分数次极大算子在广义加权变指标Morrey空间上的有界性
Boundedness of Fractional Maximal Operator on Generalized Weighted Morrey Spaces with Variable Exponents
摘要: 利用Ap(⋅),q(⋅)权函数的性质以及调和分析的实方法,得到了分数次极大算子在广义加权变指标Morrey空间上的有界性,同时也给出了交换子的相应结果。
Abstract: By applying the properties of Ap(⋅),q(⋅) weighted functions and real-variable methods of harmonic analysis, the boundedness of the fractional maximal operator is obtained on generalized weighted Morrey spaces with variable exponent. Meanwhile, the corresponding result of its commutator is also given.
文章引用:徐博. 分数次极大算子在广义加权变指标Morrey空间上的有界性[J]. 理论数学, 2021, 11(11): 1888-1896. https://doi.org/10.12677/PM.2021.1111211

1. 引言及主要结果

0 < α < n ,分数次极大算子和分数次积分算子分别定义为:

M α f ( x ) = sup t > 0 1 | B ( x , t ) | 1 α n B ( x , t ) | f ( y ) | d y , I α f ( x ) = n f ( y ) | x y | n α d y .

给定可测函数b,相应的交换子可定义如下:

[ b , M α ] f = M α ( b f ) b M α ( f ) , [ b , I α ] f = I α ( b f ) b I α ( f ) ,

同时给出定义:

M b , α f ( x ) = sup t > 0 1 | B ( x , t ) | 1 α n B ( x , t ) | b ( x ) b ( y ) | | f ( y ) | d y ,

[ b , I α ] f ( x ) = n [ b ( x ) b ( y ) ] f ( y ) | x y | α n d y .

b ( x ) 0 时,对于任意的局部可积函数f,有 | [ b , M α ] f ( x ) | M b , α f ( x )

Ω n 为无界开集, χ E ( x ) 表示 E n 上的特征函数, B ( x , r ) = { y n : | x y | < r } B ˜ ( x , r ) = B ( x , r ) Ω ,本文中 φ ( x , r ) , φ 1 ( x , r ) , φ 2 ( x , r ) 均为 Ω × ( 0 , ) 上的非负可测函数。

给定可测函数 p ( ) : Ω ( 1 , ) ,变指标Lebesgue空间 L p ( ) 定义为:

L p ( ) ( Ω ) = { f : λ > 0 , st . Ω | f ( x ) | p ( x ) d x < } ,

其上的Luxemburg-Nakano范数为:

f L p ( ) ( Ω ) = inf { λ > 0 : Ω ( | f ( x ) | λ ) p ( x ) d x 1 } .

定义1.1 [1] 设 ω > 0 Ω 上的一个局部可积函数,它表示权函数。加权变指标Lebesgue空间 L ω p ( ) ( Ω ) 定义为:

L ω p ( ) ( Ω ) = { f : f L ω p ( ) ( Ω ) f ω L p ( ) ( Ω ) < } .

定义1.2 [2] 设 1 p ( x ) < x Ω 1 q ( x ) = 1 p ( x ) α n ,变指标 A p ( ) ( Ω ) 权和变指标 A p ( ) , q ( ) ( Ω ) 权可分别定义为:

A p ( ) ( Ω ) = { ω : [ ω ] A p ( ) sup B ( x , r ) | B ( x , r ) | 1 ω L p ( ) ( B ˜ ( x , r ) ) ω 1 L p ( ) ( B ˜ ( x , r ) ) < }

A p ( ) , q ( ) ( Ω ) = { ω : [ ω ] A p ( ) , q ( ) sup B ( x , r ) | B ( x , r ) | 1 p ( x ) 1 q ( x ) 1 ω L p ( ) ( B ˜ ( x , r ) ) ω 1 L p ( ) ( B ˜ ( x , r ) ) < } .

定义1.3 [3] 设 1 p ( x ) < x Ω ,则广义加权变指标Morrey空间 M ω p ( ) , φ ( Ω ) 定义为:

M ω p ( ) , φ ( Ω ) = { f : sup x Ω , r > 0 1 φ ( x , r ) ω L p ( ) ( B ˜ ( x , r ) ) < } .

