治疗非酒精性脂肪性肝病的相关药物及机制
Drugs and Mechanisms Related to the Treatment of Nonalcoholic Fatty Liver Disease
DOI: 10.12677/ACM.2021.1111773, PDF, HTML, XML, 下载: 452  浏览: 625  科研立项经费支持
作者: 牟 钊, 陈雨琳, 蒲 柯, 杨国栋*:川北医学院附属医院消化内科,四川 南充
关键词: 非酒精性肝病发生机制治疗Nonalcoholic Fatty Liver Disease Mechanism Treatment
摘要: 非酒精性脂肪性肝病(nonalcoholic fatty liver disease, NAFLD)发病率逐渐升高,该病不断进展为肝纤维化和肝癌,已成为全球亟待解决的问题,目前还没有治疗NALFD的特效药。该综述总结了与NAFLD相关药物及其作用机制,为开展新的研究、寻求NALFD治疗方案提供新的思路及依据。
Abstract: The incidence of nonalcoholic fatty liver disease (NAFLD) is gradually increasing, and the disease continues to progress to liver fibrosis and liver cancer, which has become an urgent problem worldwide, and there is no specific drug for the treatment of NALFD. This review summarizes the drugs related to NAFLD and their mechanisms of action, providing new ideas and basis for carrying out new studies and seeking NALFD treatment options.
文章引用:牟钊, 陈雨琳, 蒲柯, 杨国栋. 治疗非酒精性脂肪性肝病的相关药物及机制[J]. 临床医学进展, 2021, 11(11): 5237-5244. https://doi.org/10.12677/ACM.2021.1111773

1. 前言

由于肥胖患病率的不断增加,非酒精性脂肪性肝病(NAFLD)逐渐成为备受关注的对象。NAFLD的经典定义为无其他肝病情况下的肝脂肪变性 [1]。NAFLD包括单纯性脂肪肝(Nonalcoholic fatty liver, NAFL)、非酒精性脂肪性肝炎(Nonalcoholic steatohepatitis, NASH)、肝硬化等广泛疾病 [2]。随着病情的进展,非酒精性脂肪性肝炎患者的肝脏疾病和心血管疾病的发病率和死亡率逐渐增加 [3]。以下为治疗NAFLD相关药物及具体机制。

2. 相关药物

2.1. 二甲双胍

二甲双胍被广泛用于非胰岛素依赖型糖尿病的药物,具有调节葡萄糖和脂质代谢紊乱的作用 [4]。有研究表明 [5],二甲双胍可通过阻断线粒体呼吸链复合物I来抑制肝糖异生并改善外周葡萄糖利用。另有研究发现 [6],二甲双胍可以激活腺苷酸活化蛋白激酶,具有减少肝脏脂肪生成,影响肝脏对胰岛素的敏感性,控制肝糖输出的作用。转录因子EB (TFEB)属于bHLH-亮氨酸拉链转录因子家族,作为溶酶体和自噬相关基因的主要转录因子,TFEB在脂质代谢中起关键作用,TFEB可促进过氧化物酶体增殖物激活受体γ共激活因子1α (PGC1α)的表达,进而加快脂质降解、促进脂肪酸氧化和减少脂肪生成 [7]。最新研究表明二甲双胍依赖TFEB具有减轻肝脏脂肪变性、抑制过度肝脏脂质蓄积和减少胰岛素抵抗的作用 [8]。二甲双胍可通过阻断线粒体呼吸链、TFEB通路、调控脂肪和细胞因子、调节肠道菌群、减少胰岛素抵抗等途径改善肝脏脂肪变性,延缓NAFLD进展 [9]。因此,二甲双胍用于治疗NAFLD逐渐被人们所接受。

2.2. 吡格列酮

噻唑烷二酮类药物是核转录因子过氧化物酶体增殖物激活受体γ (PPAR)-c的配体,对糖脂代谢以及血管生物学和炎症具有广泛作用 [10]。在一项早期研究中发现,Belfort等 [11] 对55例NASH和糖尿病前期或T2DM患者进行了吡格列酮(45 mg/天)的随机对照试验,结果发现吡格列酮提高了胰岛素敏感性,使转氨酶、脂肪变性、炎症和气球样变得到改善。Aithal [12] 等在74例NASH患者中进行了吡格列酮30 mg/日或安慰剂治疗12个月的随机对照试验中发现,吡格列酮显著改善了NASH患者肝细胞损伤和纤维化。但是,体重增加是吡格列酮最常见的副作用,同时也可能导致膀胱癌、骨质疏松等情况发生 [13] [14]。因此,在开始治疗前,应与每例患者讨论风险和获益,若无确切的药物安全性和有效性证据,吡格列酮不推荐用于治疗NAFLD。

