突变型p53作为乳腺癌的潜在治疗靶点的研究进展
Research Progress of Mutant p53 as a Potential Therapeutic Target for Breast Cancer
DOI: 10.12677/ACM.2021.1111807, PDF, HTML, XML, 下载: 381  浏览: 1,169 
作者: 周俊臻, 许馨文, 唐晶晶, 张 清:暨南大学第一附属医院乳腺外科,广东 广州
关键词: 乳腺癌p53靶向治疗Breast Cancer p53 Targeted Therapy
摘要: p53突变使得肿瘤细胞逃避死亡,导致其肿瘤抑制特性的丧失,对剩余的野生型等位基因发挥显性负作用或获得致癌活性。乳腺癌是世界范围内女性最常见的恶性肿瘤,是女性因癌症死亡的最主要原因。其中,p53是乳腺癌中最常见的突变基因,在所有乳腺癌患者中p53的突变率在30%~35%之间,在Luminal型中其突变率为26%,但在三阴性乳腺癌患者中其突变率高达80%。由于其较高的突变率,突变型p53可能成为乳腺癌患者的治疗靶点,尤其是三阴性乳腺癌的患者。在过去,突变型p53被认为是“不可用药的”,但随着对突变型p53的靶向药物的开发研究,这种情况已经改变了,有几种化合物可以重新激活突变的p53蛋白或将其转换为具有野生型属性的构象,从而发挥抗肿瘤作用。PRIMA-1,APR-246,PK11007和COTI-2在乳腺癌临床前模型中被发现具有抗癌活性,但是靶向p53的治疗方案仍有许多问题需要解决,本文就突变型p53作为乳腺癌的潜在治疗靶点予以综述。
Abstract: Mutant p53 enables tumor cells to escape death, resulting in loss of tumor suppressor properties, dominant negative effects on the remaining wild-type alleles or oncogenic activity. Breast cancer is the most common malignant tumor in women worldwide and the leading cause of cancer death in women. Among them, p53 is the most common mutation gene in breast cancer. The mutation rate of p53 in all breast cancer patients is 30%~35%, 26% in Luminal type, but as high as 80% in triple negative breast cancer patients. Due to its high mutation rate, mutant p53 may be a therapeutic target for breast cancer patients, especially those with triple-negative breast cancer. In the past, mutant p53 was considered “undoable”, but this has changed with the development of targeted drugs for mutant p53. Several compounds can reactivate the mutant p53 protein or convert it into a conformation with wild-type properties, thereby acting as an anti-tumor agent. PRIMA-1, APR-246, PK11007 and COTI-2 have been found to have anticancer activity in preclinical models of breast cancer, but there are still many problems to be solved in the treatment of p53. In this review, mutant p53 as a potential therapeutic target for breast cancer is reviewed.
文章引用:周俊臻, 许馨文, 唐晶晶, 张清. 突变型p53作为乳腺癌的潜在治疗靶点的研究进展[J]. 临床医学进展, 2021, 11(11): 5455-5460. https://doi.org/10.12677/ACM.2021.1111807

1. 引言

乳腺癌是世界范围内女性最常见的恶性肿瘤,是女性因癌症死亡的最主要原因。据统计,2020年全球乳腺癌新发病例高达226万例,占新发病例的11.7%,其死亡率占女性癌症死亡总数的近15.5%,乳腺癌已成为全球第一大癌 [1]。根据雌激素受体(Estrogen Receptor, ER)、孕激素受体(Progesterone Receptor, PR)以及人表皮生长因子受体2 (Human Epidermal Growth Factor Receptor 2, HER2)的表达情况,乳腺癌可分为腔面A型(Luminal A)、腔面B型(Luminal B)、三阴型(Triple-negative breast cancer, TNBC)和HER-2过表达型(Her2-enriched)。p53是乳腺癌中最常见的突变基因,在所有乳腺癌患者中p53的突变率在30%~35%之间,在Luminal型中其突变率为26%,但在三阴性乳腺癌患者中其突变率高达80% [2]。作为一种转录因子,野生型p53可以通过多种途径抑制肿瘤的发展,然而,突变型p53使得肿瘤细胞逃避死亡,促进肿瘤快速发展。p53突变的乳腺肿瘤通常具有侵袭性表型,其特征是分化差、侵袭性增加和高转移潜能 [3]。在过去,突变型p53被认为是“不可用药的”,但随着对突变型p53的靶向药物的开发研究,这种情况已经改变了,因此突变型p53对于乳腺癌患者尤其是TNBC患者而言有望成为潜在治疗靶点。本文就突变型p53作为乳腺癌潜在治疗靶点的研究进展予以综述。