1 p ( x ) 1 q ( x ) = α n 时,C. Capone 在文献 [4] 中证明了分数次极大算子从 L p ( ) L q ( ) 是有界的,文献 [5] 中证明了带粗糙核的Marcinkiewicz积分在变指标Morrey空间上的有界性,文献 [6] 给出了局部互补广义变指标Morrey空间上几类奇异积分算子的有界性估计,分数次极大算子在广义加权Morrey空间上的有界性估计可参见文献 [7]。最近作者在文献 [8] 中得到了Calderón-Zygmund奇异积分算子在中心Morrey-Orlicz空间上的有界性。受上面研究的启发,本文将研究分数次极大算子及其交换子在广义加权变指标Morrey空间上的有界性。

定义1.4 [9] 给定有界可测函数 p ( x ) : Ω [ 1 , ) ,假设 1 p p ( ) p + < 满足局部log-Hölder连续条件:

| p ( x ) p ( y ) | C log | x y | , x , y Ω , | x y | 1 2 , (1)

且满足log-Hölder在无穷远处的连续条件:存在 p ,使得

| p ( x ) p | C log ( e + | x | ) , x Ω , (2)

将满足上述条件的所有 p ( x ) 构成的集合记为 P log ( Ω ) ,其中 p + = esssup x Ω p ( x ) p = ess inf x Ω p ( x ) p = lim x p ( x ) > 1

定义1.5 [10] 设 b L l o c 1 ( Ω ) ,且

b B M O = sup x n , r > 0 1 | B ( x , r ) | B ( x , r ) | b ( y ) b B ( x , r ) | d y < ,(3)

其中

b B ( x , r ) = 1 | B ( x , r ) | B ( x , r ) b ( y ) d y .

B M O ( Ω ) 空间可定义为:

B M O ( Ω ) = { b L l o c 1 ( Ω ) : b B M O < } .

本文的主要结果如下:

定理1 设 Ω n 为无界开集, 0 < α < n p P log ( Ω ) p + < n α 1 q ( x ) = 1 p ( x ) α n ω A p ( ) , q ( ) ( Ω )

则对任意 f L ω p ( ) ( Ω ) ,有

M α f L ω q ( ) ( B ˜ ( x , t ) ) C ω L q ( ) ( B ˜ ( x , t ) ) sup r > t f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1 , (4)

其中C与 f , x Ω 和r均无关。

定理2 设 Ω n 为无界开集, 0 < α < n p P log ( Ω ) p + < n α 1 q ( x ) = 1 p ( x ) α n ω A p ( ) , q ( ) ( Ω ) ,且函数 φ 1 ( x , r ) φ 2 ( x , r ) 满足条件

sup r > t ess inf r < s < φ 1 ( x , s ) ω L p ( ) ( B ˜ ( x , s ) ) ω L q ( ) ( B ˜ ( x , t ) ) C φ 2 ( x , t ) , (5)

其中C与 x Ω 和r均无关,则 M α M ω p ( ) , φ 1 ( Ω ) M ω q ( ) , φ 2 ( Ω ) 上有界。

定理3设 Ω n 为无界开集, 0 < α < n p P log ( Ω ) p + < n α 1 q ( x ) = 1 p ( x ) α n ω A p ( ) , q ( ) ( Ω ) b B M O ( Ω ) ,则对任意的 f L ω p ( ) ( Ω )

M b , α f L ω q ( ) ( B ˜ ( x , t ) ) C b B M O ω L q ( ) ( B ˜ ( x , t ) ) sup r > t ( 1 + ln r t ) f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1 , (6)

其中C与 f , x Ω 和r均无关。

定理4设 Ω n 为无界开集, 0 < α < n p P log ( Ω ) p + < n α 1 q ( x ) = 1 p ( x ) α n ω A p ( ) , q ( ) ( Ω ) b B M O ( Ω ) ,且函数 φ 1 ( x , r ) φ 2 ( x , r ) 满足条件

sup r > t ( 1 + ln r t ) ess inf r < s < φ 1 ( x , s ) ω L p ( ) ( B ˜ ( x , s ) ) ω L q ( ) ( B ˜ ( x , t ) ) C φ 2 ( x , t ) (7)

