间充质干细胞外泌体在糖尿病肾病治疗中的研究进展
The Research Progress of Mesenchymal Stem Cells’ Exosomes in the Treatment of Diabetic Nephropathy
DOI: 10.12677/ACM.2021.1112875, PDF, HTML, XML, 下载: 327  浏览: 499 
作者: 张芷薇:重庆医科大学研究生院,重庆
关键词: 糖尿病肾病间充质干细胞外泌体Diabetic Nephropathy Mesenchymal Stem Cells Exosomes
摘要: 糖尿病肾病(Diabetic Nephropathy, DN)易进展为终末期肾病,目前对其的治疗主要以降血糖、对症支持治疗及肾脏替代治疗等为主,缺乏有效的干预疾病进展的手段。间充质干细胞(mesenchymal stem cells, MSCs)因其具有免疫抑制作用和易再生的特性,被视为免疫、炎症性疾病的新治疗剂,其对糖尿病肾病的有效治疗得到许多实验和临床研究证明,而大多数MSCs介导的有益作用归因于源自MSCs的外泌体(mesenchymal stem cells’ exosomes, MSC-exos)的作用。我们综述了MSC-exos在治疗DN的研究进展。
Abstract: Diabetic nephropathy (DN) is easy to progress to end-stage renal disease. At present, the treatment of DN is mainly based on controlling blood glucose, symptomatic and supportive treatment and renal replacement therapy. There is a lack of effective means to intervene the progression of DN. Mesenchymal stem cells (MSCs) are regarded as new therapeutic agents for immune and inflammatory diseases because of their immunosuppressive effects and regenerative properties, and their effective treatment for DN has been demonstrated by many experimental and clinical studies, while most MSCs mediated beneficial effects are attributed to the effects of exosomes (MSC-exos) derived from MSCs. We review the research progress of MSC-exos in the treatment of DN.
文章引用:张芷薇. 间充质干细胞外泌体在糖尿病肾病治疗中的研究进展[J]. 临床医学进展, 2021, 11(12): 5905-5910. https://doi.org/10.12677/ACM.2021.1112875

1. 引言

随着DN发病率和死亡率的增加,其已成为危害世界各国的重要卫生问题 [1]。目前针对DN的主要治疗措施包括药物治疗、肾脏替代治疗和肾脏移植 [1]。然而,由于药物治疗的局限性、肾脏替代治疗的不便和肾移植供体的稀缺,寻找新的治疗方法迫在眉睫。近年来,干细胞作为一种新的再生疗法,被用于治疗包括肾脏疾病在内的众多疾病 [2]。MSCs逐渐成为治疗DN的新手段。MSC衍生的外泌体MSC-exos由于其较低的免疫原性、致瘤性,且更容易制备及储存,与MSCs相比更具优势 [3]。

2. MSCs及MSC-exos概述

MSCs是一种可自我更新的成体干细胞,遍布于所有出生后的组织和器官中,其主要尤以骨髓来源为主 [4]。MSCs除了具有较强的分化能力外,还具有调节固有和适应性免疫细胞的免疫调节潜力 [4]。大量证据表明,MSCs可通过抑制活化、增殖和分化为效应细胞,作用于各种炎症细胞及免疫细胞 [5] [6]。在炎症因子刺激后,MSCs表现出通过分泌各种免疫调节因子减少炎症反应、改善组织修复和避免感染的特性 [7]。MSCs现能广泛应用于神经、心血管、肝脏、肾脏和骨骼疾病以及皮肤伤口、炎症性肠病、癌症、不育症等多种疾病 [3]。MSCs通过旁分泌途径发挥其免疫调节功能,尤其是通过外泌体 [7] [8]。MSC-exos是MSC分泌的脂质膜囊泡,能携带丰富的蛋白质、核酸和其他生物活性物质。来自不同供体的间充质干细胞,其分泌的外泌体能够运载各种不同的生物活性分子 [9]。这些货物通过内吞作用或与受体表面的蛋白质结合而转移到受体细胞,从而介导不同细胞类型之间的细胞间通讯并影响受体细胞的功能 [9]。