2. 突变型p53与乳腺癌

野生型p53基因是一种关键的肿瘤抑制基因,被称为“基因组的守护者”。它控制着肿瘤生长过程中的细胞周期、DNA复制和不受控制的细胞分裂 [4]。当细胞生长失控时,p53诱导p21表达,导致细胞周期阻滞。当损伤无法修复时,p53通过触发与凋亡相关的基因,包括Bcl-2家族的促凋亡成员Bax,触发程序性细胞死亡,从而抑制肿瘤的发生。然而,突变型p53使得肿瘤细胞逃避死亡,从功能上讲,p53的突变会导致其肿瘤抑制特性的丧失,对剩余的野生型等位基因发挥显性负作用或获得致癌活性。p53突变体获得的致癌活性包括增加增殖、增强转移潜能和获得对特定治疗的耐药性 [5]。

在癌症中,点突变是p53基因中最常见的突变形式,其次是小的插入和缺失,更复杂的重排较少发生。p53包含393个氨基酸,有两个不同的核酸结合域:中心DNA结合核心域和位于C末端的第二个核酸结合域。核心结构域负责与目标启动子上的DNA结合,是致癌错义突变发生的常见位点 [6]。在乳腺癌中,突变型p53主要由外显子5-8的错义突变所主导,其中外显子4和内含子3在乳腺癌患者特别是TNBC中频繁发生突变。p53的突变谱在不同的乳腺癌亚型之间存在差异 [7],突变的频率随乳腺癌的组织学和生化特征而变化,导管癌比小叶癌多见,淋巴结阳性比淋巴结阴性多见,ER阴性比ER阳性多见,HER 2阳性比HER 2阴性多见 [7] [8]。在ER阳性病例中,p53突变也是预后不良的独立标志,p53突变与Luminal B、HER 2富集型肿瘤患者的死亡率增加相关,但与Luminal A和基底样肿瘤患者无关 [7]。

3. 突变型p53的潜在靶向药物

p53是一些最难治疗的癌症中最常发生突变的基因 [9]。在TNBC患者中的突变率高达80%。TNBC目前由于缺乏有效的靶向治疗,往往预后较差,晚期TNBC患者中位总生存期(OS)约为18个月 [10],这是突变型p53有望成为乳腺癌潜在治疗靶点的理由之一。由于恶性细胞中的突变蛋白比野生型p53更不容易降解,因此它积累起来,从而为抗癌药物提供了一个潜在的靶点 [5]。突变型p53,就像突变的RAS和MYC一样,在过去被认为是“不可用药的”。这种情况现在已经改变了,因为有几种化合物选择性地靶向这种突变蛋白,恢复其野生型特性,并对突变型p53的临床前肿瘤模型具有抗癌活性 [5] [11] [12]。这些重新激活突变体的化合物如PRIMA-1,APR-246,PK11007和COTI-2等已经在癌症临床前模型中进行了潜在的抗癌活性研究。下面将讨论这些化合物在乳腺癌细胞中的抗癌活性。

3.1. 喹诺啶类:PRIMA-1和APR-246

3-喹环酮衍生物PRIMA-1 (2,2-bis (hydroxymethyl) quinuclidin-3-one or APR-017),最初是在筛选一个低分子量化合物库(美国国家癌症研究所多样性分集)发现的。该分子是开发靶向突变p53抗癌药物的先导化合物,它能够恢复突变型p53的野生型属性,例如:转化为其活跃构象、序列特异性结合和诱导凋亡 [13]。在乳腺癌细胞中,PRIMA-1可以增加表达突变型p53的乳腺肿瘤对凋亡的易感性 [14]。研究表明,PRIMA-1可以通过恢复p53-hsp90α的相互作用,增强p53-hsp90α复合物的易位,重新激活p53转录活性,且单独使用PRIMA-1与DNA靶向药物阿霉素联合使用,可增加肿瘤细胞的敏感性 [15]。

