含手性二芳基次甲基骨架化合物的合成研究
Studies on the Synthesis of Chiral Diarylmethine Skeleton Compounds
DOI: 10.12677/JOCR.2021.94009, PDF, HTML, XML, 下载: 378  浏览: 827  科研立项经费支持
作者: 夏艳萍, 欧阳露, 罗人仕:赣南医学院药学院,江西 赣州
关键词: 二芳基次甲基不对称催化药物合成Diarylmethine Asymmetric Catalysis Drug Synthesis
摘要: 手性二芳基次甲基骨架是一类重要的结构单元,其广泛存在于药物分子及天然产物之中,在药物化学和临床治疗上有着极其重要的地位。近年来,利用不对称催化方法合成手性二芳基次甲基化合物受到了越来越多的合成化学家的关注,主要包括:1) 不对称共轭加成;2) 不对称Friedel-Crafts反应;3) 不对称烯丙基芳基化;4) 不对称氢化;5) 不对称偶联;6) 不对称的烯烃双官能团化等。本论文将根据反应类型的不同,对近年来含手性二芳基次甲基化合物的构建方法及其在天然产物及药物分子合成中的应用进行综述,对不同类型的合成方法有了一些规律性的认识,为将来含该类化合物骨架的药物分子合成提供理论指导和技术支持。
Abstract: Chiral diarylmethine skeleton is one of the most important structural units, which widely exists in drug molecules and natural products, and plays a crucial role in drug chemistry and clinical treatment. In recent years, the synthesis of chiral diarylmethine compounds by asymmetric catalysis has attracted more and more attention of synthetic chemists, including: 1) asymmetric conjugate addition; 2) asymmetric Friedel-Crafts reaction; 3) asymmetric allyl arylation; 4) asymmetric hydrogenation; 5) asymmetric coupling; 6) asymmetric difunctionalization of alkenes, etc. This paper summarizes the latest research on this asymmetric catalysis, containing the construction of chiral diarymethine and the application in the synthesis of natural product and drug molecules, which will give some recognition for different types of synthetic methods and provide theoretical guidance and technical support for the synthesis of drug molecules which contains the skeleton of diarymethine.
文章引用:夏艳萍, 欧阳露, 罗人仕. 含手性二芳基次甲基骨架化合物的合成研究[J]. 有机化学研究, 2021, 9(4): 68-82. https://doi.org/10.12677/JOCR.2021.94009

1. 引言

二芳基次甲基结构单元广泛存在于众多具有重要生理和药理活性(如抗菌、抗病毒、抗癌和/或抗氧化活性等)的天然产物和药物分子中(见图1) [1] [2],如用于治疗由膀胱过度兴奋引起的尿频、尿急或紧迫性尿失禁等症状的托特罗定(Tolterodine) [3] 和弗斯特罗定(Fesoterodine) [4];用于治疗抑郁症和强迫症的舍曲林(Sertraline) [5];长效抗精神病药氟斯必(Fluspirilene) [6];鬼臼毒素(Podophyllotoxin) [7] 作为一种天然药物,能有效地治疗肛周尖锐湿疣等。

Figure 1. Selected bioactive products with diarylmethines skeleton

图1. 代表性的含二芳基次甲基骨架的药物分子

正是基于二芳基次甲基骨架的重要性,在药物活性方面具有巨大的潜能。因此高效合成含该骨架化合物的研究也得到了合成化学家的关注。从目前已经发展的合成方法来看,主要是有以下几种方法:1)不对称共轭加成;2) 不对称Friedel-Crafts反应;3) 不对称烯丙基芳基化;4) 不对称氢化;5) 不对称偶联;6) 不对称的烯烃双官能团化等。这些已报道的合成方法都具有一定的优点及不足之处,本论文将对这些已经报道的合成方法进行综述和总结,研究其合成特点、探索影响收率及选择性因素,为今后含该骨架化合物的更高效绿色合成提供理论指导及技术支持。

2. 不对称共轭加成

2.1. 不对称1,4-共轭加成

早在1997年,Miyaura小组报导了首例铑催化的苯硼酸与α,β-不饱和醛/酮的1,4-共轭加成。该反应使用双膦配体dppb作为手性助剂,高化学选择性和区域选择性地生成了二苯基次甲基结构的化合物(见图2) [8]。虽然反应只有两个底物,但却为不对称1,4-共轭加成奠定了良好的基础,因此具有里程碑式的意义。

Figure 2. Rh-catalyzed 1,4-conjugated addition of α,β-unsaturated ketone/aldehyde and arylboronic acids

图2. 铑催化不饱和酮/醛与苯硼酸的1,4-共轭加成

有了以上研究基础,越来越多的化学家们对不对1,4-共轭加成产生浓厚的研究兴趣 [9] [10] [11]。通过设计合成不同结构的手性配体,实现了系列的过渡金属催化的不饱和酮/醛与苯硼酸的不对称1,4-共轭加成。其反应机理可以概括见图3,首先芳基硼酸在碱的作用下发生转金属生成Csp2-M中间体Int-I,随后不饱和酮1,4-迁移插入中间体Int-II中形成氧杂金属中间体Int-III,在此过程中,手性配体诱导下构建了二芳基次甲基立体中心。最后还原消除生成目标产物,金属物种再进行下一个催化循环。

