|
[1]
|
Selby, N.M. and Taal, M.W. (2020) An Updated Overview of Diabetic Nephropathy: Diagnosis, Prognosis, Treatment Goals and Latest Guidelines. Diabetes, Obesity & Metabolism, 22, 3-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chu, D.T., Phuong, T., Tien, N., Tran, D.K., Thanh, V.V., Quang, T.L., Truong, D.T., Pham, V.H., Ngoc, V., Chu-Dinh, T. and Kushekhar, K. (2020) An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells. International Journal of Molecular Sciences, 21, 708. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Abbaszadeh, H., Ghorbani, F., Derakhshani, M., Movassaghpour, A. and Yousefi, M. (2020) Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Novel Therapeutic Paradigm. Journal of Cellular Physiology, 235, 706-717. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Harrell, C.R., Jovicic, N., Djonov, V. and Volarevic, V. (2020) Therapeutic Use of Mesenchymal Stem Cell-Derived Exosomes: From Basic Science to Clinics. Pharmaceutics, 12, 474. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
de Castro, L.L., Lopes-Pacheco, M., Weiss, D.J., Cruz, F.F. and Rocco, P. (2019) Current Understanding of the Immunosuppressive Properties of Mesenchymal Stromal Cells. Journal of Molecular Medicine (Berlin, Germany), 97, 605-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Shokri, M.R., Bozorgmehr, M., Ghanavatinejad, A., Falak, R., Aleahmad, M., Kazemnejad, S., Shokri, F. and Zarnani, A.H. (2019) Human Menstrual Blood-Derived Stromal/Stem Cells Modulate Functional Features of Natural Killer Cells. Scientific Reports, 9, Article No. 10007. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Shen, Z., Huang, W., Liu, J., Tian, J., Wang, S. and Rui, K. (2021) Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Frontiers in Immunology, 12, Article ID: 749192. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Qi, H., Liu, D.P., Xiao, D.W., Tian, D.C., Su, Y.W. and Jin, S.F. (2019) Exosomes Derived from Mesenchymal Stem Cells Inhibit Mitochondrial Dysfunction-Induced Apoptosis of Chondrocytes via p38, ERK, and Akt Pathways. In Vitro Cellular & Developmental Biology. Animal, 55, 203-210. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Qian, X., An, N., Ren, Y., Yang, C., Zhang, X. and Li, L. (2021) Immunosuppressive Effects of Mesenchymal Stem Cells-Derived Exosomes. Stem Cell Reviews and Reports, 17, 411-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Barrera-Chimal, J. and Jaisser, F. (2020) Pathophysiologic Mechanisms in Diabetic Kidney Disease: A Focus on Current and Future Therapeutic Targets. Diabetes, Obesity & Metabolism, 22, 16-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Keshtkar, S., Kaviani, M., Sarvestani, F.S., Ghahremani, M.H., Aghdaei, M.H., Al-Abdullah, I.H. and Azarpira, N. (2020) Exosomes Derived from Human Mesenchymal Stem Cells Preserve Mouse Islet Survival and Insulin Secretion Function. EXCLI Journal, 19, 1064-1080. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Nojehdehi, S., Soudi, S., Hesampour, A., Rasouli, S., Soleimani, M. and Hashemi, S.M. (2018) Immunomodulatory Effects of Mesenchymal Stem Cell-Derived Exosomes on Experimental Type-1 Autoimmune Diabetes. Journal of Cellular Biochemistry, 119, 9433-9443. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
He, Q., Wang, L., Zhao, R., Yan, F., Sha, S., Cui, C., Song, J., Hu, H., Guo, X., Yang, M., Cui, Y., Sun, Y., Sun, Z., Liu, F., Dong, M., Hou, X. and Chen, L. (2020) Mesenchymal Stem Cell-Derived Exosomes Exert Ameliorative Effects in Type 2 Diabetes by Improving Hepatic Glucose and Lipid Metabolism via Enhancing Autophagy. Stem Cell Research & Therapy, 11, 223. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Gallo, S., Gili, M., Lombardo, G., Rossetti, A., Rosso, A., Dentelli, P., Togliatto, G., Deregibus, M.C., Taverna, D., Camussi, G. and Brizzi, M.F. (2016) Stem Cell-Derived, microRNA-Carrying Extracellular Vesicles: A Novel Approach to Interfering with Mesangial Cell Collagen Production in a Hyperglycaemic Setting. PLoS ONE, 11, e0162417. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chen, A., Wang, H., Su, Y., Zhang, C., Qiu, Y., Zhou, Y., Wan, Y., Hu, B. and Li, Y. (2021) Exosomes: Biomarkers and Therapeutic Targets of Diabetic Vascular Complications. Frontiers in Endocrinology, 12, Article ID: 720466. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Mao, R., Shen, J. and Hu, X. (2021) BMSCs-Derived Exosomal microRNA-let-7a Plays a Protective Role in Diabetic Nephropathy via Inhibition of USP22 Expression. Life Sciences, 268, Article ID: 118937. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Jiang, Z.Z., Liu, Y.M., Niu, X., Yin, J.Y., Hu, B., Guo, S. C., Fan, Y., Wang, Y. and Wang, N.S. (2016) Exosomes Secreted by Human Urine-Derived Stem Cells Could Prevent Kidney Complications from Type I Diabetes in Rats. Stem Cell Research & Therapy, 7, 24. