烟草磷素营养吸收利用的分子生理研究进展与展望
Research Advance and Prospect on Molecular-Physiological Mechanisms of Phosphorus Uptake and Utilization in Tobacco
DOI: 10.12677/BR.2021.106102, PDF, HTML, XML, 下载: 408  浏览: 765  科研立项经费支持
作者: 杨伟芹*, 李文瑞*, 向禹澄, 盛 崧, 刘来华#:中国农业大学资源与环境学院,北京;段淑辉#:湖南省烟草科学研究所,中国烟草中南农业试验站,湖南 长沙
关键词: 磷吸收与利用烟草磷效率转基因P Uptake and Assimilation Tobacco P Use Efficiency Transgenic
摘要: 磷素是植物生长发育必需的大量元素之一,在农业生产中其主要来源于不可再生的岩石磷酸盐。日益增长的食物需求加速了磷肥的消耗,亦使人们愈发重视磷高效品种的研发和培育。烟草是研究植物生物化学和分子生物学的常用模式作物,也是农业生产中种植面积很大的重要经济作物,其产量常依赖于大量乃至过量磷肥的施用。虽然植物响应磷饥饿的分子机制在水稻和拟南芥中已有相对较深入的研究,但是就烟草而言,在遗传学层面上发掘可应用于磷高效育种的关键基因(或分子元件)和在生物学机理上解析磷吸收利用及调控之间,仍存在着很大的差距。为此,本文总结了植物对磷吸收与利用的研究现状,以及近年来通过转基因技术提高烟草磷效率的主要进展,探讨了与磷吸收效率相关的研究成果在烟草中应用的可能性;最后,从分子生物学角度提出了提高烟草磷效率的可行性方法与技术策略。
Abstract: Phosphorus (P) is one of the essential macro-elements for plant growth and development. In agricultural production, P mainly comes from non-renewable rock phosphate. Because the in-creasing demand for food has been accelerating the consumption of phosphorus fertilizer, people have paid more attention to the development and cultivation of phosphorus efficient varieties. Tobacco is used as a common model crop for the study of plant biochemistry and molecular biology; it is also an important cash crop with a large planting area in agriculture, and its yield often depends on the application of large or even excessive phosphorus fertilizer. Although the molecular mechanism of plant response to phosphorus starvation in rice and Arabidopsis has been relatively deeper investigated, in tobacco plant there is still a big gap between identification of genetic key genes(s) or molecular component(s) applicable to breeding of a P-efficient variety and dissection of a biological mechanism(s) of phosphorus acquisition and its regulation. In this paper, the current status of phosphorus uptake and utilization by plants was summarized, and some research advances of improving tobacco phosphorus efficiency by transgenic technology in recent years were also outlined. The possibility of the application in tobacco of certain research achievements related to phosphorus uptake efficiency was discussed. Finally, from the perspective of molecular biology, some feasible methods and technical strategies for the improvement of tobacco phosphorus use efficiency were proposed.
文章引用:杨伟芹, 李文瑞, 向禹澄, 盛崧, 段淑辉, 刘来华. 烟草磷素营养吸收利用的分子生理研究进展与展望[J]. 植物学研究, 2021, 10(6): 824-832. https://doi.org/10.12677/BR.2021.106102

1. 引言

磷(Phosphorus, P)素是生物细胞中不可缺少的基本大量元素,其对植物的正常生长发育具有多种重要的生物学作用。土壤溶液中的磷主要以正磷酸盐(H2PO4, Pi)形式存在,浓度在10−6到10−4 M之间,在某些热带地区的土壤中可低至10−8 M。在正常环境中,植物根部细胞和木质部溶液(xylem sap)中磷含量远高于土壤中磷含量(100~1000倍),因此植物根系需要逆浓度梯度消耗能量来完成对磷素的吸收 [1]。目前,世界上有超过70%可耕种土地pH值呈非中性,故而导致土壤中的磷素大部分以难溶性磷状态存在,这也对植物吸收利用土壤中的磷造成了严重障碍。因此,农业生产中普遍通过施用过量的磷肥来满足作物生长对磷素的需求。根据美国地质调查局最新发布的《世界矿产品摘要》,2020年全球约有4700万吨P2O5用于农业肥料和工业生产,其中我国约占19.1%,消耗量巨大,然而该“摘要”亦指出全世界岩石磷酸盐储量约为3000亿吨。目前,磷酸盐虽未有迫在眉睫的短缺危机,但相关统计数据,作物磷肥的当季利用率仅为10%~15%;过量磷肥被土壤固定形成“无效磷”,同时也造成严重的生态问题,如富磷土壤流失至水体中导致的富营养化,危害环境健康以及农业生产 [2]。

烟草是我国重要的经济作物,今年,全国种植烤烟1343.61万亩。以湖南为例,湖南肥料用量比较大,每亩五氧化二磷用量达到6~8 kg (来自技术方案),而北方烟区和西南烟区每亩施用量相对较小。