2.3. 利拉鲁肽

胰高血糖素受体激动剂可能是一个新的NAFLD治疗靶点,GLP-1可通过下丘脑和脑干的中枢机制对饱腹感产生剂量依赖性效应 [15]。GLP-1能有效降低肝脏和脂肪组织的胰岛素抵抗,降低了脂解诱导的FFA和甘油三酯衍生的毒性代谢物水平 [16] [17]。另有研究表明 [18],GLP-1RA可通过多种途径改善进餐试验期间的餐后血脂,包括减少肠道运动和直接抑制乳糜微粒合成和分泌导致的膳食脂肪吸收。在一项多中心、随机对照试验中 [19],对52名活检证实的NASH患者,将GLP-1激动剂利拉鲁肽皮下注射48周。结果显示利拉鲁肽治疗的患者达到NASH组织学缓解,利拉鲁肽能显著降低肝纤维化进展[优势比(OR) 4.3;95%置信区间(CI) 1.0~17.7;p = 0019],但与安慰组相比,利拉鲁肽会引起腹泻、便秘和食欲不振等胃肠道不良反应。利拉鲁肽独特的组织学疗效和代谢综合征的改善使其成为NAFLD具有良好前景的治疗方法,值得在更大规模的研究中进一步研究。

2.4. 维生素E

氧化应激可能导致NASH患者肝细胞损伤和疾病进展,目前认为是关键机制之一。维生素E作为抗氧化剂已用于治疗NASH [20]。由于研究的标准不同,维生素E的剂量不同,使用的维生素E配方不明确等多方因素,可以总结认为维生素E可降低NASH患者的氨基转移酶,非糖尿病NASH患者的脂肪变性、组织炎症和气球样变得到改善,并使NASH消退,但维生素E无法逆转或延缓肝纤维化。有研究指出 [21] [22],维生素E可能会增加致死率、前列腺癌、遗传变异等风险。因此,在缺乏有效性数据之前,维生素E不推荐用于治疗糖尿病患者的NAFLD。

2.5. 熊脱氧胆酸、ω-3脂肪酸

相关研究表明 [23] [24],熊去氧胆酸能改善NAFLD患者的转氨酶和脂肪变性,改善NASH患者肝组织学特征。但在一项多中心、随机对照试验中,熊去氧胆酸与安慰剂在治疗NASH患者的组织学改变上并无明显差异 [25]。Masterton等 [26] 发现在NAFLD患者中使用ω-3脂肪酸能改善肝病进展。然而,也有报道称ω-3脂肪酸对NAFLD或NASH患者治疗效果并不满意 [27]。因此,UCDA及ω-3脂肪酸是否能常规治疗NAFLD或NASH,未来还需进一步研究。

2.6. 伊马替尼

伊马替尼为酪氨酸激酶抑制剂,最开始用于靶向治疗慢性粒细胞白血病 [28]。关研究表明,伊马替尼的抗炎作用能显著减少急性肝损伤和肥胖小鼠的脂肪组织炎症,降低腹腔和肝脏巨噬细胞的TNFα基因表达以及全身脂质水平,对减少肝脏脂肪变性、组织炎症,增加胰岛素敏感性等方面具有重要作用 [29] [30]。最近,伊马替尼被证明能抑制PPARγ21的翻译后磷酸化,而PPARγ21是巨噬细胞极化的重要调节因子 [31]。因此,伊马替尼靶向作用于巨噬细胞和肝脏中炎症和脂肪生成途径可能是NAFLD患者一种新型治疗策略。

2.7. 非诺贝特、苯扎贝特

过氧化物酶体增殖物激活受体(PPARs)是调节脂质代谢、能量平衡和炎症相关基因表达的转录因子,PPAR-α激动剂可通过增加线粒体β-氧化引起肝脏脂肪变性的表达降低,而PPAR-β/δ通过降低餐后阶段的肝脏糖异生改善肝脏胰岛素抵抗 [32]。非诺贝特激活PPAR-α可通过上调果糖喂养小鼠中β-氧化相关酶和DNL表达减少显著改善肝脏胰岛素抵抗,苯扎贝特激活泛PPAR可对来自PPARα、PPAR-β/δ活化引起肝细胞中与β-氧化和脂质转运相关的基因表达增加,同时与炎症相关的基因水平降低 [33] [34]。因此,过氧化物酶体增殖物激活受体可作为治疗非酒精性脂肪肝的靶点。