3. MSC-exos治疗DN的研究进展

MSC-exos作为DN的一种新兴治疗手段,目前基于动物实验的许多研究表明其能够延缓肾功能的进展,但机制尚不明确,处于不断探索中的阶段。MSC-exos可通过多种方式保护肾足细胞和其他肾细胞,包括控制高血糖、抗凋亡、抗纤维化、抗炎和促自噬等。

3.1. 控制高血糖

高血糖可诱导级联事件,导致肾小球和肾小管–间质纤维化,伴足细胞损伤或丢失和系膜细胞肥大,这是糖尿病肾病的标志 [10]。MSC-exos可能通过转移血管内皮生长因子减轻胰岛细胞死亡并改善胰岛存活及功能 [11],这将有利于控制高血糖。脂肪组织间充质干细胞的外泌体(ADSCs-Exos)通过上调白细胞介素IL-4、IL-10和转化生长因子b及下调IL-17和干扰素-γ,改善1型糖尿病小鼠炎症免疫反应,能控制其血糖水平 [12]。Qin He等揭示了骨髓间充质干细胞来源的外泌体通过自噬相关的AMPK通路抑制参与葡萄糖稳态,他们研究发现MSC外泌体处理后糖酵解酶和脂解酶的表达增加,而肝糖异生酶减少;这表明MSCs来源的外泌体参与葡萄糖代谢下调高血糖 [13]。Gallo S等人证实了骨髓及人肝脏干细胞的外泌体可以通过转移miR-222对暴露于高血糖的系膜细胞具有治疗潜力 [14]。并且,血糖水平较高本身可致足细胞损伤,加剧DN的发展。

3.2. 抗凋亡

在I型DN小鼠中,有研究发现骨髓间充质干细胞外泌体(BMSCs-Exos)可发挥抗凋亡作用,下调TGF-β1表达,维持紧密连接蛋白表达,抑制肾小管上皮细胞的上皮间质转化,能够抑制尿白蛋白的进展 [15]。Mao等发现BMSCs-Exos的miR-let-7a的升高和其靶向泛素特异性蛋白酶22 (USP22)的沉默可以降低血尿素氮(BUN)、血肌酐(Scr),抑制肾脏细胞凋亡和氧化应激,并下调DN大鼠肾组织中N-钙粘蛋白表达,从而对DN起保护作用 [16]。Jiang等在链脲佐菌素注射诱导的糖尿病肾病大鼠模型,利用尿源性干细胞外泌体(USCs-Exos)处理高糖培养基培养的足细胞,测试USCs-Exos对足细胞凋亡的保护作用,结果显示其能阻止足细胞和肾小管上皮细胞凋亡 [17]。Duan等人揭示了USCs-Exos分泌的miRNA-16-5p可抑制血管内皮生长因子A的表达,并且通过下调TLR4和NF-κB/VEGFA信号通路抑制高血糖诱导的小鼠足细胞凋亡,进而缓解DN [18]。除此,Jin等人也证实了ADSCs-Exos可以通过上调miR-486的表达,逆转高血糖诱导的MPC5细胞活力下降和细胞凋亡增加,抑制足细胞凋亡 [19]。上述两项实验均可通过降低小鼠BUN、Scr、尿蛋白,改善DN的症状。