其中C与 x Ω 和r均无关,则 M b , α M ω p ( ) , φ 1 ( Ω ) M ω q ( ) , φ 2 ( Ω ) 上有界。

2. 预备知识

引理2.1 [11] 设 Ω n 为无界开集, 0 < α < n p P log ( Ω ) p + < n α 1 q ( x ) = 1 p ( x ) α n ω A p ( ) , q ( ) ( Ω ) ,则 M α L ω p ( ) ( Ω ) L ω q ( ) ( Ω ) 上有界。

引理2.2 [12] 设 Ω n 为无界开集, 0 < α < n p P log ( Ω ) p + < n α 1 q ( x ) = 1 p ( x ) α n ω A p ( ) , q ( ) ( Ω ) b B M O ( Ω ) ,则 [ b , I α ] L ω p ( ) ( Ω ) L ω q ( ) ( Ω ) 上有界。

引理2.3 [12] 设 1 < p ( x ) < 1 q ( x ) = 1 p ( x ) α n ,且 ω A p ( ) , q ( ) ( Ω ) ,则 ω 1 A q ( ) , p ( ) ( Ω )

引理2.4 设 Ω n 为无界开集, 0 < α < n p P log ( Ω ) p + < n α 1 q ( x ) = 1 p ( x ) α n ω A p ( ) , q ( ) ( Ω ) ,则下列条件等价:

(i) b B M O ( Ω )

(ii) M b , α L ω p ( ) ( Ω ) L ω q ( ) ( Ω ) 上有界。

证明 (i) (ii) 设 f L ω p ( ) ( Ω ) b B M O ( Ω ) ,则由引理2.2可知

M b , α f L ω q ( ) ( Ω ) C [ b , I α ] f L ω q ( ) ( Ω ) C b B M O f L ω p ( ) ( Ω )

(ii) (i) 设 M b , α L ω p ( ) ( Ω ) L ω q ( ) ( Ω ) 上有界,则由广义Hölder不等式和变指标 A p ( ) , q ( ) 权的性质可得

1 | B ( x , t ) | B ˜ ( x , t ) | b ( z ) b B ( x , t ) | d z = 1 | B ( x , t ) | B ˜ ( x , t ) | b ( z ) 1 | B ( x , t ) | B ( x , t ) b ( y ) d y | d z = 1 | B ( x , t ) | B ˜ ( x , t ) 1 | B ( x , t ) | | B ( x , t ) b ( z ) b ( y ) d y | d z 1 | B ( x , t ) | 1 + α n B ˜ ( x , t ) 1 | B ( x , t ) | 1 α n B ( x , t ) | b ( z ) b ( y ) | d y d z

1 | B ( x , t ) | B ˜ ( x , t ) | b ( z ) b B ( x , t ) | d z = 1 | B ( x , t ) | B ˜ ( x , t ) | b ( z ) 1 | B ( x , t ) | B ( x , t ) b ( y ) d y | d z = 1 | B ( x , t ) | B ˜ ( x , t ) 1 | B ( x , t ) | | B ( x , t ) b ( z ) b ( y ) d y | d z 1 | B ( x , t ) | 1 + α n B ˜ ( x , t ) 1 | B ( x , t ) | 1 α n B ( x , t ) | b ( z ) b ( y ) | d y d z

引理2.5 [12] 设 b B M O ( Ω ) p P log ( Ω ) ,且 ω A p ( ) ( Ω ) ,则 M b L ω p ( ) ( Ω ) 上有界。

引理2.6 [13] 设 b B M O ( Ω ) ,则存在常数 C > 0 ,使得

| b B ˜ ( x , r ) b B ˜ ( x , t ) | C b B M O ln t r , 0 < 2 r < t , (8)

其中C与 b , x , r 和t均无关。

引理2.7 [14] 设 Ω n 为无界开集, p P log ( Ω ) ,且 ω 为Lebesgue可测函数。若 ω A p ( ) ( Ω ) ,则范数 B M O 与范数 B M O p ( ) , ω 等价,其中对于任意的局部可积函数f,有

f B M O p ( ) , ω = sup x Ω , r > 0 ( f ( ) f B ˜ ( x , r ) ) χ B ˜ ( x , r ) L ω p ( ) ( B ˜ ( x , r ) ) χ B ˜ ( x , r ) L ω p ( ) ( B ˜ ( x , r ) ) .