2.8. 肠道菌群

通过给予益生菌调节肠道菌群被认为是NAFLD治疗的潜在策略 [35]。动物研究的数据表明 [36],益生菌和益生元已被证明可以改变微生物群的成分,并影响食物消化,调节食欲和体重。它们的有益作用可以影响葡萄糖和脂肪代谢,改善胰岛素敏感性,减轻慢性全身炎症。在国外一项双盲单中心随机安慰剂随机对照试验中,48例患者被随机分配接受添加益生菌生联合ω-3脂肪酸或安慰剂治疗8周,通过瞬时弹性成像(SWE)测量的脂肪肝指数(FLI)和肝脏硬度(LS)的变化,结果发现,肝脏脂肪变性和纤维化减少程度显著大于安慰剂组。因此,益生菌与ω-3脂肪酸在NAFLD中能降低肝脏脂肪,改善血脂代谢,减轻全身慢性炎症 [37]。王薇等 [38] 研究表明,益生菌可通过调节NAFLD患者肠道菌群,帮助降低TNF-α,使血脂联素水平升高,进而调控血糖、血脂代谢,减轻NAFLD的肝脏损伤。

2.9. 奥替普拉(Oltipraz)

奥替普拉是一种人工合成的二硫乙酮,通过交替激活AMPK和失活S6K1改善脂肪变性,同时减少脂肪酸的合成,通过抑制LXR-a活性和降低肝脏内SREBP-1c的表达加速脂质氧化 [39]。在一项多中心对照实验中 [40],将肝脏脂肪 > 20%和高转氨酶血症的受试者随机分配至3组:安慰剂(n = 22)、30 mg oltipraz (n = 22)或60 mg oltipraz (n = 24),每日两次,持续24周。研究发现,实验组肝脏脂肪含量减少百分比显著大于安慰剂组,实验组肝脏脂肪含量的绝对变化呈剂量依赖性增加,体重指数也显著降低。因此,奥替普拉对显著降低NAFLD患者的肝脂肪含量具有重大作用。

2.10. Aramchol

Aramchol通过稳定的酰胺键结合2种天然组分胆汁酸和花生四烯酸获得,是一种新型合成的脂质分子 [41]。硬脂酰辅酶A去饱和酶1 (SCD1)是调节肝脏脂肪酸代谢的关键酶。SCD1抑制可减少脂肪酸的合成并增加脂肪酸的β氧化,导致甘油三酯和脂肪酸酯的肝脏储存减少。而Aramchol对硬脂酰辅酶A去饱和酶1 (SCD1)活性的抑制率为70%~83% [42]。在一项对照试验中 [43],给予NAFLD患者Aramchol治疗3个月后发现,NAFLD患者肝脏脂肪含量水平通过Aramchol治疗而降低,且与降低水平呈剂量反应关系。这使得Aramchol成为脂肪肝相关疾病治疗的候选药物,但目前尚未满足的医疗需求,需要在代谢和组织学上进一步研究。

2.11. 吡非尼酮

吡非尼酮是一种抗纤维化药物,可抑制T细胞和巨噬细胞的肺内流来治疗肺纤维化 [44]。吡非尼酮可抑制肝星状细胞增殖、降低了炎性细胞因子的表达,通过降低大鼠肝脏转氨酶水平,减弱氧化应激,预防脂多糖诱导的肝毒性 [45] [46] [47]。最近一项研究中,Chen等 [48] 发现吡非尼酮通过减轻脂质蓄积和氧化应激,在饮食诱导的NASH脂毒性模型中限制并逆转了肝脏脂肪变性和胰岛素抵抗,通过抑制TGF-β通路和星状细胞活化来减弱肝纤维化。因此,吡非尼酮未来可能是NASH的治疗靶点。