Figure 3. Proposed mechanism for Rh-catalyzed 1,4-conjugated addition

图3. 铑催化不饱和酮与芳基硼酸的1,4-共轭加成的机理

早在2005年,Hayashi课题组通过手性双烯配体,在[RhCl(C2H4)2]2为催化剂下实现了肉桂醛与芳基硼酸的不对称1,4-共轭加成 [12]。在该催化体系下,不同取代的芳基硼酸均能兼容,并以高收率及高对映选择性地生成手性的β-二芳基酮产物。同年,Carreira课题组通过对双烯配体结构的修饰,也报道了一例[RhCl(C2H4)2]2催化的肉桂醛与芳基硼酸的不对称1,4-共轭加成 [13]。2018年,中国药科大学的窦晓巍课题组通过对手性双烯配体的结构修饰与改进,成功地报道一例不饱和酮酸酯与芳基硼酸的不对称1,4-共轭加成,并且表现出了高效的催化性能及对映选择性控制 [14]。此外,不饱和酰胺及不饱和亚胺酯等也被用作是共轭加成前体,分别于2014年廖建小组 [15] 和2015年Kim [16] 课题组报道了在铑(I)催化下芳基硼酸不对称1,4-共轭加成。此次不同于之前报道的双烯配体作为手性助剂,他们分别采用了各自课题组发展起来的手性亚砜配体及手性双环亚磷酰胺配体,均表现出了良好的对映选择性。且该类新方法还应用到了用于治疗抑郁症和强迫症的舍曲林(Sertraline)的合成,表现出了良好的不对称合成应用前景,为不对称合成应用打下良好基础(见图4)。

Figure 4. Rh-catalyzed asymmetric 1,4-addition of arylboronic acids to α,β-unsaturated carbonyl compounds

图4. 铑催化芳基硼酸与α, β-不饱和羰基化合物的不对称1,4-共轭加成

α,β-不饱和硝基化合物也常常用作不对称1,4-共轭加成的反应底物。近年来,国内外许多的课题组发展了系列α,β-不饱和硝基化合物与芳基硼酸在不同催化体系、不同类型的手性配体调节下的不对称1,4-共轭加成反应。如由2010年徐明华研究员和林国强院士团队报道的手性双环[3.3.0]二烯配体 [17];廖建研究员课题组报道的手性亚砜配体 [18];Iuliano小组报道了具有轴手性的亚膦酸酯配体 [19] 及张万斌课题组 [20] 报道的手性噁唑啉配体,均实现了高立体选择性的手性二芳基次甲基立体中心的构建(见图5)。

Figure 5. Rh-catalyzed asymmetric 1,4-addition of arylboronic acids to α,β-unsaturated nitrostyrenes

图5. 铑催化芳基硼酸与α, β-不饱和硝基烯烃的不对称1,4-共轭加成

此外,α,β-不饱和硝基化合物与芳基硼酸的不对称1,4-共轭加成还应用到了药物合成上来(图5)。2008年廖建课题组以经典的不对称 1,4-共轭加成为基础,通过一系列转化实现了Cherylline合成前体的转化 [18]。在2013年兰州大学樊春安课题组通过进一步的氧化去芳构化/串联分子内氮杂Michael加成反应等,实现了Montanine 类型生物碱家族的不对称仿生合成(见图6) [21]。

Figur 6. Application of Rh-catalyzed asymmetric 1,4-addition in drug synthesis

图6. 铑催化不对称1,4-共轭加成在药物合成中的应用

虽说自1966年第一个手性金属配合物催化剂被成功用于不对称反应至今,不对称催化研究迄今已有50年的历史。不对称催化关键在于手性催化剂。到目前为止,人们对手性过渡金属催化剂的研究最为深入,其应用也最为广泛。但手性过渡金属催化剂也存在一些缺点,如催化剂造价昂贵、反应条件苛刻、产生环境污染和催化剂不易回收等。与手性过渡金属催化剂相比,手性有机小分子催化剂有着自己独特的优势,如不含过渡金属、容易制备、价格低廉、反应条件温和、稳定性强、对环境友好等 [22] [23]。同时,为了表彰德国马克斯·普朗克煤炭研究所教授本杰明・李斯特(Benjamin List) [24] 和美国普林斯顿大学教授大卫・W・C・麦克米兰 (David W. C. MacMillan) [25] 在有机小分子在不对称催化领域的突出贡献,授予了他们2021年度诺贝尔化学奖。由此看出有机小分子大不对称催化领域的重要性,将对药物研究产生了巨大的影响,并使化学变得更加绿色。

2015年,May课题组报道了以联萘酚骨架为基础的小分子,实现了芳基硼酸盐与α,β-不饱和酮或醛的不对称1,4-共轭加成,高对映选择性地构建了二芳基次甲基立体中心(见图7) [26]。此外,该方法在海洋生物碱 Discoipyrrole D的合成方面也有一定的应用,可以选择性地合成制备Discoipyrrole D的重要前体化合物。

Figure 7. Organocatalyzed asymmetric 1,4-addition of Ar-BF3K to α,β-unsaturated carbonyl compounds

图7. 有机小分子催化的α,β-不饱和酮或醛与芳基硼酸钾的不对称1,4-共轭加成

2.2. 不对称1,6-共轭加成

在有机化学中,对亚甲基苯醌是一类重要的醌类衍生物,含有独特的结构单元,该结构单元在天然产物以及具有生物活性的有机分子中广泛存在,如萜烯、植物色素等 [27] [28] [29] [30]。由于对亚甲基苯醌很容易发生极化,同时极化后以两性离子的形式存在(见图8),所以其表现的就相当活泼,容易受到亲核试剂进攻发生1,6-加成反应(见图9)。最近几年关于对亚甲基苯醌的不对称催化反应受到广大研究者的青睐。成为不对称催化领域的研究热点。

Figure 8. Aromatic zwitterionic resonance of p-QMs

图8. p-QMs的两性共振式

Figure 9. Asymmetric Catalytic 1,6-addition of p-QMs

图9. p-QMs与亲核试剂的不对称1,6-共轭加成

近年来,利用亲核试剂对p-QMs的1,6-共轭加成生成手性二芳基次甲基骨架的研究吸引了化学家们的研究兴趣,通过手性催化剂来实现羰基的活化及催化剂残端来实现立体选择性控制,但由于羰基和6-号位之间距离太远,要想实现其亲核试剂加成,并控制好其对映选择性是一个很大的挑战。