烟草缺磷则植物生长异常,如叶片长度与宽度变小、数量减少,株高矮化,生物量减少,延迟生长发育 [3] [4]。同时,缺磷亦严重影响烟叶品质 [5]。类似其他作物,烟草农业生产中施用的过量磷肥不仅对生产者造成沉重经济负担,还持续地对环境造成污染,甚至导致长远破坏。目前,已有的研究工作主要侧重于改进施肥技术,如在土壤缺乏可利用磷时,增释速效磷肥,可有效提高烤烟产量,改善烟叶色泽、香气 [6] ;另外,解磷菌肥的应用,可溶解难溶性磷酸盐,进而增加土壤中植物可利用的磷浓度 [7]。优化栽培方式,魏嵬等 [8] 应用双行凹型垄及地覆膜结合技术表明,能够明显提高烟草的磷利用效率。在品种选育方面,近年来,人们虽成功筛选出K326、云烟105、YZ94-1、K730等耐低磷的品种,但其磷高效的具体分子遗传机制,则未有较详细的研究/解析报道 [9] [10]。近几十年来分子生物学技术发展迅速,特别是以CRISPR为代表的高效基因编辑技术的日渐成熟,使得通过高效修改作物基因组以提高磷的吸收利用效率成为可能。本文以现有的关于磷吸收利用的研究报道为基础,在分子生理机制层面上,综述、探讨了提高烟草磷效率的重要因素及可能性方法/途径。

2. 磷素吸收利用机制系统的总体研究现状

植物对磷素的利用率可分为磷吸收效率(P acquisition efficiency, PAE)和磷利用效率(P utilization efficiency, PUE)。磷吸收效率(PAE)代表植物从外界低磷环境中富集磷并吸收或在营养液中直接吸收磷的能力 [11],磷利用效率(PUE)则表示单位吸收的磷对应于植物的生物量的变化 [12] [13]。目前,研究表明,磷素利用效率主要受到PAE影响,而PUE则涉及整体磷代谢的调控 [14]。在分子水平上提高植物磷的吸收效率和增强植物抗低磷胁迫,需要系统的认识植物吸收利用磷的生理过程/机制。磷被植物的吸收利用途径如图1所示:首先,土壤中仅存小部分易被植物吸收利用的磷(亦称速效磷),而部分不能直接被利用的磷则可被源于溶酶体中分泌/释放出的酸性磷酸酶从被吸附的有机分子上水解而形成可溶性磷酸盐(此类磷也称之为有效磷),继而以磷酸盐的形式通过植物根系的磷酸盐转运蛋白家族(Phosphate transporter, PHT in Arabidopsis, PHT or PT in rice)或者SPX-EXS (ERD1/XRP1/SYG1)转运蛋白亚家族(PHO) [15],利用ATP水解产生的能量转运进入植物体内。就整体植株而言,植物对体内外磷营养状况的感应/知取决于其对磷营养的需求,从而调控一系列与磷饥饿相关的基因的表达水平,尽管其中的许多基因的功能仍未知 [16]。在拟南芥和水稻中,PHR (Phosphate starvation response,磷素盐饥饿响应)家族介导了缺磷信号途径 [17] [18]。PHR家族包含了多个MYB转录因子,目前已发现PHRs可与多个磷饥饿诱导基因的启动子的5’端非编码区的高保守顺式作用原件(cis-element) P1BS结合 [19] [20] [21]。与此同时,PHR2还参与了氮和磷调控网络的互作,植物在响应外源硝酸盐时,通过NRT1.1B-NBIP1-SPX4-PHR2/NLP3信号传导途径调控磷的响应基因 [22]。近年来,InsP8 (焦磷酸肌醇)被鉴定为信号分子,通过InsP8-SPX-PHR途径调控植物体内的磷水平;Dong等 [23] 报道,拟南芥体内高水平的InsP8积累,在会正向促进细胞内的磷素储存。在组织/器官层面上,有两条已被证实的信号途径介导了拟南芥根部磷饥饿信号的传导,即STOP1-ALMT1 [24] 或LPR1/2-PDR2 [25] (图1)。该信号下游会将影响植物体内的氧化还原平衡(redox balance),进而改变植物的生长发育 [16]。根部吸收的磷将在PHO2的介导下,通过PHT1途径转运至地上部,以供植物生长发育之利用 [26] [27]。

在供磷正常的条件下,约70%~95%的磷酸根离子将被储存于液泡中 [28]。在拟南芥和水稻中,AtPHT5OsSPX-MFS1分别编码Pi的内向转运蛋白(importer);超表达PHT5导致液泡中积累过量Pi而无法活化,致使体内可再活化利用(remobilization)的Pi的短缺,严重影响植物生长 [29]。细胞中的磷素除了可暂存于液泡之外,其也以多种代谢化合物的形式存在于不同的细胞器中;胞中的含磷化合物按含磷总量的大小可依次为:RNA > Phospholipids > various P-esters > DNA > metabolically active Pi [30]。植物除了能从土壤中直接吸收利用磷素,在磷饥饿情况下,亦能再活化并转运(remobilization)衰老器官如老叶中的磷素至新生组织/器官中。据报道,通过现代育种手段,豆科植物可将50%以上的库叶(sink leaf)中的磷进行再活化利用;Himelblau和Amasino [31] 报道拟南芥的老叶在衰老过程中,则可再活化约78%的总磷,而atpap26突变体仅能活化15%的磷 [32]。因此,调整体内磷的再活化能力对于提高磷的利用效率应具有重要的生物学和农学意义。

Figure 1. Possible mechanisms of uptake and assimilation of soil phosphorus by the crop

