/5694058
[45] Kheirandish-Gozal, L., Philby, M.F., Qiao, Z., et al. (2017) Endothelial Dysfunction in Children with Obstructive Sleep Apnea Is Associated with Elevated Lipoprotein-Associated Phospholipase A2 Plasma Activity Levels. Journal of the American Heart Association, 6, e004923.
https://doi.org/10.1161/JAHA.116.004923
[46] Fabris, M., Cifu, A., Pistis, C., et al. (2017) Exploring the Plasmatic Platelet-Activating Factor Acetylhydrolase Activity in Patients with Anti-Phospholipid Antibodies. Autoimmunity Highlights, 8, 5.
https://doi.org/10.1007/s13317-017-0092-7
[47] Sodergren, A., Karp, K., Bengtsson, C., et al. (2015) Is Lipoprotein-Associated Phospholipase A2 a Link between Inflammation and Subclinical Atherosclerosis in Rheumatoid Arthritis? BioMed Research International, 2015, Article ID: 673018.
https://doi.org/10.1155/2015/673018
[48] Acosta, S., Taimour, S., Gottsater, A., et al. (2017) Lp-PLA2 Activity and Mass for Prediction of Incident Abdominal Aortic Aneurysms: A Prospective Longitudinal Cohort Study. Atherosclerosis, 262, 14-18.
https://doi.org/10.1016/j.atherosclerosis.2017.04.014
[49] Epps, K.C. and Wilensky, R.L. (2011) Lp-PLA2—A Novel Risk Factor for High-Risk Coronary and Carotid Artery Disease. Journal of Internal Medicine, 269, 94-106.
https://doi.org/10.1111/j.1365-2796.2010.02297.x
[50] 蒋洋波, 王权, 季敏, 姜文, 郑锡凤, 王文玥, 高伟. 血清可溶性CD40配体、脂蛋白相关的磷脂酶A2水平与老年急性脑梗死的相关性[J/OL]. 武汉大学学报(医学版), 2021, 1-5[2021-11-12].