2013年,樊春安课题组报道了一例以手性季铵盐为催化剂,丙二酸二苯酯为亲核试剂,实现了与p-QMs的不对称1,6-共轭加成。系列不同官能团取代的二芳基烷烃以高收率(高达96%)及高对映选择性(高达99%)地生成 [31]。为功能化二芳基次甲基立体中心的构建提供了另一种途径。2021年西南大学彭云贵课题组也报道了一例以手性季铵盐为催化剂p-QMs与α-重氮磷酸酯的不对称1,6-共轭加成 [32]。同时,该反应得到的目标产物手性的α-二芳基重氮磷酸酯还经过简单的转化,生成手性的β-二芳基-α-胺基重氮磷酸酯(见图10)。

近年来,手性方酰胺作为一类新型且具有良好催化活性的双功能而性催化剂得到有机化学工作者的广泛关注,并成功地应用于许多不对称催化反应中,取得了很高的对映选择性 [33]。越来越多结构新颖的光学活性的方酰胺催化剂被逐步发掘并成功应用于许多有机分子的不对称催化合成中。手性方酰胺类催化剂在有机化学领域的巨大潜力和应用前景,如手性方酰胺在不对称迈克尔加成反应,傅克烷基化反应,硼烷还原反应等反应中都有很好的应用。2015年Enders课题组 [34] 和2016年樊春安课题组 [35] 均报道了以手性方酰胺为催化剂,吲哚酮的C-3位为亲核试剂与p-QMs的1,6-共轭加成,以高收率及高对映选择性地得到手性二芳基次骨架化合物(见图11)。

Figure 10. Chiral quaternary ammonium salts catalyzed asymmetric 1,6-conjugated addition of p-QMs

图10. 手性季铵盐催化的不对称p-QMs的不对称1,6-共轭加成

Figure 11. Tertiary amine-squaramide catalyzed asymmetric 1,6-conjugated addition of p-QMs

图11. 手性方酰胺催化的不对称p-QMs的不对称1,6-共轭加成

此外,手性脯氨醇类的配体 [36]、手性膦–酰胺配体 [37]、手性膦–亚砜配体 [38]、手性BINAP类配体 [39]、硫脲类配体 [40] 等,均广泛应用于p-QMs的1,6-共轭加成。在不同的催化体系下,高收率及高对映选择性地得到系列不同官能团化的二芳基次甲基化合物,为含手性二芳基次甲基骨架类药物的合成提供理论指导和技术支持。

3. 不对称烯丙基取代反应

Tsuji-Trost反应也是烯丙基化学的重要代表,自从其被发现以来已开发出多种可用于反应的过渡金属和亲核试剂 [41] [42]。其中,亲核试剂的取代可以发生在端位碳和取代基近端上,但是在多数情况下是以端位碳发生反应。反应过程与Wacker氧化的原理相似,过渡金属和烯丙基共轭体系配合使其亲电性增加而可以被亲核试剂进攻。反应从低价金属和双键的氧化加成,形成一个烯丙基配合物,得到高价太过渡金属。

芳基的不对称烯丙基取代反应也是构建二芳基次甲基立体中心的重要方法。2011年,Shintani和Hayashi团队以手性氮杂卡宾作为手性配体,实现了以烯丙基磷酸酯和芳基硼酸酯的不对称烯丙基取代反应,高对映选择性地建立了手性二芳基次甲基立体中心 [43]。同时,2017年,清华大学的付华课题组则以手性环状亚磷酰胺作为配体,以[Ir(cod)Cl]2作为催化剂,实现了烯丙醇与芳胺的不对称烯丙基取代反应(见图12) [44]。

Figure 12. Asymmetric allylic substitution for the construction of diarylmethine skeleton

图12. 不对称烯丙基取代反应构建二芳基次甲基骨架

4. 不对称Friedel-Crafts反应

Friedel-Crafts反应在有机合成化学里是一类非常重要的反应,是构建C-C键的有效手段 [45]。2002年,MacMillan课题组报道了以手性咪唑烷酮为催化剂,富电子芳烃和α,β-不饱和醛的不对称1,4-共轭加成反应 [46]。同时兰州大学王锐教授课题组在2009年也开展了基于酚和α,β-不饱和醛的不对称Friedel-Crafts 烷基化构建手性苯并二氢吡喃化合物 [47]。该反应以手性二苯基脯氨醇硅醚作为催化剂,催化诱导发生1,4-共轭加成反应构建手性中心。手性硫脲叔胺类小分子催化剂也可用作为不对称Friedel-Crafts烷基化的立体中心调控。2010年,张晓梅课题组报道了一例以芝麻酚和α, β-不饱和硝基化合物为底物的Friedel-Crafts反应,构建了二芳基次甲基手性中心(见图13) [48]。

Figure 13. Friedel-Crafts alkylation for the construction of diarylmethine skeleton

图13. 傅–克芳基化构建二芳基次骨架

5. 不对称氢化反应

不对称催化反应作为个手性增量过程已成为人工合成施光性产物最有效的手段之一,其中不对称氢化反应发展较快,是研究得较多的一类反应(见图14) [49] [50]。不对称催化具有容量大、产率高、反应速度快、产物分离相对容易、催化剂的手性易于通过改变配体来修饰等优点,使该领域成为国际化学家研究的热点,多年来在学术界和工业界均有良好的应用。2009年瑞典乌普萨拉大学的Andersson教授 [51] 及美国的Sigman教授 [52] 以手性的N-P配体配位的铱催化剂,实现了二芳基烃衍生物的不对称氢化。紧接着,2013年,我国的周其林院士课题组将其所发展的手性螺环配体与铱催化剂结合,在温和条件下就实现了1,1-二芳基乙烯的不对称氢化反应 [53]。与此同时,上海有机所丁奎岭院士课题组则以以金属铑(I)和手性BINOL衍生的膦氧配体为催化体系,以高对映选择性地实现了β,β-二芳基丙烯酸双键的不对称氢化 [54]。