PRIMA-1的促凋亡活性和膜通透性可通过添加一个甲基基团而增强,由此而产生了APR-246 (2-(hydroxymethyl)-2-(methoxymethyl) quinuclidin-3-one或PRIMA-1MET) [16],PRIMA-1和APR-246在多种癌症中具有重要的抗肿瘤作用,其主要的细胞作用机制是Caspase活化诱导细胞凋亡,在突变型和野生型p53癌细胞中触发细胞周期控制和凋亡相关基因的上调 [17]。APR-246也可能独立于突变的p53而发挥抗肿瘤作用,如通过诱导活性氧(ROS)或还原谷胱甘肽 [18] [19]。PRIMA-1和APR-246单独使用时都具有抗癌活性,但与不同的常规或实验性全身癌症治疗方法联合使用时,这种活性可以增强。然而,增强的程度取决于研究的特定细胞系和添加到PRIMA-1或APR-246中的特定化合物。因此,Synnott et al. [20] 等人利用乳腺癌细胞系研究发现,在MDA-MB-453和MDA-MB-468两种不同细胞系中,APR-246与Eribulin联合使用时,存在协同生长抑制作用,多西他赛联合APR-246对MDA-MB-453细胞有相加作用,但对MDA-MB-468细胞没有增强抑制作用。另一方面,在MDA-MB-468细胞中,卡铂和APR-246联合具有相加作用,而在MDA-MB-453细胞中不是。当APR-246与顺铂联合使用时,这两种细胞系的获益没有增强。

APR-246已经在I期临床试验中进行了评估 [21],这是首个突变型p53靶向药物在人体内的研究(NCT00900614),该研究在临床上证明了APR-246用于血液系统恶性肿瘤和前列腺癌的安全性,患者对该药物具有良好耐受性和良好的药代动力学特性,在生物学上,APR-246诱导凋亡增加,p53靶基因上调 [21]。目前正在高级别浆液性卵巢癌(NCT02098343)的Ib/II期临床试验中进行进一步的临床评估。

3.2. 2-磺酰嘧啶化合物:PK11007

PK11007是2-磺酰嘧啶化合物中的一种,能有效地杀死癌细胞,特别是p53缺失型或突变型肿瘤细胞,而对正常细胞只有较低的细胞毒性 [22]。PK11007有两种作用途径:p53依赖和p53不依赖。PK11007改变了参与调控细胞死亡、凋亡调控、信号转导、蛋白质重折叠和运动等通路中富集的基因的表达,这与PK11007激活突变型p53的能力一致 [23]。PK11007对表面暴露的182和277位半胱氨酸的烷基化作用在体外稳定了p53 DNA结合域(DNA-binding domain,DBD),并没有影响其与NDA结合的亲和力,在p53突变型细胞系中,PK11007增加了p53靶基因p21和PUMA的蛋白和mRNA水平,表明突变型p53的部分重新激活及其转录活性。与APR-246相似,PK11007诱导部分细胞死亡与p53无关,但依赖于谷胱甘肽消耗,并与活性氧水平的高度升高和内质网(ER)应激的诱导有关 [22]。

3.3. 吡唑类化合物:PK7088

Y220C是常见的p53癌症突变位点,在体温下,大于80%的蛋白未折叠,使p53核心区域的稳定性下降约4千卡/摩尔 [24] [25]。Y220C是小分子稳定方法的理想测试案例,因为酪氨酸到半胱氨酸的突变创造了一个独特的表面裂缝,是可用药的。PK7088 (1-methyl-4-phenyl-3-(1H-pyrrol-1-yl)-1H-pyrazole),是一种结合到p53Y220C特异性表面空腔的化合物 [26] [27]。PK7088可以稳定p53Y220C并恢复野生型p53的构象,它在携带p53Y220C突变体的癌细胞中通过上调NOXA和p21诱导细胞周期G2/M阻滞和凋亡,还通过触发BAX向线粒体的核输出,恢复了p53的非转录凋亡功能 [27]。