3.3. 抗纤维化

Grange等设计了一个实验,对链脲佐菌素诱导的糖尿病肾病小鼠给予骨髓间充质干细胞和人肝干细胞样细胞(HLSCs)外泌体持续4周的治疗,与对照组相比,予以外泌体治疗的小鼠组肾组织纤维化和I型胶原表达显著降低,肾功能指标(BUN、Scr及尿白蛋白/尿肌酐排泄率UACR)明显改善,这表明MSC-exos可通过阻止和部分逆转DN的纤维化来改善肾功能 [20]。在最近的一项研究中,研究人员将血管紧张素转换酶II修饰后的间充质干细胞移植到糖尿病大鼠体内,发现与单独的MSC治疗相比,MSC-ACE2更有利于降低AngII和增加Ang1-7,从而通过下调I型胶原和纤维连接蛋白(FN)表达,抑制转化生长因子(TGF-β)/Smad通路,减少肾小球纤维化,对DN具有更好的治疗效果 [21]。有研究发现MSC-exos能通过miRNA-451a负调控抑制细胞周期的抑制剂P15和P19,重新开始被阻断的细胞周期,逆转上皮间质转化(EMT)和肾纤维化 [22]。还有研究人员证明ADSCs-Exos能将miRNA-215-5p能抑制ZEB2的基因转录来削弱足细胞的EMT [23]。同时,miR-26a5p通过靶向TLR4也参与了这一过程。miR-26a-5p的过表达使NF-κB通路失活,下调血管内皮生长因子a [24]。在肾纤维化小鼠模型中,miR-let7c能通过MSC-exos转运到受损的肾脏,通过抑制1型α1和IV型α1胶原、TGF-β1型受体和α平滑肌肌动蛋白(α-SMA),改善肾脏结构和减少细胞外基质(ECM)沉积 [25],这有助于延缓肾纤维化的进展 [26]。另一项研究也有提到,小鼠脐带间充质干细胞(UCMSC)衍生的旁分泌因子通过抑制TGF-β1诱导的肌成纤维细胞转分化、PI3K/Akt及MAPK信号通路介导的细胞增殖,上调基质金属蛋白酶2、9来减少ECM蛋白的沉积 [27]。在小鼠模型中,有研究发现人脐带间充质干细胞外泌体(UCs-Exos)通过抑制ROS介导的P38MAPK/ERK通路,从而能缓解肾间质纤维化 [28]。

3.4. 抗炎及促自噬

Xiang等人揭示UCMSC可减轻DN大鼠肾小球内皮细胞和肾小管上皮细胞的炎症反应。实验观察到MSCs给予组中的IL-6、IL-1b、TNF-a的mRNA表达比对照组显著降低(P < 0.05)。为进一步验证,研究者将MSCs来源的外泌体与高糖处理的肾细胞共培养,其中包括HK2细胞、NRK-52E细胞和hRGE细胞;结果显示MSCs来源的外泌体以剂量依赖的方式抑制高糖诱导的TGF-b、IL-6、IL-1b和TNF-a的产生。而且,在MSCs来源的外泌体中检测到表皮生长因子、肝细胞生长因子、血管内皮生长因子等几种因子,这表明抗炎作用是由MSCs来源的外泌体介导的 [29]。Ebrahim等人在链脲佐菌素诱导的糖尿病大鼠模型中证实了MSC-exos能增强自噬,使自噬标记物Beclin-1、轻链-3 (LC3)显著增加,然后通过雷帕霉素(mTOR)信号通路显著恢复肾功能和结构,减缓DN的进展 [30]。Jin等人更进一步地发现ADSCs-Exos可以通过miRNA-486靶向抑制Smad1的表达,抑制mTOR的激活,促进足细胞自噬,抑制其凋亡,从而改善DN [19]。

4. 目前遇到的困难

目前,许多在动物模型的研究实验均能证实MSC-exos可作为治疗DN的一种潜力手段,但现仍需要去解决的问题有:1) 探究最佳的MSC-exos处理和储存方式,不同方式可能影响其功能活性;2) 研究肾细胞摄取MSC-exos的潜在机制,并确定临床试验的首选给药途径;3) 确定MSC-exos给药的最佳时间窗及确定MSC-exos的持续时间、长期效应和最佳方案;4) 探究最佳的MSC来源:比如ADSCs-Exos比BMSCs-Exos能更好地促进伤口愈合 [31];与骨髓来源的MSCs相比,肝来源的人MSCs产生更多的促血管生成、抗炎和抗凋亡细胞因子 [32];5) 研究MSC-exos潜在的长期有害影响;6) 关于MSC-exos治疗DN的强有力的安全性和有效性临床实验。

5. 总结

多种动物模型实验及临床前试验表明不同来源的MSC-exos可能通过控制高血糖、抗凋亡、抗纤维化、抗炎和促自噬等多种机制延缓DN的进展,显现出其作为DN治疗新手段的巨大前景,但目前治疗机制尚未完全明确,且仍面临着不少挑战,其有效性及安全性需要更多实验去证明。MSC-exos在DN中的治疗可能还有漫长的路要走,但我们期待其广泛应用于临床的一天。