Figure 14. Asymmetric hydrogenation of 1,1-diarylethene derivatives

图14. 二芳基乙烯及其衍生物的不对称氢化反应

6. 不对称偶联反应

偶联反应是高效构建C-C键的有效方法之一,近年来,由发展起来的镍催化与钯催化偶联反应,取得了较大的研究进展,发展了系列的偶联反应,实现了构建C-C的不同方法路径 [55]。苄位作为与苯环直接相连的位置,从结构上来看存在着一定的特殊性,导致其性质也比较特殊,许多的化学反应都发生在该位置上,同时也实现了该位置上的多种官能团化(见图15)。2013年,G.-C. Fu课题组以二价镍盐和手性双噁唑啉配体为催化体系,实现了以苄基甲磺酸酯和有机锌试剂的不对称Negishi偶联反应,立体选择性地构建了二芳基次甲基立体中心 [56]。2017年Reisman课题组同样采取二价镍盐与手性双噁唑啉配体为配体,以芳基碘化物与苄氯为底物,实现了不对称Negishi偶联反应偶联反应,实现了手性二芳基次甲基骨架的构建 [57]。2020年,有机所的汤文军课题组以金属钯为催化剂,以他们组发展起来的手性磷为配体,2-溴-2-芳基酰胺与芳基硼酸为反应底物,实现具有二芳基次甲基立体中心的酰胺类化合物合成 [58]。与此同时,该方法也成功地应用于合成具有明显药理活性的药物SKF 38393的关键中间体的制备。

Figure 15. Asymmetric cross-coupling reaction for the construction of 1,1-diarylethene derivatives

图15. 不对称交叉偶联反应构建二芳基次甲基衍生物

7. 不对称芳基化反应

碳氢键(C-H键)作为有机物最基本的结构单元,广泛存在于各种有机化合物中。因此,通过直接切断并官能团化C-H键,在构建新的化合物的同时,提高了反应的原子经济性和步骤经济性,是一条极具吸引力的合成策略。利用苄基位上C-H键的芳基化策略,就能实现二芳基次甲基骨架的构建(见图16)。2016年,余金权课题组以醋酸钯为催化剂,手性喹啉类双齿配体为手性助剂,实现了芳基酰基酰胺的β-位芳基化反应 [59]。同时在2019年,有机所刘国生课题组以三氟甲磺酸亚铜二聚物为催化剂和双噁唑啉手性配体的催化体系,以芳基硼酸作为芳基源,实现了苄位C-H键芳基化反应 [60]。同在2019年里,陆展课题组也用手性双咪唑啉作配体,在光引发镍催化下成功实现了苄位C-H键与溴代芳烃的偶联,构建了二芳基次甲基手性立体中心 [61]。

Figure 16. Asymmetric benzylic arylation for the synthesis of 1,1-diarylethene derivatives

图16. 不对称苄基位C-H键构建二芳基次甲基衍生物

重氮化合物作为一种多用途的有机砌块,广泛应用于有机合成中(见图17)。2015年,朱守非教授和周其林院士课题组在铑催化下,手性螺环磷酸配体为手性助剂,实现了以芳基重氮酯和富电子芳胺的不对称偶联反应,实现了二芳基次甲基手性中心的构建 [62]。同时在2021年,徐明华课题组也报道了一例烯基重氮酯与富电子芳胺的不对称偶联反应,但其使用了手性双烯配体作手性助剂,较好地调控了立体中心 [63]。

Figure 17. Asymmetric arylation of diazo compounds for the synthesis of 1,1-diarylethene derivatives

图17. 重氮化合物的不对称芳基化构建二芳基次甲基衍生物

Figure 18. Asymmetric difunctionalization of alkenes for the synthesis of 1,1-diarylethene derivatives

图18. 烯烃的不对称双官能团化构建二芳基次甲基衍生物

8. 不对称烯烃双官能团化反应

烯烃双官能团化反应,可以一步获得多位点反应的产物,在合成各种实用化合物有着明显的高效性(见图18)。例如,以芳基烯烃为底物,在催化剂和手性配体的诱导下可以实现烯烃的碳芳基化,构建手性二芳基次甲基骨架。2016年,Sigman课题组以手性磷酸作为配体,在钯催化下,以α,β-不饱和酯与芳基重氮盐和芳基硼酸为反应底物,实现了不饱和双键的不对称芳基化 [64]。与此同时,刘国生课题组在2017年在手性双噁唑啉配体作用下,实现了铜催化烯烃的不对称双官能团化,选择性地生成了β-CF3取代的二芳基次甲基化合物 [65]。随后,他们又以NFSI作为胺源,在类似的催化条件下,选择性地生成了β-氨基取代的二芳基次甲基化合物 [66]。廖建课题组也报道相关研究,他们以芳基烯烃、芳基碘化物和B2(pin)2为底物,在Cu/Pd双金属催化下,手性亚砜配体诱导下,实现了硼酸酯取代的二芳基次甲基化合物 [67]。