2.12. Emricasan

脂肪变性肝细胞可通过死亡配体Fas和肿瘤坏死因子相关凋亡诱导配体(TRAIL)激活的外源性途径或通过内源性途径激活发生凋亡,而两种凋亡途径均聚集在半胱天冬酶活化上,半胱天冬氨酸特异性蛋白酶,在细胞凋亡中起着重要作用 [49] [50]。这一机制可能使得Emricasan成为脂肪肝相关疾病治疗的候选药物。Barreyro等 [51] 研究泛半胱天冬酶抑制剂Emricasan是否可改善NASH小鼠模型的肝损伤和纤维化中发现,喂食高脂食物的小鼠的肝细胞凋亡增加了5倍,caspase-3和-8活性分别增加了1.5倍和1.3倍;在喂食高脂食物 + Emricasan的小鼠中,这种细胞凋亡增加显著减弱。通过抑制肝细胞凋亡抑制肝损伤和纤维化,表明Emricasan可能是NASH中有效抗纤维化治疗方法。

2.13. 司维拉姆

胆汁酸螯合剂是一种不可吸收的阳离子聚合物,可结合胆汁酸以及肠道中的大量分子,阻止其重吸收,常用于治疗血脂异常和高磷血症 [52] [53]。除了能够阻止胆汁酸和磷酸盐在肠道中的吸收外,还报告了胆汁酸螯合剂通过激活TGR5 (一种结合胆汁酸的G蛋白偶联受体)调节脂肪和葡萄糖代谢 [54] [55]。相关研究发现,胆汁酸螯合剂还可提高人和小鼠的胰岛素敏感性,减轻肥胖和肝脏脂肪变性 [55]。在一项评估司维拉姆治疗非酒精性脂肪性肝病(NAFLD)小鼠的疗效中,研究显示司维拉姆治疗显著减少了肝脏脂肪变性和小叶炎症,NAFLD肝脏中促炎性浸润巨噬细胞显著减少,活化的Kupffer细胞分数显著增加,司维拉姆改善了NAFLD,并对抗了肝脏中的先天性免疫细胞失调。因此,胆汁酸螯合剂-司维拉姆可能也是治疗NAFLD一种有效药物。

3. 结语

NAFLD发病率逐年升高,但目前尚缺乏有效的药物。本文系统性综述了既往针对NAFLD治疗的相关药物和机制,为开展新的研究,寻求NAFLD治疗方案提供新的思路及依据。在目前治疗NAFLD药物中,主要是通过降低氧化应激、抑制胰岛素抵抗、减轻组织炎症、抗纤维化、调节脂肪和葡萄糖代谢等机制改善肝脂肪样变性,延缓或逆转肝纤维化达到治疗目的,但类似于Oltipraz、Aramchol等药物目前尚未真正应用于临床,未来还需进一步开展更多研究评估药物的安全性及有效性。同时,中医药专家对NAFLD兴趣浓厚,且有很多中药治疗NAFLD的报道,并付诸于临床实践。因此,未来中西医结合治疗也为NAFLD患者提供了选择的可能。