图1. 作物吸收利用土壤磷的可能性机制

3. 提高烟草磷吸收利用效率候选基因的研究现状

普通烟草(Nicotiana tabacum)的基因组为异源四倍体(2n = TTSS),两套同源染色体分别来源于绒毛状烟草(Nicotiana tomentosiformis, TT)和林烟草(Nicotiana sylvestris, SS),一共约4.5 Gb。目前,烟草全基因组序列图谱的破译研究已基本完成,包括K326、TN90等农业生产常用品种 [33] [34]。但是,在烟草中人们迄今仅对编码水通道蛋白基因(aquaporins)、扩张蛋白基因(expansin)、环核苷酸通道门控离子通道基因(cyclic nucleotide-gate channel)等进行全基因组的系统性鉴定(genome-wide identification) [35] [36] [37] [38],而针对烟草吸收利用磷的相关基因及其功能/效应的研究则相对较少(如表1中,已报道的仅一例)。

Table 1. Applications of genetic technology improving/altering phosphate utilization/assimilation efficiency and plant growth in tobacco

表1. 基因工程技术改善/改变提高烟草磷效率及生长的实例总结表

植物在吸收利用磷的生物学过程中,首先涉及磷酸盐转运蛋白基因(Pht),现有研究表明Pht基因分为三个家族,Pht1蛋白定位在细胞质膜上,Pht2和Pht3蛋白则分别靶位于质体和线粒体的内膜上 [39] [40] [41]。目前,人们从烟草中已克隆了5个Pht (或PT,phosphate transporter)基因,NtPT1 (Ab020061),NtPT2 (Ab042950),NtPT3 (AB042951),NtPT4 (AB042956)和NtPT5 (EF091675),均属于Pht1家族,且并未发现有Pht2和Pht3家族的基因在烟草根部表达 [42] [43]。通过序列比对发现NtPTs与已报道的高亲和磷酸盐转运蛋白的相似度极高,其中NtPT1和NtPT2受磷胁迫诱导表达,而NtPT3-5与菌根诱导有关 [44]。初步的研究表明,超表达磷酸盐转运蛋白基因PTs能有效增加烟草对低磷胁迫的耐受能力(表1)。

超氧化物歧化酶(SOD, superoxidase dismutase)和过氧化物酶(POD, peroxidase)能有效清除植物体内的多种活性氧以增强植物在逆境胁迫下的耐受能力。如表1中所示,超表达马尾松PmPAP (purple acid phosphatase,酸性磷酸酶)基因能提高低磷胁迫下POD和SOD活性,从而增强植物的抗低磷胁迫 [45]。烟草中目前虽已鉴定发现四个PAP家族同源基因(NtPAP4NtPAP12NtPAP19NtPAP21),但在提高磷利用效率相关方面的研究还未见有报道。此外,WRKY3转录因子的超表达也能显著增强转基因植株体内的POD和SOD活性以及植物对缺磷胁迫的抗性 [46]。转录表达检测表明,WRKY3的表达响应缺磷非常迅速,可能属于植物早期响应缺磷信号的转录因子 [46]。因此,作者从分子生理栽培角度推测,如果在植物未表现出缺磷症状之前即能通分子检测尽早发现缺磷信号,并采取相应合理的栽培管理措施如适时追肥等,则可能有效地降低因缺磷对植物生长造成的胁迫影响,以提高磷的利用效率。

异源表达小麦TaVP (V-H+-PPase, vacuolar H+-pyrophosphatase)基因,不仅能增强烟草耐低磷的能力,而且亦能提高植株对低氮、干旱胁迫和盐胁迫的抗/耐性能。进一步的研究表明,TaVP在烟株中的过表达并没有诱导磷和氮的转运蛋白基因的转录,根系对养分的吸收动力学特征亦未发生改变,但是TaVP的过表达促进了根系的生长、扩大了吸收面积;同时,发现与生长素(auxin)相关的基因在转基因植株中则有明显的上调表达,由此推测此促进根系生长的作用应与生长素相关基因的表达变化有关。

Figure 2. Phylogenetic tree made by using neighbor-joining algorithm of crop phosphate transporters family genes

图2. 基于Neighbor-joining算法的作物磷酸盐转运蛋白家族基因的系统发生树

4. 展望

迄今,有关植物吸收利用磷的相关基因及其功能研究已取得了一定进展,百余个功能各异的候选基因已被克隆 [2]。虽然,鉴于现有候选基因的种类繁杂而系统性的研究应用进展相对缓慢,但是,整体仍可将这些已知/克隆的候选基因按照功能类别进行分类 [2]:1) 磷酸盐转运蛋白基因(Phosphate transporter);2) 磷吸收利用相关转录因子(Transcription factors);3) 与磷酸酶及植酸酶相关的基因(Phosphatase- and phytase-related genes)。虽然上述三类候选基因已大量完成克隆并鉴定功能,但应用层面的报道仍然有限;而且,这些现已克隆的磷酸盐转运蛋白基因的功能,绝大多数是在磷代谢调控相对复杂的酵母异源系统中进行的鉴定,其在植物(如烟草)中的真实功能表达可能存在一定的差异。Chen等 [43] 通过对已克隆的烟草磷酸盐转运蛋白基因与多物种(番茄,土豆,茄子,辣椒,水稻,玉米,小麦和大麦等)的PT基因序列进行系统发生树(phylogenetic tree)分析发现,烟草的PT家族与同源基因有较明显的遗传差异。本课题组基于Chen等 [43] 研究中包含的36个PT基因以及近年来新鉴定的23个PT基因,通过对同源性系统发生树的研究,发现PT1、PT2以及Pht2.1亚家族内基因相对保守,在进化树中分布聚合,而PT3-5亚家族基因分布相对分散(图2)。烟草NtPht2.1基因与其它物种的亲缘关系接近,但PT基因则有较大的遗传学亲缘差异。整体而言,烟草与同为茄科植物的辣椒(Capsicum frutescens)、茄子(Solanum melongena)亲缘关系最接近,PT3、PT4基因在系统发生树中聚合在一起,但PT1和PT2仍可能存在的差异。综上,虽然表1中列举了多个外源基因引入烟草以研究磷营养效率的试验,但利用烟草PT基因改善作物磷营养效率的报道仅一例 [47]。因此,针对如何提高烟草的磷营养效率的学术问题,其吸收/转运以及利用磷酸盐的分子生理机制仍需深入广泛的解析。