9. 总结

二芳基次甲基骨架是一类非常重要的骨架分子,该结构单元广泛存在于众多具有重要生理和药理活性(如抗菌、抗病毒、抗癌和/或抗氧化活性等)的天然产物和药物分子中。近年来,国内外许多的课题组都对该结构骨架的合成进行了探索与研究,并发表了系列高效合成该类骨架分子的方法。虽然已取得了较好的研究进展,但这些方法中仍存在一些待改进的地方,如立体选择性的调控、催化效率的提高、更加温和的反应条件、更简便的操作步骤等。尤其是在将已经报道的合成方法应用到具体的含二芳基次甲基骨架的药物分子合成中,还有待进一步提高其实用性。因此发展新型的、更具有广泛用途的不对称二芳基次甲基骨架分子的合成仍具有广阔的发展空间。

致谢

感谢赣南医学院(QD201810)的资金资助。

参考文献

[1] Recanatini, M., Cavalli, A. and Valenti, P. (2002) Nonsteroidal Aromatase Inhibitors: Recent Advances. Medicinal Research Reviews, 22, 282-302.
https://doi.org/10.1002/med.10010
[2] Ameen, D. and Snape, T.J. (2013) Chiral 1,1-Diaryl Compounds as Important Pharmacophores. MedChemComm, 4, 893-907.
https://doi.org/10.1039/c3md00088e
[3] Abrams, P., Freeman, R., Anderström, C. and Mattiasson, A. (1998) Tolterodine, A New Antimuscarinic Agent: As Effective But Better Tolerated than Oxybutynin in Patients with an Overactive Bladder. The British Journal of Urology, 81, 801-810.
https://doi.org/10.1046/j.1464-410x.1998.00717.x
[4] Malhotra, B., Gandelman, K., Sachse, R., Wood, N. and Michel, M.C. (2009) The Design and Development of Fesoterodine as a Prodrug of 5-Hydroxymethyl Tolterodine (5-HMT), the Active Metabolite of Tolterodine. Current Medicinal Chemistry, 16, 4481-4489.
https://doi.org/10.2174/092986709789712835
[5] McRae, A.L. and Brady, K.T. (2001) Review of Sertraline and Its Clinical Applications in Psychiatric Disorders. Expert Opinion on Pharmacotherapy, 2, 883-892.
https://doi.org/10.1517/14656566.2.5.883
[6] Soussi, M.A., Prorot, O., Bernadat, G., Bignon, J., Desrarines, D., Dubois, J., Brion, J.D., Messaoudi, S. and Alam, M. (2015) IsoCombretaQuinazolines: Potent Cytotoxic Agents with Antitubulin Activity. ChemMedChem, 10, 1392-1402.
https://doi.org/10.1002/cmdc.201500069
[7] Gordaliza, M., Castro, M.A., Miguel Del Corral, J.M. and San Feliciano, A. (2000) Antitumor Properties of Podophyllotoxin and Related Compounds. Current Pharmaceutical Design, 6, 1811-1839.
https://doi.org/10.2174/1381612003398582
[8] Sakai, M., Hayashi, H. and Miyaura, N. (1997) Rhodium-Catalyzed Conjugate Addition of Aryl- or 1-Alkenylboronic Acids to Enones. Organometallics, 16, 4229-4231.
https://doi.org/10.1021/om9705113
[9] Hayashi, T. (2001) Rhodium-Catalyzed Asymmetric 1,4-Addition of Organoboronic Acids and Their Derivatives to Electron Deficient Olefins. Synlett, 2001, 879-887.
https://doi.org/10.1055/s-2001-14657
[10] Edwards, H.J., Hargrave, J.D., Penrosea, S.D. and Frost, C.G. (2010) Synthetic Applications of Rhodium Catalysed Conjugate Addition. Chemical Society Reviews, 39, 2093-2105.
https://doi.org/10.1039/b919762c
[11] Hayashi, T. (2004) Rhodium-Catalyzed Asymmetric Addition of Aryl- and Alkenylboron Reagents to Electron-Deficient Olefins. Pure and Applied Chemistry, 76, 465-475.
https://doi.org/10.1351/pac200476030465
[12] Hayashi, T., Tokunaga, N., Okamoto, K. and Shintani, R. (2005) Asymmetric 1,4-Addition of Arylboronic Acids to α,β-Unsaturated Aldehydes Catalyzed by a Chiral Diene-Rhodium Complex. Chemistry Letters, 34, 1480-1481.
https://doi.org/10.1246/cl.2005.1480
[13] Paquin, J.-F., Defieber, C., Stephenson, C.R.J. and Carreira, E.M. (2005) Asymmetric Synthesis of 3,3-Diarylpropanals with Chiral Diene-Rhodium Catalysts. Journal of the American Chemical Society, 127, 10850-10851.
https://doi.org/10.1021/ja053270w
[14] Yao, J., Yin, L., Shen, Y., Lu, T., Hayashi, T. and Dou, X. (2018) Catalytic Asymmetric Conjugate Arylation of γ,δ-Unsaturated β-Dicarbonyl Compounds. Organic Letters, 20, 6882-6885.
https://doi.org/10.1021/acs.orglett.8b03021
[15] Wang, J., Wang, M., Cao, P., Jiang, L., Chen, G. and Liao, J. (2014) Rhodium-Catalyzed Asymmetric Arylation of β,γ-Unsaturated α-Ketoamides for the Construction of Nonracemic γ,γ-Diarylcarbonyl Compounds. Angewandte Chemie International Edition, 53, 6673-6677.
https://doi.org/10.1002/anie.201403325
[16] Lee, A. and Kim, H. (2015) Rhodium-Catalyzed Asymmetric 1,4-Addition of α,β-Unsaturated Imino Esters Using Chiral Bicyclic Bridgehead Phosphoramidite Ligands. Journal of the American Chemical Society, 137, 11250-11253.
https://doi.org/10.1021/jacs.5b07034
[17] Wang, Z.-Q., Feng, C.-G., Zhang, S.-S., Xu, M.-H. and Lin, G.-Q. (2010) Rhodium-Catalyzed Asymmetric Conjugate Addition of Organoboronic Acids to Nitroalkenes Using Chiral Bicyclo[3.3.0] Diene Ligands. Angewandte Chemie International Edition, 49, 5780-5783.