基金项目

四川省南充市市校合作科研专项(18SXHZ0371)。

参考文献

[1] Wong, V.W., Chan, W.K., Chitturi, S., Chawla, Y., Dan, Y.Y., Duseja, A., et al. (2018) Asia-Pacific Working Party on Non-Alcoholic Fatty Liver Disease Guidelines 2017-Part 1: Definition, Risk Factors and Assessment. Journal of Gastroenterology and Hepatology, 33, 70-85.
https://doi.org/10.1111/jgh.13857
[2] Tilg, H., Moschen, A.R. and Roden, M. (2017) NAFLD and Diabetes Mellitus. Nature Reviews Gastroenterology & Hepatology, 14, 32-42.
https://doi.org/10.1038/nrgastro.2016.147
[3] Armstrong, M.J., Adams, L.A., Canbay, A. and Syn, W.-K. (2014) Extrahepatic Complications of Nonalcoholic Fatty Liver Disease. Hepatology, 59, 1174-1197.
https://doi.org/10.1002/hep.26717
[4] Foretz, M., Guigas, B., Bertrand, L., Pollak, M. and Viollet, B. (2014) Metformin: From Mechanisms of Action to Therapies. Cell Metabolism, 20, 953-966.
https://doi.org/10.1016/j.cmet.2014.09.018
[5] Flory, J. and Lipska, K. (2019) Metformin in 2019. JAMA, 321, 1926-1927.
https://doi.org/10.1001/jama.2019.3805
[6] Viollet, B., Guigas, B., Sanz, G.N., Leclerc, J., Foretz, M. and Andreelli, F. (2012) Cellular and Molecular Mechanisms of Metformin: An Overview. Clinical Science, 122, 253-270.
https://doi.org/10.1042/CS20110386
[7] Evans, T.D., Zhang, X., Jeong, S.J., He, A., Song, E., Bhattacharya, S., et al. (2019) TFEB Drives PGC-1α Expression in Adipocytes to Protect against Diet-Induced Metabolic Dysfunction. Science Signaling, 12, Article No. eaau2281.
https://doi.org/10.1126/scisignal.aau2281
[8] Zhang, D., Ma, Y., Liu, J., Deng, Y., Zhou, B., Wen, Y., et al. (2021) Metformin Alleviates Hepatic Steatosis and Insulin Resistance in a Mouse Model of High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease by Promoting Transcription Factor EB-Dependent Autophagy. Frontiers in Pharmacology, 12, Article No. 689111.
https://doi.org/10.3389/fphar.2021.689111
[9] 王玉莹, 刘蕴玲. 二甲双胍治疗非酒精性脂肪性肝病的研究进展[J]. 临床内科杂志, 2021, 38(5): 355-357.
[10] Soccio, R.E., Chen, E.R. and Lazar, M.A. (2014) Thiazolidinediones and the Promise of Insulin Sensitization in Type 2 Diabetes. Cell Metabolism, 20, 573-591.
https://doi.org/10.1016/j.cmet.2014.08.005
[11] Belfort, R., Harrison, S.A., Brown, K., Darland, C., Finch, J., Hardies, J., et al. (2006) A Placebo-Controlled Trial of Pioglitazone in Subjects with Nonalcoholic Steatohepatitis. New England Journal of Medicine, 355, 2297-2307.
https://doi.org/10.1056/NEJMoa060326
[12] Aithal, G.P., Thomas, J.A., Kaye, P.V., Lawson, A., Ryder, S.D., Spendlove, I., et al. (2008) Randomized, Placebo-Controlled Trial of Pioglitazone in Nondiabetic Subjects with Nonalcoholic Steatohepatitis. Gastroenterology, 135, 1176-1184.
https://doi.org/10.1053/j.gastro.2008.06.047
[13] Lewis, J.D., Habel, L.A., Quesenberry, C.P., Strom, B.L., Peng, T., Hedderson, M.M., et al. (2015) Pioglitazone Use and Risk of Bladder Cancer and Other Common Cancers in Persons with Diabetes. JAMA, 314, 265-277.
https://doi.org/10.1001/jama.2015.7996
[14] Yau, H., Rivera, K., Lomonaco, R. and Cusi, K. (2013) The Future of Thiazolidinedione Therapy in the Management of Type 2 Diabetes Mellitus. Current Diabetes Reports, 13, 329-341.
https://doi.org/10.1007/s11892-013-0378-8
[15] Andersen, A., Lund, A., Knop, F.K. and Vilsbøll, T. (2018) Glucagon-Like Peptide 1 in Health and Disease. Nature Reviews Endocrinology, 14, 390-403.
https://doi.org/10.1038/s41574-018-0016-2