总之,随着人们对植物吸收利用磷素的生物学机制的深入认识,在分子生物学层面上,未来关于提高/改善烟草作物磷效率的应用研究可考虑于以下几方面工作:1) 通过在根部特异性超表达磷酸盐转运蛋白如OsPT8、NtPT1等,以提高根系对磷酸根离子的亲和力与吸收强度,增加对磷素的吸收;2) 超表达酸性磷酸酶PAP基因以及与AM真菌相关的基因,以活化/降解土壤中的有机磷,提高土壤中的可吸收磷的浓度范围,增强植物对土壤磷的获取;3) 通过改变相关转录因子的表达水平来调节烟草体内的缺磷响应机制,强化体内磷的再活化与再转运能力,以调控/提高植物的磷效率;4) 误表达(miss-expression)与根系(包括根毛)生长发育相关的基因或遗传因子,促进根系生长,以扩大植物获取土壤磷(及其他养分)的根表面积、增强其吸收能力;5) 探索并利用缺磷响应基因(启动子),创建能用于在大田标征烟草磷素丰缺的指示植物。从分子生理栽培的角度,期望以此能较精准的指导适时、合理追施磷肥,以至于在植物受缺磷胁迫的表型出现之前,即能满足生长发育对磷营养的需要。

基金项目

中国烟草总公司湖南省公司科技项目计划(19-22Aa02)。

参考文献

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Mengel, K. and Kirkby, E.A. (1987) Principles of Plant Nutrition. 4th Edition, International Potash Institute, Bern.
[2] 李喜焕, 常文锁, 张彩英. 提高植物磷营养效率(候选)基因研究进展[J]. 植物遗传资源学报, 2012, 13(1): 83-97.
[3] 王艳丽, 王京, 刘国顺, 等. 磷胁迫对烤烟高亲和磷转运蛋白基因表达及磷素吸收利用的影响[J]. 西北植物学报, 2015, 35(7): 1403-1408.
[4] 周冀衡, 朱小平, 王彦亭, 等. 烟草生理与生物化学[M]. 合肥: 中国科学技术大学出版社, 1996.
[5] 闫克玉, 赵铭钦. 烟草原料学[M]. 北京: 科学出版社, 2008.
[6] 王鹏, 李丽杰, 李江力, 等. 烤烟磷素营养状况与施用技术研究[J]. 土壤肥料, 1999(4): 30-32.
[7] 李晓举, 吴风光, 王豹祥, 等. 一株烤烟根际解磷细菌的鉴定及其在烤烟生产中的应用[J]. 河南农业科学, 2011, 40(6): 66-70.
[8] 魏嵬, 汪健, 毕庆文, 等. 双行凹型垄及地膜覆盖对烟叶和土壤中磷含量的影响[J]. 中国烟草科学, 2008, 29(3): 43-47.
[9] 龚丝雨. 烟草苗期耐低磷基因型筛选及生理机制研究[D]: [硕士学位论文]. 南昌: 江西农业大学, 2019.
[10] 孙秀营. 烟草磷效率差异品种的筛选及其转录组分析研究[D]: [硕士学位论文]. 北京: 中国农业大学, 2020.
[11] Narang, R.A., Bruene, A. and Altmann, T. (2000) Analysis of Phosphate Acquisition Efficiency in Different Arabidopsis Accessions. Plant Physiology, 124, 1786-1799.
https://doi.org/10.1104/pp.124.4.1786
[12] Ozturk, L., Eker, S., Torun, B., et al. (2005) Variation in Phosphorus Efficiency among 73 Bread and Durum Wheat Genotypes Grown in a Phosphorus-Deficient Calcareous Soil. Plant and Soil, 269, 69-80.
https://doi.org/10.1007/s11104-004-0469-z
[13] Wang, X.R., Shen, J.B. and Liao, H. (2010) Acquisition or Utilization, Which Is More Critical for Enhancing Phosphorus Efficiency in Modern Crops? Plant Science, 179, 302-306.
https://doi.org/10.1016/j.plantsci.2010.06.007
[14] Huang, C.Y., Shirley, N., Genc, Y., et al. (2011) Phosphate Utilization Efficiency Correlates with Expression of Low-Affinity Phosphate Transporters and Noncoding RNA, IPS1, in Barley. Plant Physiology, 156, 1217-1229.
https://doi.org/10.1104/pp.111.178459
[15] Gu, M.A., Chen, A.Q., Sun, S.B., et al. (2016) Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing? Molecular Plant (Cell Press), 9, 396-416.
https://doi.org/10.1016/j.molp.2015.12.012
[16] Goncalves, B.X., Lima-Melo, Y., Maraschin, F.D., et al. (2020) Phosphate Starvation Responses in Crop Roots: From Well-Known Players to Novel Candidates. Environmental & Experimental Botany, 178, Article ID: 104162.
https://doi.org/10.1016/j.envexpbot.2020.104162
[17] Sega, P. and Pacak, A. (2019) Plant PHR Transcription Factors: Put on a Map. Genes, 10, Article No. 1018.
https://doi.org/10.3390/genes10121018
[18] Ham, B. K., Chen, J.Y., Yan, Y., et al. (2018) Insights into Plant Phosphate Sensing and Signaling. Current Opinion in Biotechnology, 49, 1-9.
https://doi.org/10.1016/j.copbio.2017.07.005
[19] Guo, M., Ruan, W., Li, C., et al. (2015) Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. Plant Physiology, 168, 1762-U1134.
https://doi.org/10.1104/pp.15.00736
[20] Rubio, V., Linhares, F., Solano, R., et al. (2001) A Conserved MYB Transcription Factor Involved in Phosphate Starvation Signaling Both in Vascular Plants and in Unicellular Algae. Genes & Development, 15, 2122-2133.
https://doi.org/10.1101/gad.204401
[21] Zhong, Y.J., Wang, Y.G., Guo, J.F., et al. (2018) Rice SPX6 Negatively Regulates the Phosphate Starvation Response through Suppression of the Transcription Factor PHR2. New Phytologist, 219, 135-148.
https://doi.org/10.1111/nph.15155
