|
[1]
|
Sender, R., Fuchs, S. and Milo, R. (2016) Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell, 164, 337-340. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Nicholson, J.K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., et al. (2012) Host-Gut Microbiota Metabolic Interactions. Science, 336, 1262-1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Frank, D.N., Robertson, C.E., Hamm, C.M., Kpadeh, Z., Zhang, T., Chen, H., et al. (2011) Disease Phenotype and Genotype Are Associated with Shifts in Intestinal-Associated Microbiota in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 17, 179-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Frank, D.N., St Amand, A.L., Feldman, R.A., Boedeker, E.C., Harpaz, N. and Pace, N.R. (2007) Molecular-Phylogenetic Characterization of Microbial Community Imbalances in Human Inflammatory Bowel Diseases. Proceedings of the National Academy of Sciences of the United States of America, 104, 13780-13785. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Li, E., Hamm, C.M., Gulati, A.S., Sartor, R.B., Chen, H., Wu, X., et al. (2012) Inflammatory Bowel Diseases Phenotype, C. difficile and NOD2 Genotype Are Associated with Shifts in Human Ileum Associated Microbial Composition. PLoS ONE, 7, e26284. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Brown, K., DeCoffe, D., Molcan, E. and Gibson, D.L. (2012) Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease. Nutrients, 4, 1095-1119. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
John, G.K. and Mullin, G.E. (2016) The Gut Microbiome and Obesity. Current Oncology Reports, 18, 45. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Alkanani, A.K., Hara, N., Gottlieb, P.A., Ir, D., Robertson, C.E., Wagner, B.D., et al. (2015) Alterations in Intestinal Microbiota Correlate with Susceptibility to Type 1 Diabetes. Diabetes, 64, 3510-3520. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Markle, J.G., Frank, D.N., Mortin-Toth, S., Robertson, C.E., Feazel, L.M., Rolle-Kampczyk, U., et al. (2013) Sex Differences in the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity. Science, 339, 1084-1088. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Geuking, M.B., Koller, Y., Rupp, S. and McCoy, K.D. (2014) The Interplay between the Gut Microbiota and the Immune System. Gut Microbes, 5, 411-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
McDermott, A.J. and Huffnagle, G.B. (2014) The Microbiome and Regulation of Mucosal Immunity. Immunology, 142, 24-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Paiardini, M. and Müller-Trutwin, M. (2013) HIV-Associated Chronic Immune Activation. Immunological Reviews, 254, 78-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Brenchley, J.M. (2004) CD4+ T Cell Depletion during All Stages of HIV Disease Occurs Predominantly in the Gastrointestinal Tract. Journal of Experimental Medicine, 200, 749-759. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Dinh, D.M., Volpe, G.E., Duffalo, C., Bhalchandra, S., Tai, A.K., Kane, A.V., et al. (2014) The Intestinal Microbiota, Microbial Translocation and Systemic Inflammation in Chronic HIV Infection. The Journal of Infectious Diseases, 211, 19-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kim, C.J., Nazli, A., Rojas, O.L., Chege, D., Alidina, Z., Huibner, S., et al. (2012) A Role for Mucosal IL-22 Production and Th22 Cells in HIV-Associated Mucosal Immunopathogenesis. Mucosal Immunology, 5, 670-680. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Brenchley, J.M., Paiardini, M., Knox, K.S., Asher, A.I., Cervasi, B., Asher, T.E., et al. (2008) Differential Th17 CD4 T-Cell Depletion in Pathogenic and Nonpathogenic Lentiviral Infections. Blood, 112, 2826-2835. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Brenchley, J.M., Price, D.A., Schacker, T.W., Asher, T.E., Silvestri, G., Rao, S., et al. (2006) Microbial Translocation Is a Cause of Systemic Immune Activation in Chronic HIV Infection. Nature Medicine, 12, 1365-1371. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Marchetti, G., Tincati, C. and Silvestri, G. (2013) Microbial Translocation in the Pathogenesis of HIV Infection and AIDS. Clinical Microbiology Reviews, 26, 2-18. [Google Scholar] [CrossRef]
|
|
[19]
|
Zevin, A.S., McKinnon, L., Burgener, A. and Klatt, N.R. (2016) Microbial Translocation and Microbiome Dysbiosis in HIV-Associated Immune Activation. Current Opinion in HIV and AIDS, 11, 182-190. [Google Scholar] [CrossRef]