https://doi.org/10.1002/anie.201001883
[18] Lang, F., Chen, G., Li, L., Xing, J., Han, F., Cun, L. and Liao, J. (2011) Rhodium-Catalyzed Highly Enantioselective Addition of Arylboronic Acids to 2-Nitrostyrenes by Tert-Butanesulfinylphosphine Ligand. Chemistry—A European Journal, 17, 5242-5245.
https://doi.org/10.1002/chem.201100135
[19] Jumde, V.R. and Iuliano, A. (2013) Deoxycholic Acid-Derived Biaryl Phosphites as Versatile and Enantioselective Ligands in the Rhodium-Catalyzed Conjugate Addition of Arylboronic Acids to Nitroalkenes. Advanced Synthesis & Catalysis, 355, 3475-3483.
https://doi.org/10.1002/adsc.201300619
[20] He, Q., Xie, F., Fu, G., Quan, M., Shen, C., Yang, G., Gridnev, I.D. and Zhang, W. (2015) Palladium-Catalyzed Asymmetric Addition of Arylboronic Acids to Nitrostyrenes. Organic Letters, 17, 2250-2253.
https://doi.org/10.1021/acs.orglett.5b00863
[21] Bao, X., Cao, Y.-X., Chu, W.-D., Qu, H., Du, J.-Y., Zhao, X.-H., Ma, X.-Y., Wang, C.-T. and Fan, C.-A. (2013) Bioinspired Total Synthesis of Montanine-Type Amaryllidaceae Alkaloids. Angewandte Chemie International Edition, 52, 14167-14172.
https://doi.org/10.1002/anie.201307324
[22] Ha-Yeon Cheong, P., Legault, C.Y., Çelebi-Ölçüm, N. and Houk, K.N. (2011) Quantum Mechanical Investigations of Organocatalysis: Mechanisms, Reactivities, and Selectivities. Chemical Reviews, 111, 5042-5137.
https://doi.org/10.1021/cr100212h
[23] Cheng, D., Ishihara, Y., Tan, B. and Barbas III, C.F. (2014) Organocatalytic Asymmetric Assembly Reactions: Synthesis of Spirooxindoles via Organocascade Strategies. ACS Catalysis, 4, 743-762.
https://doi.org/10.1021/cs401172r
[24] List, B. (2007) Introduction:  Organocatalysis. Chemical Reviews, 107, 5413-5415.
https://doi.org/10.1021/cr078412e
[25] Huang, Y., Walji, A.M., Larsen, C.H. and MacMillan, D.W.C. (2005) Enantioselective Organo-Cascade Catalysis. Journal of the American Chemical Society, 127, 15051-15053.
https://doi.org/10.1021/ja055545d
[26] Shih, J.-L., Nguyen, T.S. and May, J.A. (2015) Organocatalyzed Asymmetric Conjugate Addition of Heteroaryl and Aryl Trifluoroborates: A Synthetic Strategy for Discoipyrrole D. Angewandte Chemie International Edition, 54, 9931-9935.
https://doi.org/10.1002/anie.201503528
[27] Turner, A.B. (1964) Quinone Methides. Quarterly Reviews, Chemical Society, 18, 347-360.
https://doi.org/10.1039/qr9641800347
[28] Peter, M.G. (1980) Chemical Modifications of Biopolymers by Quinones and Quinone Methides. Angewandte Chemie International Edition, 28, 555-570.
https://doi.org/10.1002/anie.198905551
[29] Parra, A. and Tortosa, M. (2015) para-Quinone Methide: A New Player in Asymmetric Catalysis. ChemCatChem, 7, 1524-1526.
https://doi.org/10.1002/cctc.201500176
[30] Caruana, L., Fochi, M. and Bernardi, L. (2015) The Emergence of Quinone Methides in Asymmetric Organocatalysis. Molecules, 20, 11733-11764.
https://doi.org/10.3390/molecules200711733
[31] Chu, W.-D., Zhang, L.-F., Bao, X., Zhao, X.-H., Zeng, C., Du, J.-Y., Zhang, G.-B., Wang, F.-X., Ma, X.-Y. and Fan, C.-A. (2013) Asymmetric Catalytic 1,6-Conjugate Addition/Aromatization of para-Quinone Methides: Enantioselective Introduction of Functionalized Diarylmethine Stereogenic Centers. Angewandte Chemie International Edition, 52, 9229-9233.
https://doi.org/10.1002/ange.201303928
[32] Chen, Y., Yu, R., Wang, M., Huang, Y. and Peng, Y. (2021) Enantioselective 1,6-Conjugate Addition of Dialkyl α-Diazo Methylphosphonate to para-Quinone Methides. Advanced Synthesis & Catalysis, 363, 4856-4861.
https://doi.org/10.1002/ange.201303928
[33] Zhou, H.B., Zhang, J., Lv, S.-M., Xie, R.-G., Zhou, Z.-Y., et al. (2001) Design, Synthesis and Structure of New Chiral Squaric Acid Monoaminoalcohols and Diaminoalcohols and Their Use as Catalysts in Asymmetric Reduction of Ketones and Diketones. Tetrahedron, 57, 9325-9333.
https://doi.org/10.1016/S0040-4020(01)00936-X
[34] Zhao, K., Zhi, Y., Wang, A. and Enders, D. (2015) Asymmetric Organocatalytic Synthesis of 3-Diarylmethine-Substituted Oxindoles Bearing a Quaternary Stereocenter via 1,6-Conjugate Addition to Para-Quinone Methides. ACS Catalysis, 6, 657-660.
https://doi.org/10.1021/acscatal.5b02519