[22] Hu, B., Jiang, Z.M., Wang, W., et al. (2019) Nitrate-NRT1.1B-SPX4 Cascade Integrates Nitrogen and Phosphorus Signaling Networks in Plants. Nature Plants, 5, Article No. 637.
https://doi.org/10.1038/s41477-019-0420-1
[23] Dong, J.S., Ma, G.J., Sui, L.Q., et al. (2019) Inositol Pyrophosphate InsP8 Acts as an Intracellular Phosphate Signal in Arabidopsis. Molecular Plant (Cell Press), 12, 1463-1473.
https://doi.org/10.1016/j.molp.2019.08.002
[24] Balzergue, C., Dartevelle, T., Godon, C., et al. (2017) Low Phosphate Activates STOP1-ALMT1 to Rapidly Inhibit Root Cell Elongation. Nature Communications, 8, Article No. 15300.
https://doi.org/10.1038/ncomms15300
[25] Mora-Macías, J., Ojeda-Rivera, J.O., Gutiérrez-Alanís, D., et al. (2017) Malate-Dependent Fe Accumulation Is a Critical Checkpoint in the Root Developmental Response to Low Phosphate. Proceedings of the National Academy of Sciences of the United States of America, 114, E3563-E3572.
https://doi.org/10.1073/pnas.1701952114
[26] Huang, T.K., Han, C.L., Lin, S.I., et al. (2013) Identification of Downstream Components of Ubiquitin-Conjugating Enzyme PHOSPHATE2 by Quantitative Membrane Proteomics in Arabidopsis Roots. Plant Cell, 25, 4044-4060.
https://doi.org/10.1105/tpc.113.115998
[27] Park, B.S., Seo, J.S. and Chua, N.H. (2014) Nitrogen Limitation Adaption Recruits PHOSPHATE2 to Target the Phosphate Transporter PT2 for Degradation during the Regulation of Arabidopsis Phosphate Homeostasis. Plant Cell, 26, 454-464.
https://doi.org/10.1105/tpc.113.120311
[28] Bieleski, R.L. (1973) Phosphate Pool, Phosphate Transport, Phosphate Availability. Annual Review of Plant Physiology and Plant Molecular Biology, 24, 225-252.
https://doi.org/10.1146/annurev.pp.24.060173.001301
[29] Liu, T.Y, Huang, T.K., Yang, S.Y., et al. (2016) Identification of Plant Vacuolar Transporters Mediating Phosphate Storage. Nature Communications, 7, 105-108.
https://doi.org/10.1038/ncomms11095
[30] Veneklaas, E.J., Lambers, H., Bragg, J., et al. (2012) Opportunities for Improving Phosphorus-Use Efficiency in Crop Plants. New Phytologist, 195, 306-320.
https://doi.org/10.1111/j.1469-8137.2012.04190.x
[31] Himelblau, E. and Amasino, R.M. (2001) Nutrients Remobilized from Leaves of Arabidopsis thaliana during Leaf Senescence. Journal of Plant Physiology, 158, 1317-1323.
https://doi.org/10.1078/0176-1617-00608
[32] Robinson, W.D., Carson, I., Ying, S., et al. (2012) Eliminating the Purple Acid Phosphatase AtPAP26 in Arabidopsis thaliana Delays Leaf Senescence and Impairs Phosphorus Remobilization. New Phytologist, 196, 1024-1029.
https://doi.org/10.1111/nph.12006
[33] Sierro, N., Battey, J., Ouadi, S., et al. (2014) The Tobacco Genome Sequence and Its Comparison with Those of Tomato and Potato. Nature Communications, 5, 107-127.
https://doi.org/10.1038/ncomms4833
[34] Edwards, K.D., Fernandez-Pozo, N., Drake-Stowe, K., et al. (2017) A Reference Genome for Nicotiana tabacum Enables Map-Based Cloning of Homeologous Loci Implicated in Nitrogen Utilization Efficiency. BMC Genomics, 18, Article No. 448.
https://doi.org/10.1186/s12864-017-3791-6
[35] Rosa, A.D., Watson-Lazowski, A., Ev Ans, J.R., et al. (2020) Genome-Wide Identification and Characterisation of Aquaporins in Nicotiana tabacum and Their Relationships with Other Solanaceae Species. BMC Plant Biology, 20, Article No. 266.
https://doi.org/10.1186/s12870-020-02412-5
[36] Ahmed, J., Mercx, S., Boutry, M., et al. (2020) Evolutionary and Predictive Functional Insights into the Aquaporin Gene Family in the Allotetraploid Plant Nicotiana tabacum. International Journal of Molecular Sciences, 21, Article No. 4743.
https://doi.org/10.3390/ijms21134743
[37] Ding, A., Marowa, P. and Kong, Y.Z. (2016) Genome-Wide Identification of the Expansin Gene Family in Tobacco (Nicotiana tabacum). Molecular Genetics & Genomics. Genomics, 291, 1891-1907.