[16] Armstrong, M.J., Hull, D., Guo, K., Barton, D., Hazlehurst, J.M., Gathercole, L.L., et al. (2016) Glucagon-Like Peptide 1 Decreases Lipotoxicity in Non-Alcoholic Steatohepatitis. Journal of Hepatology, 64, 399-408.
https://doi.org/10.1016/j.jhep.2015.08.038
[17] Seghieri, M., Rebelos, E., Gastaldelli, A., Astiarraga, B.D., Casolaro, A., Barsotti, E., et al. (2013) Direct Effect of GLP-1 Infusion on Endogenous Glucose Production in Humans. Diabetologia, 56, 156-161.
https://doi.org/10.1007/s00125-012-2738-3
[18] Xiao, C., Dash, S., Morgantini, C., Adeli, K. and Lewis, G.F. (2015) Gut Peptides Are Novel Regulators of Intestinal Lipoprotein Secretion: Experimental and Pharmacological Manipulation of Lipoprotein Metabolism. Diabetes, 64, 2310-2318.
https://doi.org/10.2337/db14-1706
[19] Armstrong, M.J., Gaunt, P., Aithal, G.P., et al. (2016) Liraglutide Safety and Efficacy in Patients with Non-Alcoholic Steatohepatitis (LEAN): A Multicentre, Double-Blind, Randomised, Placebo-Controlled Phase 2 Study. Lancet, 387, 679-690.
https://doi.org/10.1016/S0140-6736(15)00803-X
[20] Yakaryilmaz, F., Guliter, S., Savas, B., Erdem, O., Ersoy, R., Erden, E., et al. (2007) Effects of Vitamin E Treatment on Peroxisome Proliferator-Activated Receptor-Alpha Expression and Insulin Resistance in Patients with Non-Alcoholic Steatohepatitis: Results of a Pilot Study. Internal Medicine Journal, 37, 229-235.
https://doi.org/10.1111/j.1445-5994.2006.01295.x
[21] Abner, E.L., Schmitt, F.A., Mendiondo, M.S., Marcum, J.L. and Kryscio, R.J. (2011) Vitamin E and All-Cause Mortality: A Meta-Analysis. Current Aging Science, 4, 158-170.
https://doi.org/10.2174/1874609811104020158
[22] Klein, E.A., Thompson, I.J., Tangen, C.M., Crowley, J.J., Lucia, M.S., Goodman, P.J., et al. (2011) Vitamin E and the Risk of Prostate Cancer: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA, 306, 1549-1556.
https://doi.org/10.1001/jama.2011.1437
[23] Dufour, J.F., Oneta, C.M., Gonvers, J.J., Bihl, F., Cerny, A., Cereda, J.M., et al. (2006) Randomized Placebo-Controlled Trial of Ursodeoxycholic Acid with Vitamin E in Nonalcoholic Steatohepatitis. Clinical Gastroenterology and Hepatology, 4, 1537-1543.
https://doi.org/10.1016/j.cgh.2006.09.025
[24] Leuschner, U.F., Lindenthal, B., Herrmann, G., Arnold, J.C., Rössle, M., Cordes, H.-J., et al. (2010) High-Dose Ursodeoxycholic Acid Therapy for Nonalcoholic Steatohepatitis: A Double-Blind, Randomized, Placebo-Controlled Trial. Hepatology, 52, 472-479.
https://doi.org/10.1002/hep.23727
[25] Lindor, K.D., Kowdley, K.V., Heathcote, E.J., Harrison, M.E., Jorgensen, R., Angulo, P., et al. (2004) Ursodeoxycholic Acid for Treatment of Nonalcoholic Steatohepatitis: Results of a Randomized Trial. Hepatology, 39, 770-778.
https://doi.org/10.1002/hep.20092
[26] Masterton, G.S., Plevris, J.N. and Hayes, P.C. (2010) Review Article: Omega-3 Fatty Acids—A Promising Novel Therapy for Non-Alcoholic Fatty Liver Disease. Alimentary Pharmacology & Therapeutics, 31, 679-692.
https://doi.org/10.1111/j.1365-2036.2009.04230.x
[27] Sanyal, A.J., Abdelmalek, M.F., Suzuki, A., Cummings, O.W. and Chojkier, M. (2014) No Significant Effects of Ethyl-Eicosapentanoic Acid on Histologic Features of Nonalcoholic Steatohepatitis in a Phase 2 Trial. Gastroenterology, 147, 377-384.E1.
https://doi.org/10.1053/j.gastro.2014.04.046
[28] Balabanov, S., Braig, M., Brummendorf, T.H. (2014) Current Aspects in Resistance against Tyrosine Kinase Inhibitors in Chronic Myelogenous Leukemia. Drug Discovery Today: Technologies, 11, 89-99.
https://doi.org/10.1016/j.ddtec.2014.03.003