引理2.8 [15] 设 p P log ( Ω ) ,若 ω A p ( ) , q ( ) ( Ω ) ,则 ω ( ) q ( ) A

3. 主要结果的证明

定理1的证明 设 f L ω p ( ) ( Ω ) ,分解 f = f 1 + f 2 ,其中 f 1 ( y ) = f ( y ) χ B ˜ ( x , 2 t ) ( y ) f 2 ( y ) = f ( y ) χ Ω \ B ˜ ( x , 2 t ) ( y ) t > 0 ,则有

M α f L ω q ( ) ( B ˜ ( x , t ) ) M α f 1 L ω q ( ) ( B ˜ ( x , t ) ) + M α f 2 L ω q ( ) ( B ˜ ( x , t ) ) (9)

由引理2.1,有

M α f 1 L ω q ( ) ( B ˜ ( x , t ) ) M α f 1 L ω q ( ) ( Ω ) C f 1 L ω p ( ) ( Ω ) = C f L ω p ( ) ( B ˜ ( x , 2 t ) )

另一方面,

f L ω p ( ) ( B ˜ ( x , 2 t ) ) C | B ( x , t ) | 1 α n f L ω p ( ) ( B ˜ ( x , 2 t ) ) sup r > 2 t | B ( x , r ) | α n 1 C | B ( x , t ) | 1 α n sup r > 2 t f L ω p ( ) ( B ˜ ( x , r ) ) | B ( x , r ) | α n 1 C ω L q ( ) ( B ˜ ( x , t ) ) ω 1 L p ( ) ( B ˜ ( x , t ) ) sup r > 2 t | B ( x , r ) | α n 1 f L ω p ( ) ( B ˜ ( x , r ) ) C ω L q ( ) ( B ˜ ( x , t ) ) sup r > 2 t | B ( x , r ) | α n 1 f L ω p ( ) ( B ˜ ( x , r ) ) ω 1 L p ( ) ( B ˜ ( x , r ) ) C ω L q ( ) ( B ˜ ( x , t ) ) sup r > t | B ( x , r ) | α n 1 f L ω p ( ) ( B ˜ ( x , r ) ) ω 1 L p ( ) ( B ˜ ( x , r ) ) C [ ω ] A p ( ) , q ( ) ω L q ( ) ( B ˜ ( x , t ) ) sup r > t f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1

所以

f L ω p ( ) ( B ˜ ( x , 2 t ) ) C ω L q ( ) ( B ˜ ( x , t ) ) sup r > t f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1 (10)

则有

M α f 1 L ω q ( ) ( B ˜ ( x , t ) ) C ω L q ( ) ( B ˜ ( x , t ) ) sup r > t f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1 (11)

设对于任意 z B ( x , r ) ,若 B ( z , r ) ( B ( x , 2 t ) ) c ,则 r > t 。事实上,若 y B ( z , r ) ( B ( x , 2 t ) ) c ,则 r > | y z | | x y | | x z | 2 t r > t 。另一方面,当 y B ( z , r ) ( B ( x , 2 t ) ) c ,有 | x y | | y z | + | x z | < t + r < 2 r 。因此, B ( z , r ) ( B ( x , 2 t ) ) c B ( x , 2 r ) 。则由广义Hölder不等式和变指数 A p ( ) , q ( ) 权的定义可得,