https://doi.org/10.1007/s00438-016-1226-8
[38] Nawaz, Z., Kaleem, U.K., Raqeeb, U., et al. (2019) Ge-nome-Wide Identification, Evolution and Expression Analysis of Cyclic Nucleotide-Gated Channels in Tobacco (Nicotiana tabacum L.). Genomics, 111, 142-158.
https://doi.org/10.1016/j.ygeno.2018.01.010
[39] Bucher, M. (2007) Functional Biology of Plant Phosphate Uptake at Root and Mycorrhiza Interfaces. New Phytologist, 173, 11-26.
https://doi.org/10.1111/j.1469-8137.2006.01935.x
[40] Karandashov, V. and Bucher, M. (2005) Symbiotic Phosphate Transport in Arbuscular Mycorrhizas. Trends in Plant Science, 10, 22-29.
https://doi.org/10.1016/j.tplants.2004.12.003
[41] Mudge, S.R., Rae, A.L., Diatloff, E., et al. (2002) Expression Analysis Suggests Novel Roles for Members of the Pht1 Family of Phosphate Transporters in Arabidopsis. The Plant Journal, 31, 341-353.
https://doi.org/10.1046/j.1365-313X.2002.01356.x
[42] Kai, M., Takazumi, K., Adachi, H., et al. (2002) Cloning and Characterization of Four Phosphate Transporter cDNAs in Tobacco. Plant Science, 163, 837-846.
https://doi.org/10.1016/S0168-9452(02)00233-9
[43] Chen, A.Q., Hu, J., Sun, S.B., et al. (2007) Conservation and Divergence of Both Phosphate- and Mycorrhiza-Regulated Physiological Responses and Expression Patterns of Phosphate Transporters in Solanaceous Species. New Phytologist, 173, 817-831.
https://doi.org/10.1111/j.1469-8137.2006.01962.x
[44] Tan, Z.J., Hu, Y.L. and Lin, Z.P. (2012) Expression of NtPT5 Is Correlated with the Degree of Colonization in Tobacco Roots Inoculated with Glomus etunicatum. Plant Molecular Biology Reporter, 30, 885-893.
https://doi.org/10.1007/s11105-011-0402-6
[45] 吴艳, 刘小翠, 彭磊, 等. 马尾松PAP1基因在烟草上的遗传转化及功能分析[J]. 农业生物技术学报, 2017, 25(6): 1023-1032.
[46] 刘小兰. 转WRKY3基因烟草苗期对磷胁迫的生理响应及其差异蛋白研究[D]: [硕士学位论文]. 福州: 福建农林大学, 2013.
[47] Park, M.R., Baek, S.H., Reyes, B., et al. (2007) Overexpression of a High-Affinity Phosphate Transporter Gene from Tobacco (NtPT1) Enhances Phosphate Uptake and Accumulation in Transgenic Rice Plants. Plant Soil, 292, 259-269.
https://doi.org/10.1007/s11104-007-9222-8
[48] Mengel, K. and Kirkby, E.A. (1987) Principles of Plant Nutrition. 4th Edition, International Potash Institute, Bern.
[49] 李喜焕, 常文锁, 张彩英. 提高植物磷营养效率(候选)基因研究进展[J]. 植物遗传资源学报, 2012, 13(1): 83-97.
[50] 王艳丽, 王京, 刘国顺, 等. 磷胁迫对烤烟高亲和磷转运蛋白基因表达及磷素吸收利用的影响[J]. 西北植物学报, 2015, 35(7): 1403-1408.
[51] 周冀衡, 朱小平, 王彦亭, 等. 烟草生理与生物化学[M]. 合肥: 中国科学技术大学出版社, 1996.
[52] 闫克玉, 赵铭钦. 烟草原料学[M]. 北京: 科学出版社, 2008.
[53] 王鹏, 李丽杰, 李江力, 等. 烤烟磷素营养状况与施用技术研究[J]. 土壤肥料, 1999(4): 30-32.
[54] 李晓举, 吴风光, 王豹祥, 等. 一株烤烟根际解磷细菌的鉴定及其在烤烟生产中的应用[J]. 河南农业科学, 2011, 40(6): 66-70.
[55] 魏嵬, 汪健, 毕庆文, 等. 双行凹型垄及地膜覆盖对烟叶和土壤中磷含量的影响[J]. 中国烟草科学, 2008, 29(3): 43-47.
[56] 龚丝雨. 烟草苗期耐低磷基因型筛选及生理机制研究[D]: [硕士学位论文]. 南昌: 江西农业大学, 2019.
[57] 孙秀营. 烟草磷效率差异品种的筛选及其转录组分析研究[D]: [硕士学位论文]. 北京: 中国农业大学, 2020.
[58] Narang, R.A., Bruene, A. and Altmann, T. (2000) Analysis of Phosphate Acquisition Efficiency in Different Arabidopsis Accessions. Plant Physiology, 124, 1786-1799.
https://doi.org/10.1104/pp.124.4.1786
[59] Ozturk, L., Eker, S., Torun, B., et al. (2005) Variation in Phosphorus Efficiency among 73 Bread and Durum Wheat Genotypes Grown in a Phosphorus-Deficient Calcareous Soil. Plant and Soil, 269, 69-80.
https://doi.org/10.1007/s11104-004-0469-z
[60] Wang, X.R., Shen, J.B. and Liao, H. (2010) Acquisition or Utilization, Which Is More Critical for Enhancing Phosphorus Efficiency in Modern Crops? Plant Science, 179, 302-306.
https://doi.org/10.1016/j.plantsci.2010.06.007
[61] Huang, C.Y., Shirley, N., Genc, Y., et al. (2011) Phosphate Utilization Efficiency Correlates with Expression of Low-Affinity Phosphate Transporters and Noncoding RNA, IPS1, in Barley. Plant Physiology, 156, 1217-1229.