参考文献

[1] Selby, N.M. and Taal, M.W. (2020) An Updated Overview of Diabetic Nephropathy: Diagnosis, Prognosis, Treatment Goals and Latest Guidelines. Diabetes, Obesity & Metabolism, 22, 3-15.
https://doi.org/10.1111/dom.14007
[2] Chu, D.T., Phuong, T., Tien, N., Tran, D.K., Thanh, V.V., Quang, T.L., Truong, D.T., Pham, V.H., Ngoc, V., Chu-Dinh, T. and Kushekhar, K. (2020) An Update on the Progress of Isolation, Culture, Storage, and Clinical Application of Human Bone Marrow Mesenchymal Stem/Stromal Cells. International Journal of Molecular Sciences, 21, 708.
https://doi.org/10.3390/ijms21030708
[3] Abbaszadeh, H., Ghorbani, F., Derakhshani, M., Movassaghpour, A. and Yousefi, M. (2020) Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Novel Therapeutic Paradigm. Journal of Cellular Physiology, 235, 706-717.
https://doi.org/10.1002/jcp.29004
[4] Harrell, C.R., Jovicic, N., Djonov, V. and Volarevic, V. (2020) Therapeutic Use of Mesenchymal Stem Cell-Derived Exosomes: From Basic Science to Clinics. Pharmaceutics, 12, 474.
https://doi.org/10.3390/pharmaceutics12050474
[5] de Castro, L.L., Lopes-Pacheco, M., Weiss, D.J., Cruz, F.F. and Rocco, P. (2019) Current Understanding of the Immunosuppressive Properties of Mesenchymal Stromal Cells. Journal of Molecular Medicine (Berlin, Germany), 97, 605-618.
https://doi.org/10.1007/s00109-019-01776-y
[6] Shokri, M.R., Bozorgmehr, M., Ghanavatinejad, A., Falak, R., Aleahmad, M., Kazemnejad, S., Shokri, F. and Zarnani, A.H. (2019) Human Menstrual Blood-Derived Stromal/Stem Cells Modulate Functional Features of Natural Killer Cells. Scientific Reports, 9, Article No. 10007.
https://doi.org/10.1038/s41598-019-46316-3
[7] Shen, Z., Huang, W., Liu, J., Tian, J., Wang, S. and Rui, K. (2021) Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Frontiers in Immunology, 12, Article ID: 749192.
https://doi.org/10.3389/fimmu.2021.749192
[8] Qi, H., Liu, D.P., Xiao, D.W., Tian, D.C., Su, Y.W. and Jin, S.F. (2019) Exosomes Derived from Mesenchymal Stem Cells Inhibit Mitochondrial Dysfunction-Induced Apoptosis of Chondrocytes via p38, ERK, and Akt Pathways. In Vitro Cellular & Developmental Biology. Animal, 55, 203-210.
https://doi.org/10.1007/s11626-019-00330-x
[9] Qian, X., An, N., Ren, Y., Yang, C., Zhang, X. and Li, L. (2021) Immunosuppressive Effects of Mesenchymal Stem Cells-Derived Exosomes. Stem Cell Reviews and Reports, 17, 411-427.
https://doi.org/10.1007/s12015-020-10040-7
[10] Barrera-Chimal, J. and Jaisser, F. (2020) Pathophysiologic Mechanisms in Diabetic Kidney Disease: A Focus on Current and Future Therapeutic Targets. Diabetes, Obesity & Metabolism, 22, 16-31.
https://doi.org/10.1111/dom.13969
[11] Keshtkar, S., Kaviani, M., Sarvestani, F.S., Ghahremani, M.H., Aghdaei, M.H., Al-Abdullah, I.H. and Azarpira, N. (2020) Exosomes Derived from Human Mesenchymal Stem Cells Preserve Mouse Islet Survival and Insulin Secretion Function. EXCLI Journal, 19, 1064-1080.
https://doi.org/10.1155/2020/8857457