M α f 2 ( z ) = sup r > 0 1 | B ( z , r ) | 1 α n B ˜ ( z , r ) | f 2 ( y ) | d y = sup r > 0 1 | B ( z , r ) | 1 α n B ˜ ( z , r ) ( B ˜ ( x , 2 t ) ) c | f ( y ) | d y sup r > t 1 | B ( z , r ) | 1 α n B ˜ ( x , 2 r ) | f ( y ) | d y = sup r > t | B ( x , 2 r ) | 1 α n | B ( z , r ) | 1 α n 1 | B ( x , 2 r ) | 1 α n B ˜ ( x , 2 r ) | f ( y ) | d y

C sup r > t 1 | B ( x , 2 r ) | 1 α n B ˜ ( x , 2 r ) | f ( y ) | d y C sup r > 2 t 1 | B ( x , r ) | 1 α n B ( x , 2 r ) | f ( y ) | d y C sup r > t 1 | B ( x , r ) | 1 α n f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1

因此,

M α f 2 L ω q ( ) ( B ˜ ( x , t ) ) C ω L q ( ) ( B ˜ ( x , t ) ) sup r > t f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1 (12)

由式(9),(11)和(12)即可得到定理1。

定理2的证明 设 f M ω p ( ) , φ 1 ( Ω ) ,则由定理1和式(5)可得

M α f M ω q ( ) , φ 2 ( Ω ) = sup x Ω , t > 0 1 φ 2 ( x , t ) ω L q ( ) ( B ˜ ( x , r ) ) M α f L ω q ( ) ( B ˜ ( x , t ) ) C sup x Ω , t > 0 1 φ 2 ( x , t ) sup r > t f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1 C f M ω p ( ) , φ 1 ( Ω ) sup x Ω , t > 0 1 φ 2 ( x , t ) sup r > t φ 1 ( x , r ) ω L p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) C f M ω p ( ) , φ 1 ( Ω )

定理3的证明 设 b B M O ( Ω ) f L ω p ( ) ( B ˜ ( x , t ) ) ,由定理1的证明,记 f = f 1 + f 2 ,则有

M b , α f L ω q ( ) ( B ˜ ( x , t ) ) M b , α f 1 L ω q ( ) ( B ˜ ( x , t ) ) + M b , α f 2 L ω q ( ) ( B ˜ ( x , t ) ) (13)

由引理2.4,有

M b , α f 1 L ω q ( ) ( B ˜ ( x , t ) ) M b , α f 1 L ω q ( ) ( Ω ) C b B M O f 1 L ω p ( ) ( Ω ) = C b B M O f L ω p ( ) ( B ˜ ( x , 2 t ) )

则由式(10)有

M b , α f 1 L ω q ( ) ( B ˜ ( x , t ) ) C b B M O ω L q ( ) ( B ˜ ( x , t ) ) sup r > t f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1 (14)

设对任意 z B ( x , r ) ,若 B ( z , r ) ( B ( x , 2 t ) ) c ,则 r > t 。事实上,若 y B ( z , r ) ( B ( x , 2 t ) ) c ,则 r > | y z | | x y | | x z | 2 t r > t 。另一方面,当 y B ( z , r ) ( B ( x , 2 t ) ) c ,有 | x y | | y z | + | x z | < t + r < 2 r 。因此, B ( z , r ) ( B ( x , 2 t ) ) c B ( x , 2 r )

M b , α f 2 ( z ) = sup r > 0 1 | B ( z , r ) | 1 α n B ˜ ( z , r ) | b ( y ) b ( z ) | | f 2 ( y ) | d y = sup r > 0 1 | B ( z , r ) | 1 α n B ˜ ( z , r ) ( B ˜ ( x , 2 t ) ) c | b ( y ) b ( z ) | | f ( y ) | d y sup r > t 1 | B ( z , r ) | 1 α n B ˜ ( x , 2 r ) | b ( y ) b ( z ) | | f ( y ) | d y = sup r > t | B ( x , 2 r ) | 1 α n | B ( z , r ) | 1 α n 1 | B ( x , 2 r ) | 1 α n B ˜ ( x , 2 r ) | b ( y ) b ( z ) | | f ( y ) | d y C sup r > t 1 | B ( x , 2 r ) | 1 α n B ˜ ( x , 2 r ) | b ( y ) b ( z ) | | f ( y ) | d y