https://doi.org/10.1104/pp.111.178459
[62] Gu, M.A., Chen, A.Q., Sun, S.B., et al. (2016) Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing? Molecular Plant (Cell Press), 9, 396-416.
https://doi.org/10.1016/j.molp.2015.12.012
[63] Goncalves, B.X., Lima-Melo, Y., Maraschin, F.D., et al. (2020) Phosphate Starvation Responses in Crop Roots: From Well-Known Players to Novel Candidates. Environmental & Experimental Botany, 178, Article ID: 104162.
https://doi.org/10.1016/j.envexpbot.2020.104162
[64] Sega, P. and Pacak, A. (2019) Plant PHR Transcription Factors: Put on a Map. Genes, 10, Article No. 1018.
https://doi.org/10.3390/genes10121018
[65] Ham, B. K., Chen, J.Y., Yan, Y., et al. (2018) Insights into Plant Phosphate Sensing and Signaling. Current Opinion in Biotechnology, 49, 1-9.
https://doi.org/10.1016/j.copbio.2017.07.005
[66] Guo, M., Ruan, W., Li, C., et al. (2015) Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. Plant Physiology, 168, 1762-U1134.
https://doi.org/10.1104/pp.15.00736
[67] Rubio, V., Linhares, F., Solano, R., et al. (2001) A Conserved MYB Transcription Factor Involved in Phosphate Starvation Signaling Both in Vascular Plants and in Unicellular Algae. Genes & Development, 15, 2122-2133.
https://doi.org/10.1101/gad.204401
[68] Zhong, Y.J., Wang, Y.G., Guo, J.F., et al. (2018) Rice SPX6 Negatively Regulates the Phosphate Starvation Response through Suppression of the Transcription Factor PHR2. New Phytologist, 219, 135-148.
https://doi.org/10.1111/nph.15155
[69] Hu, B., Jiang, Z.M., Wang, W., et al. (2019) Nitrate-NRT1.1B-SPX4 Cascade Integrates Nitrogen and Phosphorus Signaling Networks in Plants. Nature Plants, 5, Article No. 637.
https://doi.org/10.1038/s41477-019-0420-1
[70] Dong, J.S., Ma, G.J., Sui, L.Q., et al. (2019) Inositol Pyrophosphate InsP8 Acts as an Intracellular Phosphate Signal in Arabidopsis. Molecular Plant (Cell Press), 12, 1463-1473.
https://doi.org/10.1016/j.molp.2019.08.002
[71] Balzergue, C., Dartevelle, T., Godon, C., et al. (2017) Low Phosphate Activates STOP1-ALMT1 to Rapidly Inhibit Root Cell Elongation. Nature Communications, 8, Article No. 15300.
https://doi.org/10.1038/ncomms15300
[72] Mora-Macías, J., Ojeda-Rivera, J.O., Gutiérrez-Alanís, D., et al. (2017) Malate-Dependent Fe Accumulation Is a Critical Checkpoint in the Root Developmental Response to Low Phosphate. Proceedings of the National Academy of Sciences of the United States of America, 114, E3563-E3572.
https://doi.org/10.1073/pnas.1701952114
[73] Huang, T.K., Han, C.L., Lin, S.I., et al. (2013) Identification of Downstream Components of Ubiquitin-Conjugating Enzyme PHOSPHATE2 by Quantitative Membrane Proteomics in Arabidopsis Roots. Plant Cell, 25, 4044-4060.
https://doi.org/10.1105/tpc.113.115998
[74] Park, B.S., Seo, J.S. and Chua, N.H. (2014) Nitrogen Limitation Adaption Recruits PHOSPHATE2 to Target the Phosphate Transporter PT2 for Degradation during the Regulation of Arabidopsis Phosphate Homeostasis. Plant Cell, 26, 454-464.
https://doi.org/10.1105/tpc.113.120311
[75] Bieleski, R.L. (1973) Phosphate Pool, Phosphate Transport, Phosphate Availability. Annual Review of Plant Physiology and Plant Molecular Biology, 24, 225-252.
https://doi.org/10.1146/annurev.pp.24.060173.001301
[76] Liu, T.Y, Huang, T.K., Yang, S.Y., et al. (2016) Identification of Plant Vacuolar Transporters Mediating Phosphate Storage. Nature Communications, 7, 105-108.
https://doi.org/10.1038/ncomms11095
[77] Veneklaas, E.J., Lambers, H., Bragg, J., et al. (2012) Opportunities for Improving Phosphorus-Use Efficiency in Crop Plants. New Phytologist, 195, 306-320.
https://doi.org/10.1111/j.1469-8137.2012.04190.x
