源于TiCl4的Na0.5Bi0.5TiO3粉体水热合成研究
The Research on Hydrothermal Synthesis of Na0.5Bi0.5TiO3 Powder from TiCl4
摘要: 文中通过水热法,分别采用四氯化钛(TiCl4)、五水硝酸铋(Bi(NO3)3•5H2O)作为钛源、铋源,以氢氧化钠(NaOH)作为钠源和矿化剂,成功制备了不同微观形貌的Na0.5Bi0.5TiO3粉体。研究了NaOH浓度、水热温度以及水热时间对NBT粉体微观形貌的影响,结果表明:NaOH浓度是影响NBT粉体微观形貌的主要因素;当NaOH浓度为14 M时,水热温度和水热时间主要影响粉体颗粒结晶程度,对粉体的微观形貌影响不是特别明显。
Abstract: Different morphologies of Bismuth Sodium Titanate (Na0.5Bi0.5TiO3, abbreviated as NBT) powders have been successfully prepared via a hydrothermal method using titanium tetrachloride (TiCl4), bismuth nitrate (Bi(NO3)3•5H2O), sodium hydroxide (NaOH) as titanium, bismuth, sodium source, respectively, and sodium hydroxide (NaOH) as mineralizing agent, too. The effect of reactive parameters, including NaOH concentration, reaction temperature and reaction time on the powders morphologies, was studied. The results show that: NaOH concentration is the main parameter which affects the morphology of NBT powders, and when the NaOH concentration is 14 M, hydrothermal temperature and hydrothermal time affect more on the crystallinity of NBT powders, and the effect they make on the morphology of NBT powders is not evident.
文章引用:李霞, 戴金辉, 鲁统雷, 朱志斌, 黄翔, 吴平伟, 李海燕. 源于TiCl4的Na0.5Bi0.5TiO3粉体水热合成研究[J]. 材料科学, 2012, 2(1): 36-41. http://dx.doi.org/10.12677/ms.2012.21006

参考文献

[1] J. Hu, T. W. Odom and C. M. Lieber. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nano- tubes. Accounts of Chemical Research, 1999, 32(5): 435-445.
[2] Y. J. Zhang, L. Zhang and J. G. Deng. Controlled synthesis, cha- racterization, and morphology-dependent reducibility of ceria-zi- rconia-yttria solid solutions with nanorod-like, microspherical, microbowknot-like, and micro-octahedral shapes. Inorganic Che- mistry, 2009, 48(5): 2181-2192.
[3] Z. L. Wang, J. H. Song. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312(5771): 242-246.
[4] M. T. Buscaglia, V. Buscaglia and C. Bottino. Morphological control of hydrothermal Ni(OH)2 in the presence of polymers and surfactants: Nanocrystals, mesocrystals, and superstructures. Crystal Growth & Design, 2008, 8(10): 3847-3855.
[5] G. R. Li, T. Hu and G. L. Pan. Morphology function relationship of ZnO: Polar planes, oxygen vacancies, and activity. Journal of Physical Chemistry C, 2008, 112(31): 11859-11864.
[6] I. S. Neira, Y. V. Kolen’ ko and O. I. Lebedev. An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. Crystal Growth & Design, 2009, 9(1): 466-474.
[7] W. W. Ge, H. Liu and X. Y. Zhao. Growth and characterization of Na0.5Bi0.5TiO3-BaTiO lead-free piezoelectric crystal by the TSSG method. Journal of Alloys Compounds, 2008, 462(1): 256- 261.
[8] B. L. Newalkar, S. Komarneni and H. Katsuki. Microwave- hydrothermal synthesis and characterization of barium titanate powders. Material Research Bulletin, 2001, 36(13-14) : 2347- 2355.
[9] T. L. Lu, J. H. Dai, J. T. Tian, et al. Synthesis of Na0.5Bi0.5TiO3 powders through hydrothermal method. Journal of Alloys Compounds, 2010, 490(1-2): 232-235.
[10] J. Li, G. Z. Wang and H. Q. Wang. In situ self-assembly synthesis and photocatalytic performance of hierarchical Bi0.5Na0.5TiO3 micro/nanostructures. Journal of Material Chemistry, 2009, 19 (31): 2253-2258.
[11] X. Z. Jing, Y. X. Li and Q. R. Yin. Hydrothermal synthesis of Na0.5Bi0.5TiO3 fine powders. Material Science and Engineering, 2003, B99: 506-510.
[12] Y. G. Wang, G. Xu and L. L. Yang. Hydrothermal synthesis and characterization of Na0.5Bi0.5TiO3 microcubes. Ceramics International, 2009, 35(4): 1657-1659.
[13] Y. F. Liu, Y. N. Lu and S. H. Dai. Hydrothermal synthesis of monosized Bi0.5Na0.5TiO3 spherical particles under low alkaline solution concentration. Journal of Alloys Compounds, 2009, 484 (1-2): 801-805.