3.4. 锌–金属伴侣蛋白:ZMC1

p53最常见的灭活方式之一是通过突变破坏其DBD中关键的Zn2+结合作用 [28],受损的Zn2+结合导致蛋白质不稳定和序列特异性DNA结合的受损。锌金属伴侣是一种低分子量的分子,它的作用是将锌运送到细胞中,将锌提供给缺乏锌的蛋白质,如p53的特定突变形式 [29]。依附于特定的p53突变体后,野生型的折叠和功能得以恢复 [29]。ZMC1是研究得最详细的金属伴侣化合物之一,Yu等 [30] 在早期的一项研究中发现,ZMC1能够恢复p53 (R175)突变体的野生型结构和功能。该化合物能够通过广泛的细胞凋亡杀死p53 (R172H)小鼠,并以一种175位等位基因特异突变的p53依赖方式抑制异种移植瘤的生长。这种活性取决于化合物的锌离子螯合性能以及氧化还原变化 [30]。ZMC1同APR-6一样可以通过增加ROS水平激活损伤反应通路,诱导重折叠p53上的翻译后修饰(post-translational modifications, PTMs),从而增强其作为转录因子的功能,并驱动凋亡程序 [31]。虽然这些ROS水平在ZMC1的机制中发挥了不可或缺的作用,但它们也作为脱靶活性的来源,并可作为毒性来源 [32]。

3.5. 硫代氨基脲化合物:COTI-2

COTI-2是通过使用CHEMAS计算平台鉴定出来的一种硫代氨基脲化合物。该平台利用传统和现代药理学原理、统计模型、药物化学和机器学习技术的独特组合,发现并优化治疗癌症的新化合物 [33]。Lindemann A.等报道,COTI-2使野生型p53靶基因表达正常化,并恢复了p53突变蛋白的DNA结合特性,COTI-2诱导DNA损伤和复制应激反应导致细胞凋亡或衰老 [34]。此外,COTI-2也可不依赖于p53而发挥作用,如激活AMPK并抑制mTOR通路 [34]。这些与p53无关的活性可能是通过p53同源基因p63或p73介导的 [34]。目前,COTI-2正在妇科癌症的治疗中进行I期临床试验(NCT02433626),与动物模型数据一致,初步临床试验结果表明患者对COTI-2的耐受性良好,24例患者中只有2例需要减少剂量 [35]。与APR-246相比,COTI-2在乳腺癌细胞系中是一种更有效的细胞活性抑制剂和凋亡诱导剂,而且COTI-2对TNBC的抗癌作用要强于非TNBC [36],Synnott N.C.等 [36] 通过将其与目前用于治疗乳腺癌的几种细胞毒性药物结合来增强其效力,组合对细胞活力下降的影响是细胞毒剂和细胞系依赖性的。当COTI-2与阿霉素联合使用,对所研究的HCC1143、Hs578T、BT549等6种细胞系产生协同生长抑制作用 [36]。

4. 小结

p53在多种难治性癌症中具有高突变频率,并且在癌症的形成和发展中有着重要作用,在乳腺癌尤其是三阴性乳腺癌中突变型p53的高表达,以及治疗手段的局限性,使得突变型p53有可能成为抗乳腺癌治疗的潜在靶标。突变型p53在过去一直被认为是不可用药的。然而这种情况现在已经明显改变,有几种化合物可以将突变的p53重新激活为具有野生型特性的形式。但是靶向p53的治疗方案仍有几个问题需要解决,例如:它们详细的作用机制;它们对不同突变位点的p53的特异性;它们与现有治疗方案的相互作用和协同能力;长期治疗可能出现的并发症等等。随着研究的深入以及临床研究的展开,这些问题将会得到答案。总之,发现有效和安全的化合物靶向突变p53仍然是一个挑战。