[29] Wolf, A.M., Wolf, D., Rumpold, H., Ludwiczek, S., Enrich, B., Gastl, G., et al. (2005) The Kinase Inhibitor Imatinib Mesylate Inhibits TNF-α Production in Vitro and Prevents TNF-Dependent Acute Hepatic Inflammation. Proceedings of the National Academy of Sciences of the United States of America, 102, 13622-13627.
https://doi.org/10.1073/pnas.0501758102
[30] Al Asfoor, S., Rohm, T.V., Bosch, A., Dervos, T., Calabrese, D., Matter, M.S., et al. (2018) Imatinib Reduces Non-Alcoholic Fatty Liver Disease in Obese Mice by Targeting Inflammatory and Lipogenic Pathways in Macrophages and Liver. Scientific Reports, 8, Article No. 15331.
https://doi.org/10.1038/s41598-018-32853-w
[31] Chawla, A. (2010) Control of Macrophage Activation and Function by PPARs. Circulation Research, 106, 1559-1569.
https://doi.org/10.1161/CIRCRESAHA.110.216523
[32] Souza-Mello, V. (2015) Peroxisome Proliferator-Activated Receptors as Targets to Treat Non-Alcoholic Fatty Liver Disease. World Journal of Hepatology, 7, 1012-1019.
https://doi.org/10.4254/wjh.v7.i8.1012
[33] Chan, S.M., Sun, R.Q., Zeng, X.Y., Choong, Z.H., Wang, H., Watt, M.J., et al. (2013) Activation of PPARalpha Ameliorates Hepatic Insulin Resistance and Steatosis in High Fructose-Fed Mice Despite Increased Endoplasmic Reticulum Stress. Diabetes, 62, 2095-2105.
https://doi.org/10.2337/db12-1397
[34] Magliano, D.C., Bargut, T.C., de Carvalho, S.N., Aguila, M.B., Mandarim-de-Lacerda, C.A., Souza-Mello, V., et al. (2013) Peroxisome Proliferator-Activated Receptors-Alpha and Gamma Are Targets to Treat Offspring from Maternal Diet-Induced Obesity in Mice. PLoS ONE, 8, Article ID: e64258.
https://doi.org/10.1371/journal.pone.0064258
[35] Federico, A., Dallio, M., Caprio, G.G., Ormando, V.M. and Loguercio, C. (2017) Gut Microbiota and the Liver. Minerva Gastroenterologica e Dietologica, 63, 385-398.
https://doi.org/10.23736/S1121-421X.17.02375-3
[36] Kobyliak, N., Conte, C., Cammarota, G., Haley, A.P., Styriak, I., Gaspar, L., et al. (2016) Probiotics in Prevention and Treatment of Obesity: A Critical View. Nutrition & Metabolism, 13, Article No. 14.
https://doi.org/10.1186/s12986-016-0067-0
[37] Kobyliak, N., Abenavoli, L., Falalyeyeva, T., Mykhalchyshyn, G., Boccuto, L., Kononenko, L., et al. (2018) Beneficial Effects of Probiotic Combination with Omega-3 Fatty Acids in NAFLD: A Randomized Clinical Study. Minerva Medica, 109, 418-428.
https://doi.org/10.23736/S0026-4806.18.05845-7
[38] 王薇, 史林平, 石蕾, 等. 肠道益生菌辅助治疗非酒精性脂肪性肝病的临床研究[J]. 中华内科杂志, 2018, 57(2): 101-106.
[39] Brooks, S.R., Brooks, J.S., Lee, W.H., Lee, M.G. and Kim, S.G. (2009) Therapeutic Potential of Dithiolethiones for Hepatic Diseases. Pharmacology & Therapeutics, 124, 31-43.
https://doi.org/10.1016/j.pharmthera.2009.06.006
[40] Kim, W., Kim, B.G., Lee, J.S., Lee, C.K., Yeon, J.E., Chang, M.S., et al. (2017) Randomised Clinical Trial: The Efficacy and Safety of Oltipraz, a Liver X Receptor Alpha-Inhibitory Dithiolethione in Patients with Non-Alcoholic Fatty Liver Disease. Alimentary Pharmacology & Therapeuticsr, 45, 1073-1083.
https://doi.org/10.1111/apt.13981
[41] Konikoff, F.M. and Gilat, T. (2005) Effects of Fatty Acid Bile Acid Conjugates (FABACs) on Biliary Lithogenesis: Potential Consequences for Non-Surgical Treatment of Gallstones. Current Drug Targets—Immune, Endocrine & Metabolic Disorders, 5, 171-175.
https://doi.org/10.2174/1568008054064904
[42] Dobrzyn, A. and Ntambi, J.M. (2005) Stearoyl-CoA Desaturase as a New Drug Target for Obesity Treatment. Obesity Reviews, 6, 169-174.