[35] Deng, Y.-H., Zhang, X.-Z., Yu, K.-Y., Yan, X., Du, J.-Y., Huang, H. and Fan, C.-A. (2016) Bifunctional Tertiary Amine-Squaramide Catalyzed AsymmetricCatalytic 1,6-Conjugate Addition/Aromatization of para-Quinone Methides with Oxindoles. Chemical Communications, 52, 4183-4186.
https://doi.org/10.1039/C5CC10502A
[36] Caruana, L., Kniep, F., Johansen, T.K., Poulsen, P.H. and Jørgensen, K.A. (2014) A New Organocatalytic Concept for Asymmetric α-Alkylation of Aldehydes. Journal of the American Chemical Society, 136, 15929-15932.
https://doi.org/10.1021/ja510475n
[37] Li, S., Liu, Y., Huang, B., Zhou, T., Tao, H., Xiao, Y., Liu, L. and Zhang, J. (2017) Phosphine-Catalyzed Asymmetric Intermolecular Cross-Vinylogous Rauhut-Currier Reactions of Vinyl Ketones with para-Quinone Methides. ACS Catalysis, 7, 2805-2809.
https://doi.org/10.1021/acscatal.7b00030
[38] Lou, Y., Cao, P., Jia, T., Zhang, Y., Wang, M. and Liao, J. (2015) Copper-Catalyzed Enantioselective 1,6-Boration of para-Quinone Methides and Efficient Transformation of gem-Diarylmethine Boronates to Triarylmethanes. Angewandte Chemie International Edition, 54, 12134-12138.
https://doi.org/10.1002/anie.201505926
[39] Wen, W., Luo, M.-J., Yuan, Y., Liu, J.-H., Wu, Z.-L., Cai, T., Wu, Z.-W., Ouyang, Q. and Guo, Q.-X. (2020) Diastereodivergent Chiral Aldehyde Catalysis for Asymmetric 1,6-Conjugated Addition and Mannich Reactions. Nature Communications, 11, 5372.
https://doi.org/10.1038/s41467-020-19245-3
[40] Li, X., Xu, X., Wei, W., Lin, A. and Yao, H. (2016) Organocatalyzed Asymmetric 1,6-Conjugate Addition of para-Quinone Methides with Dicyanoolefins. Organic Letters, 18, 428-431.
https://doi.org/10.1021/acs.orglett.5b03471
[41] Jensen, T. and Fristrup, P. (2009) Toward Efficient Palladium-Catalyzed Allylic C-H Alkylation. Chemistry—A European Journal, 15, 9632-9636.
https://doi.org/10.1002/chem.200901935
[42] Trost, B.M. (1980) New Rules of Selectivity: Allylic Alkylations Catalyzed by Palladium. Accounts of Chemical Research, 13, 385-393.
https://doi.org/10.1021/ar50155a001
[43] Shintani, R., Takatsu, K., Takeda, M. and Hayashi, T. (2011) Copper-Catalyzed Asymmetric Allylic Substitution of Allyl Phosphates with Aryl- and Alkenylboronates. Angewandte Chemie International Edition, 50, 8656-8659.
https://doi.org/10.1002/anie.201103581
[44] Tian, H., Zhang, P., Peng, F., Yang, H. and Fu, H. (2017) Chiral Cyclic Ligand-Enabled Iridium-Catalyzed Asymmetric Arylation of Unactivated Racemic Allylic Alcohols with Anilines. Organic Letters, 19, 3775-3778.
https://doi.org/10.1021/acs.orglett.7b01631
[45] Heravi, M.M., Zdsirjan, V., Masoumi, B. and Heydari, M. (2019) Organometal-Catalyzed Asymmetric Friedel-Crafts Reactions. Journal of Organometallic Chemistry, 879, 78-138.
https://doi.org/10.1016/j.jorganchem.2018.10.011
[46] Paras, N.A. and Mac Millan, D.W.C. (2002) The Enantioselective Organocatalytic 1,4-Addition of Electron-Rich Benzenes to α,β-Unsaturated Aldehydes. Journal of the American Chemical Society, 124, 7894-7895.
https://doi.org/10.1021/ja025981p
[47] Hong, L., Wang, L., Sun, W., Wong, K. and Wang, R. (2009) Organocatalytic Asymmetric Friedel-Crafts Alkylation/Cyclization Cascade Reaction of 1-Naphthols and α,β-Unsaturated Aldehydes: An Enantioselective Synthesis of Chromanes and Dihydrobenzopyranes. The Journal of Organic Chemistry, 74, 6881-6884.
https://doi.org/10.1021/jo901409d
[48] Zhang, H., Liao, Y.-H., Yuan, W.-C. and Zhang, X.-M. (2010) Organocatalytic Enantioselective Friedel-Crafts Alkylation of Sesamol with Nitro Olefins. European Journal of Organic Chemistry, 2010, 3215-3218.
https://doi.org/10.1002/ejoc.201000271
[49] Roseblade, S.J. and Pfaltz, A. (2007) Iridium-Catalyzed Asymmetric Hydrogenation of Olefins. Accounts of Chemical Research, 40, 1402-1411.
https://doi.org/10.1021/ar700113g
[50] He, Y.-M. and Fan, Q.-H. (2014) Asymmetric Hydrogenation in the Core of Dendrimers. Accounts of Chemical Research, 47, 2894-2906.
https://doi.org/10.1021/ar500146e
[51] Tolstoy, P., Engman, M., Paptchikhine, A., Bergquist, J., Church, T.L., W.-M. Leung, A. and Andersson, P.G. (2009) Iridium-Catalyzed Asymmetric Hydrogenation Yielding Chiral Diarylmethines with Weakly Coordinating or Noncoordinating Substituents. Journal of the American Chemical Society, 131, 8855-8860.