参考文献

[1] Wei, W., et al. (2020) Cancer Registration in China and Its Role in Cancer Prevention and Control. The Lancet. Oncology, 21, e342-e349.
https://doi.org/10.1016/S1470-2045(20)30073-5
[2] Dumay, A., et al. (2013) Distinct Tumor Protein p53 Mutants in Breast Cancer Subgroups. International Journal of Cancer, 132, 1227-1231.
https://doi.org/10.1002/ijc.27767
[3] Silwal-Pandit, L., Langerød, A. and Børresen-Dale, A.-L. (2017) TP53 Mutations in Breast and Ovarian Cancer. Cold Spring Harbor Perspectives in Medicine, 7, a026252.
https://doi.org/10.1101/cshperspect.a026252
[4] Luo, Q., et al. (2017) Dynamics of p53: A Master Decider of Cell Fate. Genes, 8, 66.
https://doi.org/10.3390/genes8020066
[5] Duffy, M.J., Synnott, N.C. and Crown, J. (2017) Mutant p53 as a Target for Cancer Treatment. European Journal of Cancer (Oxford, England: 1990), 83, 258-265.
https://doi.org/10.1016/j.ejca.2017.06.023
[6] Fang, L., et al. (2018) Enhanced Breast Cancer Progression by Mutant p53 Is Inhibited by the Circular RNA Circ-Ccnb1. Cell Death and Differentiation, 25, 2195-2208.
https://doi.org/10.1038/s41418-018-0115-6
[7] Silwal-Pandit, L., et al. (2014) TP53 Mutation Spectrum in Breast Cancer Is Subtype Specific and Has Distinct Prognostic Relevance. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 20, 3569-3580.
https://doi.org/10.1158/1078-0432.CCR-13-2943
[8] Shah, S.P., et al. (2012) The Clonal and Mutational Evolution Spectrum of Primary Triple-Negative Breast Cancers. Nature, 486, 395-399.
https://doi.org/10.1038/nature10933
[9] Jiang, G., et al. (2016) Comprehensive Comparison of Molecular Portraits between Cell Lines and Tumors in Breast Cancer. BMC Genomics, 17, 525.
https://doi.org/10.1186/s12864-016-2911-z
[10] Schmid, P., et al. (2018) Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. The New England Journal of Medicine, 379, 2108-2121.
https://doi.org/10.1056/NEJMoa1809615
[11] Bykov, V.J.N. and Wiman, K.G. (2014) Mutant p53 Reactivation by Small Molecules Makes Its Way to the Clinic. FEBS Letters, 588, 2622-2627.
https://doi.org/10.1016/j.febslet.2014.04.017
[12] Zhao, D., et al. (2017) Molecularly Targeted Therapies for p53-Mutant Cancers. Cellular and Molecular Life Sciences: CMLS, 74, 4171-4187.
https://doi.org/10.1007/s00018-017-2575-0
[13] Bykov, V.J.N., et al. (2002) Restoration of the Tumor Suppressor Function to Mutant p53 by a Low-Molecular-Weight Compound. Nature Medicine, 8, 282-288.
https://doi.org/10.1038/nm0302-282
[14] Liang, Y., Besch-Williford, C. and Hyder, S.M. (2009) PRIMA-1 Inhibits Growth of Breast Cancer Cells by Re-Activating Mutant p53 Protein. International Journal of Oncology, 35, 1015-1023.
https://doi.org/10.3892/ijo_00000416
[15] Rehman, A., et al. (2005) Proteomic Identification of Heat Shock Protein 90 as a Candidate Target for p53 Mutation Reactivation by PRIMA-1 in Breast Cancer Cells. Breast Cancer Research: BCR, 7, R765-R774.
https://doi.org/10.1186/bcr1290
[16] Bykov, V.J.N., et al. (2005) PRIMA-1(MET) Synergizes with Cisplatin to Induce Tumor Cell Apoptosis. Oncogene, 24, 3484-3491.
https://doi.org/10.1038/sj.onc.1208419
[17] Perdrix, A., et al. (2017) PRIMA-1 and PRIMA-1 (APR-246): From Mutant/Wild Type p53 Reactivation to Unexpected Mechanisms Underlying Their Potent Anti-Tumor Effect in Combinatorial Therapies. Cancers, 9, 172.
https://doi.org/10.3390/cancers9120172
[18] Tessoulin, B., et al. (2014) PRIMA-1Met Induces Myeloma Cell Death Independent of p53 by Impairing the GSH/ROS Balance. Blood, 124, 1626-1636.
https://doi.org/10.1182/blood-2014-01-548800
[19] Peng, X., et al. (2013) APR-246/PRIMA-1MET Inhibits Thioredoxin Reductase 1 and Converts the Enzyme to a Dedicated NADPH Oxidase. Cell Death & Disease, 4, e881.
https://doi.org/10.1038/cddis.2013.417
[20] Synnott, N.C., et al. (2017) Mutant p53: A Novel Target for the Treatment of Patients with Triple-Negative Breast Cancer? International Journal of Cancer, 140, 234-246.