C sup r > 2 t 1 | B ( x , r ) | 1 α n B ˜ ( x , r ) | b ( y ) b ( z ) | | f ( y ) | d y C sup r > t 1 | B ( x , r ) | 1 α n B ˜ ( x , r ) | b ( y ) b B ˜ ( x , r ) | | f ( y ) | d y + C sup r > t 1 | B ( x , r ) | 1 α n B ˜ ( x , r ) | b ( z ) b B ˜ ( x , r ) | | f ( y ) | d y = : I 1 + I 2 ,

对于 I 1 ,由广义Hölder不等式,定义1.2,引理2.7和变指数 A p ( ) , q ( ) 权的定义可知,

I 1 C sup r > t | B ( x , r ) | 1 + α n f L ω p ( ) ( B ˜ ( x , r ) ) b ( ) b B ˜ ( x , r ) L ω 1 p ( ) ( B ˜ ( x , r ) ) C b B M O sup r > t | B ( x , r ) | 1 + α n f L ω p ( ) ( B ˜ ( x , r ) ) χ B ˜ ( x , r ) L ω 1 p ( ) ( B ˜ ( x , r ) ) = C b B M O sup r > t | B ( x , r ) | 1 + α n f L ω p ( ) ( B ˜ ( x , r ) ) ω 1 L p ( ) ( B ˜ ( x , r ) ) C b B M O sup r > t f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1

另一方面,对于 I 2 ,由引理2.6和广义Hölder不等式,有

I 2 C sup r > t | B ( x , r ) | 1 + α n | b ( z ) b B ˜ ( x , t ) | B ˜ ( x , r ) | f ( y ) | d y + C sup r > t | B ( x , r ) | 1 + α n | b B ˜ ( x , t ) b B ˜ ( x , r ) | B ˜ ( x , r ) | f ( y ) | d y C sup r > t | B ( x , r ) | 1 + α n | b ( z ) b B ˜ ( x , t ) | f L ω p ( ) ( B ˜ ( x , r ) ) ω 1 L p ( ) ( B ˜ ( x , r ) ) + C b B M O sup r > t | B ( x , r ) | 1 + α n ln r t f L ω p ( ) ( B ˜ ( x , r ) ) ω 1 L p ( ) ( B ˜ ( x , r ) ) C M b χ B ( x , t ) ( z ) sup r > t f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1 + C b B M O sup r > t ln r t f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1

则由引理2.5,有

M b , α f 2 L ω q ( ) ( B ˜ ( x , t ) ) I 1 L ω q ( ) ( B ˜ ( x , t ) ) + I 2 L ω q ( ) ( B ˜ ( x , t ) ) C b B M O ω L q ( ) ( B ˜ ( x , t ) ) sup r > t f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1 + C M b χ B ( x , t ) L ω q ( ) ( B ˜ ( x , t ) ) sup r > t f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1 + C b B M O ω L q ( ) ( B ˜ ( x , t ) ) sup r > t ln r t f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1 C b B M O ω L q ( ) ( B ˜ ( x , t ) ) sup r > t ( 1 + ln r t ) f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1

由式(13)和式(14)即可得到定理3。

定理4的证明 设 f M ω p ( ) , φ 1 ( Ω ) ,则由定理3和式(7)可得

M b , α f M ω q ( ) , φ 2 ( Ω ) = sup x Ω , t > 0 1 φ 2 ( x , t ) ω L q ( ) ( B ˜ ( x , t ) ) M b , α f L ω q ( ) ( B ˜ ( x , t ) ) C b B M O sup x Ω , t > 0 1 φ 2 ( x , t ) sup r > t ( 1 + ln r t ) f L ω p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) 1 C b B M O f M ω p ( ) , φ 1 ( Ω ) sup x Ω , t > 0 1 φ 2 ( x , t ) sup r > t ( 1 + ln r t ) φ 1 ( x , r ) ω L p ( ) ( B ˜ ( x , r ) ) ω L q ( ) ( B ˜ ( x , r ) ) C b B M O f M ω p ( ) , φ 1 ( Ω ) C f M ω p ( ) , φ 1 ( Ω )