[12] Nojehdehi, S., Soudi, S., Hesampour, A., Rasouli, S., Soleimani, M. and Hashemi, S.M. (2018) Immunomodulatory Effects of Mesenchymal Stem Cell-Derived Exosomes on Experimental Type-1 Autoimmune Diabetes. Journal of Cellular Biochemistry, 119, 9433-9443.
https://doi.org/10.1002/jcb.27260
[13] He, Q., Wang, L., Zhao, R., Yan, F., Sha, S., Cui, C., Song, J., Hu, H., Guo, X., Yang, M., Cui, Y., Sun, Y., Sun, Z., Liu, F., Dong, M., Hou, X. and Chen, L. (2020) Mesenchymal Stem Cell-Derived Exosomes Exert Ameliorative Effects in Type 2 Diabetes by Improving Hepatic Glucose and Lipid Metabolism via Enhancing Autophagy. Stem Cell Research & Therapy, 11, 223.
https://doi.org/10.1186/s13287-020-01731-6
[14] Gallo, S., Gili, M., Lombardo, G., Rossetti, A., Rosso, A., Dentelli, P., Togliatto, G., Deregibus, M.C., Taverna, D., Camussi, G. and Brizzi, M.F. (2016) Stem Cell-Derived, microRNA-Carrying Extracellular Vesicles: A Novel Approach to Interfering with Mesangial Cell Collagen Production in a Hyperglycaemic Setting. PLoS ONE, 11, e0162417.
https://doi.org/10.1371/journal.pone.0162417
[15] Chen, A., Wang, H., Su, Y., Zhang, C., Qiu, Y., Zhou, Y., Wan, Y., Hu, B. and Li, Y. (2021) Exosomes: Biomarkers and Therapeutic Targets of Diabetic Vascular Complications. Frontiers in Endocrinology, 12, Article ID: 720466.
https://doi.org/10.3389/fendo.2021.720466
[16] Mao, R., Shen, J. and Hu, X. (2021) BMSCs-Derived Exosomal microRNA-let-7a Plays a Protective Role in Diabetic Nephropathy via Inhibition of USP22 Expression. Life Sciences, 268, Article ID: 118937.
https://doi.org/10.1016/j.lfs.2020.118937
[17] Jiang, Z.Z., Liu, Y.M., Niu, X., Yin, J.Y., Hu, B., Guo, S. C., Fan, Y., Wang, Y. and Wang, N.S. (2016) Exosomes Secreted by Human Urine-Derived Stem Cells Could Prevent Kidney Complications from Type I Diabetes in Rats. Stem Cell Research & Therapy, 7, 24.
https://doi.org/10.1186/s13287-016-0287-2
[18] Duan, Y.R., Chen, B.P., Chen, F., Yang, S.X., Zhu, C.Y., Ma, Y.L., Li, Y. and Shi, J. (2019) Exosomal microrna-16-5p from Human Urine-Derived Stem Cells Ameliorates Diabetic Nephropathy through Protection of Podocyte. Journal of Cellular and Molecular Medicine.
https://doi.org/10.1111/jcmm.14558
[19] Jin, J., Shi, Y., Gong, J., Zhao, L., Li, Y., He, Q. and Huang, H. (2019) Exosome Secreted from Adipose-Derived Stem Cells Attenuates Diabetic Nephropathy by Promoting Autophagy Flux and Inhibiting Apoptosis in Podocyte. Stem Cell Research & Therapy, 10, 95.
https://doi.org/10.1186/s13287-019-1177-1
[20] Grange, C., Tritta, S., Tapparo, M., Cedrino, M., Tetta, C., Camussi, G. and Brizzi, M.F. (2019) Stem Cell-Derived Extracellular Vesicles Inhibit and Revert Fibrosis Progression in a Mouse Model of Diabetic Nephropathy. Scientific Reports, 9, Article No. 4468.
https://doi.org/10.1038/s41598-019-41100-9
[21] Liu, Q., Lv, S., Liu, J., Liu, S., Wang, Y. and Liu, G. (2020) Mesenchymal Stem Cells Modified with Angiotensin-Converting Enzyme 2 Are Superior for Amelioration of Glomerular Fibrosis in Diabetic Nephropathy. Diabetes Research and Clinical Practice, 162, Article ID: 108093.