|
|
[20]
|
Hsu, D.C. and Sereti, I. (2016) Serious Non-AIDS Events: Therapeutic Targets of Immune Activation and Chronic Inflammation in HIV Infection. Drugs, 76, 533-549. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Moeller, A.H., Shilts, M., Li, Y., Rudicell, R.S., Lonsdorf, E.V., Pusey, A.E., Wilson, M.L., Hahn, B.H. and Ochman, H. (2013) SIV-Induced Instability of the Chimpanzee Gut Microbiome. Cell Host & Microbe, 14, 340-345. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lozupone, C.A., Li, M., Campbell, T.B., Flores, S.C., Linderman, D., Gebert, M.J., Knight, R., Fontenot, A.P. and Palmer, B.E. (2013) Alterations in the Gut Microbiota Associated with HIV-1 Infection. Cell Host & Microbe, 14, 329-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Gori, A., Tincati, C., Rizzardini, G., Torti, C., Quirino, T., Haarman, M., et al. (2008) Early Impairment of Gut Function and Gut Flora Supporting a Role for Alteration of Gastrointestinal Mucosa in Human Immunodeficiency Virus Pathogenesis. Journal of Clinical Microbiology, 46, 757-758. [Google Scholar] [CrossRef]
|
|
[24]
|
Ellis, C.L., Ma, Z.M., Mann, S.K., Li, C.S., Wu, J., Knight, T.H., et al. (2011) Molecular Characterization of Stool Microbiota in HIV-Infected Subjects by Panbacterial and Order-Level 16S Ribosomal DNA (rDNA) Quantification and Correlations with Immune Activation. JAIDS Journal of Acquired Immune Deficiency Syndromes, 57, 363-370. [Google Scholar] [CrossRef]
|
|
[25]
|
Zilberman-Schapira, G., Zmora, N., Itav, S., Bashiardes, S., Elinav, H. and Elinav, E. (2016) The Gut Microbiome in Human Immunodeficiency Virus Infection. BMC Medicine, 14, 83. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Dillon, S.M., Lee, E.J., Kotter, C.V., Austin, G.L., Dong, Z., Hecht, D.K., et al. (2014) An Altered Intestinal Mucosal Microbiome in HIV-1 Infection Is Associated with Mucosal and Systemic Immune Activation and Endotoxemia. Mucosal Immunology, 7, 983-994. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Mutlu, E.A., Keshavarzian, A., Losurdo, J., Swanson, G., Siewe, B., Forsyth, C., et al. (2014) A Compositional Look at the Human Gastrointestinal Microbiome and Immune Activation Parameters in HIV Infected Subjects. PLOS Pathogens, 10, e1003829. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sun, Y., Ma, Y., Lin, P., Tang, Y.W., Yang, L., Shen, Y., et al. (2016) Fecal Bacterial Microbiome Diversity in Chronic HIV-Infected Patients in China. Emerging Microbes & Infections, 5, e31. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yang, L., Poles, M.A., Fisch, G.S., Ma, Y., Nossa, C., Phelan, J.A., et al. (2016) HIV-Induced Immunosuppression Is Associated with Colonization of the Proximal Gut by Environmental Bacteria. AIDS, 30, 19-29. [Google Scholar] [CrossRef]
|
|
[30]
|
Dillon, S.M., Lee, E.J., Kotter, C.V., Austin, G.L., Gianella, S., Siewe, B., et al. (2016) Gut Dendritic Cell Activation Links an Altered Colonic Microbiome to Mucosal and Systemic T-Cell Activation in Untreated HIV-1 Infection. Mucosal Immunology, 9, 24-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Perez-Santiago, J., Gianella, S., Massanella, M., Spina, C.A., Karris, M.Y., Var, S.R., et al. (2013) Gut Lactobacillales Are Associated with Higher CD4 and Less Microbial Translocation during HIV Infection. AIDS, 27, 1921-1931. [Google Scholar] [CrossRef]
|
|
[32]
|
Nowak, P., Troseid, M., Avershina, E., Barqasho, B., Neogi, U., Holm, K., et al. (2015) Gut Microbiota Diversity Predicts Immune Status in HIV-1 Infection. AIDS, 29, 2409-2418. [Google Scholar] [CrossRef]
|
|
[33]
|
Hamer, H.M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F.J. and Brummer, R.J. (2008) Review Article: The Role of Butyrate on Colonic Function. Alimentary Pharmacology & Therapeutics, 27, 104-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Macfarlane, S. and Macfarlane, G.T. (2003) Regulation of Short-Chain Fatty Acid Production. Proceedings of the Nutrition Society, 62, 67-72. [Google Scholar] [CrossRef]
|
|
[35]
|
Louis, P. and Flint, H.J. (2009) Diversity, Metabolism and Microbial Ecology of Butyrate-Producing Bacteria from the Human Large Intestine. FEMS Microbiology Letters, 294, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