参考文献

[1] Cruz-Uribe, D., Diening, L. and Hst, P. (2011) The Maximal Operator on Weighted Variable Lebesgue Spaces. Frac-tional Calculus and Applied Analysis, 14, 361-374.
https://doi.org/10.2478/s13540-011-0023-7
[2] Hasanov, J.J. and Musayev, A.M. (2019) Oscillatory Integral Operators and Their Commutators in Modified Weighted Morrey Spaces with Variable Exponent. International Journal of Applied Mathematics, 32, 521-535.
https://doi.org/10.12732/ijam.v32i3.12
[3] Guliyev, V.S., Hasanov, J.J. and Badalov, X.A. (2018) Maximal and Singular Integral Operators and Their Commutators on Generalized Weighted Morrey Spaces with Variable Exponent. Mathematical Inequalities and Applications, 21, 41-61.
https://doi.org/10.7153/mia-2018-21-04
[4] Capone, C., Cruz-Uribe, D. and Fiorenza, A. (2007) The Fractional Maximal Operator and Fractional Interals on Variable Spaces. Revista Matemática Iberoamericana, 23, 743-770.
https://doi.org/10.4171/RMI/511
[5] Qu M. and Wang, L. (2020) On the Commutator of Marcinkiewicz Integrals with Rough Kernels in Variable Morrey-Type Spaces. Ukrainian Mathematical Journal, 72, 1080-1099.
https://doi.org/10.1007/s11253-020-01843-5
[6] Guliyev, V.S., Hasanov, J.J. and Samko, S.G. (2013) Maximal, Potential and Singular Operators in the Local Complementary Variable Exponent Morrey Type Spaces. Journal of Mathematical Analysis and Applications, 401, 72-84.
https://doi.org/10.1016/j.jmaa.2012.03.041
[7] Ismayilova, A.F. (2019) Fractional Maximal Operator and Its Higher Order Commutators on Generalized Weighted Morrey Spaces. Transactions Issue Mathematics, Azerbaijan National Academy of Sciences, 39, 84-95.
[8] Maligranda, L. and Matsuoka, K. (2020) Calderon-Zygmund Singular Integrals in Central Morrey-Orlicz Spaces. Tohoku Mathematical Journal, 72, 235-259.
https://doi.org/10.2748/tmj/1593136820
[9] Diening, L., Harjulehto, P., Hasto, P. and Ruzicka, M. (2011) Lebesgue and Sobolev Spaces with Variable Exponent. Vol. 2017. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-18363-8
[10] John, F. and Nirenberg, L. (1961) On Functions of Bounded Mean Oscillation. Communications on Pure and Applied Mathematics, 14, 415-426.
https://doi.org/10.1002/cpa.3160140317
[11] Cruz-Uribe, D. and Wang, L. (2017) Extrapolation and Weighted Norm Inequalities in the Variable Lebesgue Spaces. Transactions of the American Mathematical Society, 369, 1205-1235.
https://doi.org/10.1090/tran/6730
[12] Guliyev, V.S., Hasanov, J.J., Badalov, X.A. (2019) Commutators of Riesz Potential in the Vanishing Generalized Weighted Morrey Spaces with Variable Exponent. Mathematical Inequalities & Applications, 22, 331-351.
https://doi.org/10.7153/mia-2019-22-25
[13] Janson, S. (1978) Mean Oscillation and Commutators of Singular Integral Operators. Arkiv för Matematik, 16, 263-270.
https://doi.org/10.1007/BF02386000
[14] Ho, K.P. (2016) Singular Integral Operators, John-Nirenberg Inequali-ties and Triebel-Lizorkin Type Spaces on Weighted Lebesgue Spaces with Variable Exponents. Revista De La Union Matematica Argentina, 57, 85-101.
[15] 王子剑, 朱月萍. 分数次极大算子在加权变指数Lebesgue空间上的有界性[J]. 南京大学学报: 数学半年刊, 2016, 33(1): 57-81.