https://doi.org/10.1002/ijc.30425
[21] Lehmann, S., et al. (2012) Targeting p53 in Vivo: A First-in-Human Study with p53-Targeting Compound APR-246 in Refractory Hematologic Malignancies and Prostate Cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 30, 3633-3639.
https://doi.org/10.1200/JCO.2011.40.7783
[22] Bauer, M.R., Joerger, A.C. and Fersht, A.R. (2016) 2-Sulfonylpyrimidines: Mild Alkylating Agents with Anticancer Activity toward p53-Compromised Cells. Proceedings of the National Academy of Sciences of the United States of America, 113, E5271-E5280.
https://doi.org/10.1073/pnas.1610421113
[23] Synnott, N.C., et al. (2018) Mutant p53 as a Therapeutic Target for the Treatment of Triple-Negative Breast Cancer: Preclinical Investigation with the Anti-p53 Drug, PK11007. Cancer Letters, 414, 99-106.
https://doi.org/10.1016/j.canlet.2017.09.053
[24] Bullock, A.N., et al. (1997) Thermodynamic Stability of Wild-Type and Mutant p53 Core Domain. Proceedings of the National Academy of Sciences of the United States of America, 94, 14338-14342.
https://doi.org/10.1073/pnas.94.26.14338
[25] Bullock, A.N., Henckel, J. and Fersht, A.R. (2000) Quantitative Analysis of Residual Folding and DNA Binding in Mutant p53 Core Domain: Definition of Mutant States for Rescue in Cancer Therapy. Oncogene, 19, 1245-1256.
https://doi.org/10.1038/sj.onc.1203434
[26] Boeckler, F.M., et al. (2008) Targeted Rescue of a Destabilized Mutant of p53 by an in Silico Screened Drug. Proceedings of the National Academy of Sciences of the United States of America, 105, 10360-10365.
https://doi.org/10.1073/pnas.0805326105
[27] Liu, X., et al. (2013) Small Molecule Induced Reactivation of Mutant p53 in Cancer Cells. Nucleic Acids Research, 41, 6034-6044.
https://doi.org/10.1093/nar/gkt305
[28] Olivier, M., Hollstein, M. and Hainaut, P. (2010) TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use. Cold Spring Harbor Perspectives in Biology, 2, a001008.
https://doi.org/10.1101/cshperspect.a001008
[29] Blanden, A.R., et al. (2015) Synthetic Metallochaperone ZMC1 Rescues Mutant p53 Conformation by Transporting Zinc into Cells as an Ionophore. Molecular Pharmacology, 87, 825-831.
https://doi.org/10.1124/mol.114.097550
[30] Yu, X., et al. (2012) Allele-Specific p53 Mutant Reactivation. Cancer Cell, 21, 614-625.
https://doi.org/10.1016/j.ccr.2012.03.042
[31] Yu, X., et al. (2014) Small Molecule Restoration of Wild-Type Structure and Function of Mutant p53 Using a Novel Zinc-Metallochaperone Based Mechanism. Oncotarget, 5, 8879-8892.
https://doi.org/10.18632/oncotarget.2432
[32] Zaman, S., et al. (2019) Combinatorial Therapy of Zinc Metallochaperones with Mutant p53 Reactivation and Diminished Copper Binding. Molecular Cancer Therapeutics, 18, 1355-1365.
https://doi.org/10.1158/1535-7163.MCT-18-1080
[33] Salim, K.Y., et al. (2016) COTI-2, a Novel Small Molecule That Is Active against Multiple Human Cancer Cell Lines in Vitro and in Vivo. Oncotarget, 7, 41363-41379.
https://doi.org/10.18632/oncotarget.9133
[34] Lindemann, A., et al. (2019) COTI-2, a Novel Thiosemicarbazone Derivative, Exhibits Antitumor Activity in HNSCC through p53-Dependent and -Independent Mechanisms. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 25, 5650-5662.
https://doi.org/10.1158/1078-0432.CCR-19-0096
[35] Lücking, U., et al. (2020) Damage Incorporated: Discovery of the Potent, Highly Selective, Orally Available ATR Inhibitor BAY 1895344 with Favorable Pharmacokinetic Properties and Promising Efficacy in Monotherapy and in Combination Treatments in Preclinical Tumor Models. Journal of Medicinal Chemistry, 63, 7293-7325.
https://doi.org/10.1021/acs.jmedchem.0c00369
[36] Synnott, N.C., et al. (2020) COTI-2 Reactivates Mutant p53 and Inhibits Growth of Triple-Negative Breast Cancer Cells. Breast Cancer Research and Treatment, 179, 47-56.
https://doi.org/10.1007/s10549-019-05435-1