https://doi.org/10.1111/j.1467-789X.2005.00177.x
[43] Safadi, R., Konikoff, F.M., Mahamid, M., Zelber-Sagi, S., Halpern, M., Gilat, T., et al. (2014) The Fatty Acid-Bile Acid Conjugate Aramchol Reduces Liver Fat Content in Patients with Nonalcoholic Fatty Liver Disease. Clinical Gastroenterology and Hepatology, 12, 2085-2091.E1.
https://doi.org/10.1016/j.cgh.2014.04.038
[44] Lancaster, L., Morrison, L., Auais, A., Ding, B., Iqbal, A., Polman, B., et al. (2017) Safety of Pirfenidone in Patients with Idiopathic Pulmonary Fibrosis: Experience from 92 Sites in an Open-Label US Expanded Access Program. Pulmonary Therapy, 3, 317-325.
https://doi.org/10.1007/s41030-017-0049-z
[45] Garcia, L., Hernandez, I., Sandoval, A., Salazar, A., Garcia, J., Vera, J., et al. (2002) Pirfenidone Effectively Reverses Experimental Liver Fibrosis. Journal of Hepatology, 37, 797-805.
https://doi.org/10.1016/S0168-8278(02)00272-6
[46] Tsuchiya, H., Kaibori, M., Yanagida, H., Yokoigawa, N., Kwon, A.H., Okumura, T., et al. (2004) Pirfenidone Prevents Endotoxin-Induced Liver Injury after Partial Hepatectomy in Rats. Journal of Hepatology, 40, 94-101.
https://doi.org/10.1016/j.jhep.2003.09.023
[47] Wang, F., Wen, T., Chen, X.Y. and Wu, H. (2008) Protective Effects of Pirfenidone on D-Galactosamine and Lipopolysaccharide-Induced Acute Hepatotoxicity in Rats. Inflammation Research, 57, 183-188.
https://doi.org/10.1007/s00011-007-7153-8
[48] Chen, G., Ni, Y., Nagata, N., Xu, L., Zhuge, F., Nagashimada, M., et al. (2019) Pirfenidone Prevents and Reverses Hepatic Insulin Resistance and Steatohepatitis by Polarizing M2 Macrophages. Laboratory Investigation, 99, 1335-1348.
https://doi.org/10.1038/s41374-019-0255-4
[49] Volkmann, X., Fischer, U., Bahr, M.J., Ott, M., Lehner, F., MacFarlane, M., et al. (2007) Increased Hepatotoxicity of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand in Diseased Human Liver. Hepatology, 46, 1498-1508.
https://doi.org/10.1002/hep.21846
[50] Farrell, G.C., Larter, C.Z., Hou, J.Y., Zhang, R.H., Yeh, M.M., Williams, J., et al. (2009) Apoptosis in Experimental NASH Is Associated with p53 Activation and TRAIL Receptor Expression. Journal of Gastroenterology and Hepatology, 24, 443-452.
https://doi.org/10.1111/j.1440-1746.2009.05785.x
[51] Barreyro, F.J., Holod, S., Finocchietto, P.V., Camino, A.M., Aquino, J.B., Avagnina, A., et al. (2015) The Pan-Caspase Inhibitor Emricasan (IDN-6556) Decreases Liver Injury and Fibrosis in a Murine Model of Non-Alcoholic Steatohepatitis. Liver International, 35, 953-966.
https://doi.org/10.1111/liv.12570
[52] Staels, B., Handelsman, Y. and Fonseca, V. (2010) Bile Acid Sequestrants for Lipid and Glucose Control. Current Diabetes Reports, 10, 70-77.
https://doi.org/10.1007/s11892-009-0087-5
[53] Braunlin, W., Zhorov, E., Guo, A., Apruzzese, W., Xu, Q., Hook, P., et al. (2002) Bile Acid Binding to Sevelamer HCl. Kidney International, 62, 611-619.
https://doi.org/10.1046/j.1523-1755.2002.00459.x
[54] Harach, T., Pols, T.W., Nomura, M., Maida, A., Watanabe, M., Auwerx, J., et al. (2012) TGR5 Potentiates GLP-1 Secretion in Response to Anionic Exchange Resins. Scientific Reports, 2, Article No. 430.
https://doi.org/10.1038/srep00430
[55] Kobayashi, M., Ikegami, H., Fujisawa, T., Nojima, K., Kawabata, Y., Noso, S., et al. (2007) Prevention and Treatment of Obesity, Insulin Resistance, and Diabetes by Bile Acid-Binding Resin. Diabetes, 56, 239-247.
https://doi.org/10.2337/db06-0353