McHardy, I.H., Li, X., Tong, M., Ruegger, P., Jacobs, J., Borneman, J., et al. (2013) HIV Infection Is Associated with Compositional and Functional Shifts in the Rectal Mucosal Microbiota. Microbiome, 1, 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Monaco, C.L., Gootenberg, D.B., Zhao, G., Handley, S.A., Ghebremichael, M.S., Lim, E.S., et al. (2016) Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome. Cell Host Microbe, 19, 311-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Troy, E.B. and Kasper, D.L. (2010) Beneficial Effects of Bacteroides fragilis Polysaccharides on the Immune System. Frontiers in Bioscience (Landmark Ed), 15, 25-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Noguera-Julian, M., Rocafort, M., Guillén, Y., Rivera, J., Casadellà, M., Nowak, P., et al. (2016) Gut Microbiota Linked to Sexual Preference and HIV Infection. EBioMedicine, 5, 135-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Vazquez-Castellanos, J.F., Serrano-Villar, S., Latorre, A., Artacho, A., Ferrus, M.L., Madrid, N., et al. (2014) Altered Metabolism of Gut Microbiota Contributes to Chronic Immune Activation in HIV-Infected Individuals. Mucosal Immunology, 8, 760-772. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Vujkovic-Cvijin, I., Dunham, R.M., Iwai, S., Maher, M.C., Albright, R.G., Broadhurst, M.J., et al. (2013) Dysbiosis of the Gut Microbiota Is Associated with HIV Disease Progression and Tryptophan Catabolism. Science Translational Medicine, 5, 193ra191. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Paquin-Proulx, D., Ching, C., Vujkovic-Cvijin, I., Fadrosh, D., Loh, L., Huang, Y., et al. (2016) Bacteroides Are Associated with GALT iNKT Cell Function and Reduction of Microbial Translocation in HIV-1 Infection. Mucosal Immunology, 10, 69-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Favre, D., Mold, J., Hunt, P.W., Kanwar, B., Loke, P., Seu, L., et al. (2010) Tryptophan Catabolism by Indoleamine 2, 3-Dioxygenase 1 Alters the Balance of TH17 to Regulatory T Cells in HIV Disease. Science Translational Medicine, 2, 32ra36. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Brown, J.M. and Hazen, S.L. (2015) The Gut Microbial Endocrine Organ: Bacterially Derived Signals Driving Cardiometabolic Diseases. Annual Review of Medicine, 66, 343-359. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Romano, K.A., Vivas, E.I., Amador-Noguez, D. and Rey, F.E. (2015) Intestinal Microbiota Composition Modulates Choline Bioavailability from Diet and Accumulation of the Proatherogenic Metabolite Trimethylamine-N-Oxide. MBio, 6, e02481. [Google Scholar] [CrossRef]
|
|
[46]
|
Tang, W.H. and Hazen, S.L. (2014) The Contributory Role of Gut Microbiota in Cardiovascular Disease. Journal of Clinical Investigation, 124, 4204-4211. [Google Scholar] [CrossRef]
|
|
[47]
|
Haissman, J.M., Knudsen, A., Hoel, H., Kjaer, A., Kristoffersen, U.S., Berge, R.K., et al. (2016) Microbiota-Dependent Marker TMAO Is Elevated in Silent Ischemia But Is Not Associated with First-Time Myocardial Infarction in HIV Infection. JAIDS Journal of Acquired Immune Deficiency Syndromes, 71, 130-136. [Google Scholar] [CrossRef]
|
|
[48]
|
Knudsen, A., Christensen, T.E., Thorsteinsson, K., Ghotbi, A.A., Hasbak, P., Lebech, A.M., et al. (2016) Microbiota-Dependent Marker TMAO Is Not Associated With Decreased Myocardial Perfusion in Well-Treated HIV-Infected Patients as Assessed by 82Rubidium PET/CT. JAIDS Journal of Acquired Immune Deficiency Syndromes, 72, e83-e85. [Google Scholar] [CrossRef]
|
|
[49]
|
Miller, P.E., Haberlen, S.A., Brown, T.T., Margolick, J.B., DiDonato, J.A., Hazen, S.L., et al. (2016) Brief Report: Intestinal Microbiota-Produced Trimethylamine-N-Oxide and Its Association with Coronary Stenosis and HIV Serostatus. JAIDS Journal of Acquired Immune Deficiency Syndromes, 72, 114-118. [Google Scholar] [CrossRef]
|
|
[50]
|
Srinivasa, S., Fitch, K.V., Lo, J., Kadar, H., Knight, R., Wong, K., et al. (2015) Plaque Burden in HIV-Infected Patients Is Associated with Serum Intestinal Microbiota-Generated Trimethylamine. AIDS, 29, 443-452. [Google Scholar] [CrossRef]
|
|
[51]
|
Serrano-Villar, S., Rojo, D., Martinez-Martinez, M., Deusch, S., Vazquez-Castellanos, J.F., Sainz, T., et al. (2016) HIV Infection Results in Metabolic Alterations in the Gut Microbiota Different from Those Induced by Other Diseases. Scientific Reports, 6, 26192. [Google Scholar] [CrossRef] [PubMed]
|