https://doi.org/10.1021/ja9013375
[52] Bess, E.N. and Sigman, M.S. (2013) Distinctive Meta-Directing Group Effect for Iridium-Catalyzed 1,1-Diarylalkene Enantioselective Hydrogenation. Organic Letters, 15, 646-649.
https://doi.org/10.1021/ol303465c
[53] Song, S., Zhu, S.-F., Yu, Y.-B. and Zhou, Q.-L. (2013) Carboxy-Directed Asymmetric Hydrogenation of 1,1-Diarylethenes and 1,1-Dialkylethenes. Angewandte Chemie International Edition, 52, 1556-1559.
https://doi.org/10.1002/anie.201208606
[54] Li, Y., Dong, K., Wang, Z. and Ding, K. (2013) Rhodium(I)-Catalyzed Enantioselective Hydrogenation of Substituted Acrylic Acids with Sterically Similar β,β-Diaryls. Angewandte Chemie International Edition, 52, 6748-6752.
https://doi.org/10.1002/anie.201302349
[55] Wu, X., Ren, J., Shao, Z., Yang, X. and Qian, D. (2021) Transition-Metal-Catalyzed Asymmetric Couplings of α-Aminoalkyl Fragments to Access Chiral Alkylamines. ACS Catalysis, 11, 6560-6577.
https://doi.org/10.1021/acscatal.1c01545
[56] Do, H.-Q., Chandrashekar, E.R.R. and Fu, G.C. (2013) Nickel/Bis(oxazoline)-Catalyzed Asymmetric Negishi Arylations of Racemic Secondary Benzylic Electrophiles to Generate Enantioenriched 1,1-Diarylalkanes. Journal of the American Chemical Society, 135, 16288-16291.
https://doi.org/10.1021/ja408561b
[57] Poremba, K.E., Kadunce, N.T., Suzuki, N., Cherney, A.H. and Reisman, S.E. (2017) Nickel-Catalyzed Asymmetric Reductive Cross-Coupling to Access 1,1-Diarylalkanes. Journal of the American Chemical Society, 139, 5684-5687.
https://doi.org/10.1021/jacs.7b01705
[58] Li, B., Aliyu, M.A., Gao, Z., Li, T., Dong, W., Li, J., Shi, E. and Tang, W. (2020) General Synthesis of Chiral α,α-Diaryl Carboxamides by Enantioselective Palladium-Catalyzed Cross-Coupling. Organic Letters, 22, 4974-4978.
https://doi.org/10.1021/acs.orglett.0c01489
[59] Chen, G., Gong, W., Zhuang, Z., Andrä, M.S., Chen, Y.-Q., Hong, X., Yang, Y.-F., Liu, T., Houk, K.N. and Yu, J.Q. (2016) Ligand-Accelerated Enantioselective Methylene C(sp3)-H Bond Activation. Science, 353, 1023-1027.
https://doi.org/10.1126/science.aaf4434
[60] Zhang, W., Wu, L., Chen, P. and Liu, G. (2019) Enantioselective Arylation of Benzylic C-H Bonds by Copper-Catalyzed Radical Relay. Angewandte Chemie International Edition, 58, 6425-6429.
https://doi.org/10.1002/anie.201902191
[61] Cheng, X., Lu, H. and Lu, Z. (2019) Enantioselective Benzylic C-H Arylation via Photoredox and Nickel Dual Catalysis. Nature Communications, 10, 3549.
https://doi.org/10.1038/s41467-019-11392-6
[62] Xu, B., Li, M.-L., Zuo, X.-D., Zhu, S.-F. and Zhou, Q.-L. (2015) Catalytic Asymmetric Arylation of α-Aryl-α-diazoacetates with Aniline Derivatives. Journal of the American Chemical Society, 137, 8700-8703.
https://doi.org/10.1021/jacs.5b05086
[63] Zhu, D.-X., Xia, H., Liu, J.-G., Chung, L.-W. and Xu, M.-H. (2021) Regiospecific and Enantioselective Arylvinylcarbene Insertion of a C-H Bond of Aniline Derivatives Enabled by a Rh(I)-Diene Catalyst. Journal of the American Chemical Society, 143, 2608-2619.
https://doi.org/10.1021/jacs.0c13191
[64] Yamamoto, E., Hilton, M.J., Orlandi, M., Saini, V., Toste, F.D. and Sigman, M.S. (2016) Development and Analysis of a Pd(0)-Catalyzed Enantioselective 1,1-Diarylation of Acrylates Enabled by Chiral Anion Phase Transfer. Journal of the American Chemical Society, 138, 15877-15880.
https://doi.org/10.1021/jacs.6b11367
[65] Wu, L., Wang, F., Wan, X., Wang, D., Chen, P. and Liu, G. (2017) Asymmetric Cu-Catalyzed Intermolecular Trifluoromethylarylation of Styrenes: Enantioselective Arylation of Benzylic Radicals. Journal of the American Chemical Society, 139, 2904-2907.
https://doi.org/10.1021/jacs.6b13299
[66] Wang, D., Wu, L., Wang, F., Wan, X., Chen, P., Lin, Z. and Liu, G. (2017) Asymmetric Copper-Catalyzed Intermolecular Aminoarylation of Styrenes: Efficient Access to Optical 2,2-Diarylethylamines. Journal of the American Chemical Society, 139, 6811-6814.
https://doi.org/10.1021/jacs.7b02455
[67] Chen, B., Cao, P., Yin, X., Liao, Y., Jiang, L., Ye, J., Wang, M. and Liao, J. (2017) Modular Synthesis of Enantioenriched 1,1,2-Triarylethanes by an Enantioselective Arylboration and Cross-Coupling Sequence. ACS Catalysis, 7, 2425-2429.
https://doi.org/10.1021/acscatal.7b00300