[78] Himelblau, E. and Amasino, R.M. (2001) Nutrients Remobilized from Leaves of Arabidopsis thaliana during Leaf Senescence. Journal of Plant Physiology, 158, 1317-1323.
https://doi.org/10.1078/0176-1617-00608
[79] Robinson, W.D., Carson, I., Ying, S., et al. (2012) Eliminating the Purple Acid Phosphatase AtPAP26 in Arabidopsis thaliana Delays Leaf Senescence and Impairs Phosphorus Remobilization. New Phytologist, 196, 1024-1029.
https://doi.org/10.1111/nph.12006
[80] Sierro, N., Battey, J., Ouadi, S., et al. (2014) The Tobacco Genome Sequence and Its Comparison with Those of Tomato and Potato. Nature Communications, 5, 107-127.
https://doi.org/10.1038/ncomms4833
[81] Edwards, K.D., Fernandez-Pozo, N., Drake-Stowe, K., et al. (2017) A Reference Genome for Nicotiana tabacum Enables Map-Based Cloning of Homeologous Loci Implicated in Nitrogen Utilization Efficiency. BMC Genomics, 18, Article No. 448.
https://doi.org/10.1186/s12864-017-3791-6
[82] Rosa, A.D., Watson-Lazowski, A., Ev Ans, J.R., et al. (2020) Genome-Wide Identification and Characterisation of Aquaporins in Nicotiana tabacum and Their Relationships with Other Solanaceae Species. BMC Plant Biology, 20, Article No. 266.
https://doi.org/10.1186/s12870-020-02412-5
[83] Ahmed, J., Mercx, S., Boutry, M., et al. (2020) Evolutionary and Predictive Functional Insights into the Aquaporin Gene Family in the Allotetraploid Plant Nicotiana tabacum. International Journal of Molecular Sciences, 21, Article No. 4743.
https://doi.org/10.3390/ijms21134743
[84] Ding, A., Marowa, P. and Kong, Y.Z. (2016) Genome-Wide Identification of the Expansin Gene Family in Tobacco (Nicotiana tabacum). Molecular Genetics & Genomics. Genomics, 291, 1891-1907.
https://doi.org/10.1007/s00438-016-1226-8
[85] Nawaz, Z., Kaleem, U.K., Raqeeb, U., et al. (2019) Ge-nome-Wide Identification, Evolution and Expression Analysis of Cyclic Nucleotide-Gated Channels in Tobacco (Nicotiana tabacum L.). Genomics, 111, 142-158.
https://doi.org/10.1016/j.ygeno.2018.01.010
[86] Bucher, M. (2007) Functional Biology of Plant Phosphate Uptake at Root and Mycorrhiza Interfaces. New Phytologist, 173, 11-26.
https://doi.org/10.1111/j.1469-8137.2006.01935.x
[87] Karandashov, V. and Bucher, M. (2005) Symbiotic Phosphate Transport in Arbuscular Mycorrhizas. Trends in Plant Science, 10, 22-29.
https://doi.org/10.1016/j.tplants.2004.12.003
[88] Mudge, S.R., Rae, A.L., Diatloff, E., et al. (2002) Expression Analysis Suggests Novel Roles for Members of the Pht1 Family of Phosphate Transporters in Arabidopsis. The Plant Journal, 31, 341-353.
https://doi.org/10.1046/j.1365-313X.2002.01356.x
[89] Kai, M., Takazumi, K., Adachi, H., et al. (2002) Cloning and Characterization of Four Phosphate Transporter cDNAs in Tobacco. Plant Science, 163, 837-846.
https://doi.org/10.1016/S0168-9452(02)00233-9
[90] Chen, A.Q., Hu, J., Sun, S.B., et al. (2007) Conservation and Divergence of Both Phosphate- and Mycorrhiza-Regulated Physiological Responses and Expression Patterns of Phosphate Transporters in Solanaceous Species. New Phytologist, 173, 817-831.
https://doi.org/10.1111/j.1469-8137.2006.01962.x
[91] Tan, Z.J., Hu, Y.L. and Lin, Z.P. (2012) Expression of NtPT5 Is Correlated with the Degree of Colonization in Tobacco Roots Inoculated with Glomus etunicatum. Plant Molecular Biology Reporter, 30, 885-893.
https://doi.org/10.1007/s11105-011-0402-6
[92] 吴艳, 刘小翠, 彭磊, 等. 马尾松PAP1基因在烟草上的遗传转化及功能分析[J]. 农业生物技术学报, 2017, 25(6): 1023-1032.
[93] 刘小兰. 转WRKY3基因烟草苗期对磷胁迫的生理响应及其差异蛋白研究[D]: [硕士学位论文]. 福州: 福建农林大学, 2013.
[94] Park, M.R., Baek, S.H., Reyes, B., et al. (2007) Overexpression of a High-Affinity Phosphate Transporter Gene from Tobacco (NtPT1) Enhances Phosphate Uptake and Accumulation in Transgenic Rice Plants. Plant Soil, 292, 259-269.
https://doi.org/10.1007/s11104-007-9222-8