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Duan, Y.R., Chen, B.P., Chen, F., Yang, S.X., Zhu, C.Y., Ma, Y.L., Li, Y. and Shi, J. (2019) Exosomal microrna-16-5p from Human Urine-Derived Stem Cells Ameliorates Diabetic Nephropathy through Protection of Podocyte. Journal of Cellular and Molecular Medicine. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Jin, J., Shi, Y., Gong, J., Zhao, L., Li, Y., He, Q. and Huang, H. (2019) Exosome Secreted from Adipose-Derived Stem Cells Attenuates Diabetic Nephropathy by Promoting Autophagy Flux and Inhibiting Apoptosis in Podocyte. Stem Cell Research & Therapy, 10, 95. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Grange, C., Tritta, S., Tapparo, M., Cedrino, M., Tetta, C., Camussi, G. and Brizzi, M.F. (2019) Stem Cell-Derived Extracellular Vesicles Inhibit and Revert Fibrosis Progression in a Mouse Model of Diabetic Nephropathy. Scientific Reports, 9, Article No. 4468. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Liu, Q., Lv, S., Liu, J., Liu, S., Wang, Y. and Liu, G. (2020) Mesenchymal Stem Cells Modified with Angiotensin-Converting Enzyme 2 Are Superior for Amelioration of Glomerular Fibrosis in Diabetic Nephropathy. Diabetes Research and Clinical Practice, 162, Article ID: 108093. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhong, L., Liao, G., Wang, X., Li, L., Zhang, J., Chen, Y., Liu, J., Liu, S., Wei, L., Zhang, W. and Lu, Y. (2018) Mesenchymal Stem Cells-Microvesicle-miR-451a Ameliorate Early Diabetic Kidney Injury by Negative Regulation of P15 and P19. Experimental Biology and Medicine (Maywood, N.J.), 243, 1233-1242. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Jin, J., Wang, Y., Zhao, L., Zou, W., Tan, M. and He, Q. (2020) Exosomal miRNA-215-5p Derived from Adipose-Derived Stem Cells Attenuates Epithelial-Mesenchymal Transition of Podocytes by Inhibiting ZEB2. BioMed Research International, 2020, Article ID: 2685305. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Duan, Y., Luo, Q., Wang, Y., Ma, Y., Chen, F., Zhu, X. and Shi, J. (2020) Adipose Mesenchymal Stem Cell-Derived Extracellular Vesicles Containing microRNA-26a-5p Target TLR4 and Protect against Diabetic Nephropathy. The Journal of Biological Chemistry, 295, 12868-12884. [Google Scholar] [CrossRef]
|
|
[25]
|
Wang, B., Yao, K., Huuskes, B. M., Shen, H.H., Zhuang, J., Godson, C., Brennan, E.P., Wilkinson-Berka, J.L., Wise, A.F. and Ricardo, S.D. (2016) Mesenchymal Stem Cells Deliver Exogenous MicroRNA-let7c via Exosomes to Attenuate Renal Fibrosis. Molecular Therapy: The Journal of the American Society of Gene Therapy, 24, 1290-1301. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Gu, Y.Y., Liu, X.S., Huang, X.R., Yu, X.Q. and Lan, H.Y. (2020) TGF-β in Renal Fibrosis: Triumphs and Challenges. Future Medicinal Chemistry, 12, 853-866. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, H., Rong, P., Ma, X., Nie, W., Chen, Y., Zhang, J., Dong, Q., Yang, M. and Wang, W. (2020) Mouse Umbilical Cord Mesenchymal Stem Cell Paracrine Alleviates Renal Fibrosis in Diabetic Nephropathy by Reducing Myofibroblast Transdifferentiation and Cell Proliferation and Upregulating MMPs in Mesangial Cells. Journal of Diabetes Research, 2020, Article ID: 3847171. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhang, L., Zhu, X.Y., Zhao, Y., Eirin, A., Liu, L., Ferguson, C.M., Tang, H., Lerman, A. and Lerman, L.O. (2020) Selective Intrarenal Delivery of Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuates Myocardial Injury in Experimental Metabolic Renovascular Disease. Basic Research in Cardiology, 115, 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Xiang, E., Han, B., Zhang, Q., Rao, W., Wang, Z., Chang, C., Zhang, Y., Tu, C., Li, C. and Wu, D. (2020) Human Umbilical Cord-Derived Mesenchymal Stem Cells Prevent the Progression of Early Diabetic Nephropathy through Inhibiting Inflammation and Fibrosis. Stem Cell Research & Therapy, 11, 336. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ebrahim, N., Ahmed, I.A., Hussien, N.I., Dessouky, A.A., Farid, A.S., Elshazly, A.M., Mostafa, O., Gazzar, W., Sorour, S.M., Seleem, Y., Hussein, A.M. and Sabry, D. (2018) Mesenchymal Stem Cell-Derived Exosomes Ameliorated Diabetic Nephropathy by Autophagy Induction through the mTOR Signaling Pathway. Cells, 7, 226. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Pomatto, M., Gai, C., Negro, F., Cedrino, M., Grange, C., Ceccotti, E., Togliatto, G., Collino, F., Tapparo, M., Figliolini, F., Lopatina, T., Brizzi, M.F. and Camussi, G. (2021) Differential Therapeutic Effect of Extracellular Vesicles Derived by Bone Marrow and Adipose Mesenchymal Stem Cells on Wound Healing of Diabetic Ulcers and Correlation to Their Cargoes. International Journal of Molecular Sciences, 22, 3851. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Eirin, A. and Lerman, L.O. (2021) Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles for Chronic Kidney Disease: Are We There Yet? Hypertension (Dallas, Tex.: 1979), 78, 261-269. [Google Scholar] [CrossRef]
|