https://doi.org/10.1016/j.diabres.2020.108093
[22] Zhong, L., Liao, G., Wang, X., Li, L., Zhang, J., Chen, Y., Liu, J., Liu, S., Wei, L., Zhang, W. and Lu, Y. (2018) Mesenchymal Stem Cells-Microvesicle-miR-451a Ameliorate Early Diabetic Kidney Injury by Negative Regulation of P15 and P19. Experimental Biology and Medicine (Maywood, N.J.), 243, 1233-1242.
https://doi.org/10.1177/1535370218819726
[23] Jin, J., Wang, Y., Zhao, L., Zou, W., Tan, M. and He, Q. (2020) Exosomal miRNA-215-5p Derived from Adipose-Derived Stem Cells Attenuates Epithelial-Mesenchymal Transition of Podocytes by Inhibiting ZEB2. BioMed Research International, 2020, Article ID: 2685305.
https://doi.org/10.1155/2020/2685305
[24] Duan, Y., Luo, Q., Wang, Y., Ma, Y., Chen, F., Zhu, X. and Shi, J. (2020) Adipose Mesenchymal Stem Cell-Derived Extracellular Vesicles Containing microRNA-26a-5p Target TLR4 and Protect against Diabetic Nephropathy. The Journal of Biological Chemistry, 295, 12868-12884.
https://doi.org/10.1074/jbc.RA120.012522
[25] Wang, B., Yao, K., Huuskes, B. M., Shen, H.H., Zhuang, J., Godson, C., Brennan, E.P., Wilkinson-Berka, J.L., Wise, A.F. and Ricardo, S.D. (2016) Mesenchymal Stem Cells Deliver Exogenous MicroRNA-let7c via Exosomes to Attenuate Renal Fibrosis. Molecular Therapy: The Journal of the American Society of Gene Therapy, 24, 1290-1301.
https://doi.org/10.1038/mt.2016.90
[26] Gu, Y.Y., Liu, X.S., Huang, X.R., Yu, X.Q. and Lan, H.Y. (2020) TGF-β in Renal Fibrosis: Triumphs and Challenges. Future Medicinal Chemistry, 12, 853-866.
https://doi.org/10.4155/fmc-2020-0005
[27] Li, H., Rong, P., Ma, X., Nie, W., Chen, Y., Zhang, J., Dong, Q., Yang, M. and Wang, W. (2020) Mouse Umbilical Cord Mesenchymal Stem Cell Paracrine Alleviates Renal Fibrosis in Diabetic Nephropathy by Reducing Myofibroblast Transdifferentiation and Cell Proliferation and Upregulating MMPs in Mesangial Cells. Journal of Diabetes Research, 2020, Article ID: 3847171.
https://doi.org/10.1155/2020/3847171
[28] Zhang, L., Zhu, X.Y., Zhao, Y., Eirin, A., Liu, L., Ferguson, C.M., Tang, H., Lerman, A. and Lerman, L.O. (2020) Selective Intrarenal Delivery of Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuates Myocardial Injury in Experimental Metabolic Renovascular Disease. Basic Research in Cardiology, 115, 16.
https://doi.org/10.1007/s00395-019-0772-8
[29] Xiang, E., Han, B., Zhang, Q., Rao, W., Wang, Z., Chang, C., Zhang, Y., Tu, C., Li, C. and Wu, D. (2020) Human Umbilical Cord-Derived Mesenchymal Stem Cells Prevent the Progression of Early Diabetic Nephropathy through Inhibiting Inflammation and Fibrosis. Stem Cell Research & Therapy, 11, 336.
https://doi.org/10.1186/s13287-020-01852-y
[30] Ebrahim, N., Ahmed, I.A., Hussien, N.I., Dessouky, A.A., Farid, A.S., Elshazly, A.M., Mostafa, O., Gazzar, W., Sorour, S.M., Seleem, Y., Hussein, A.M. and Sabry, D. (2018) Mesenchymal Stem Cell-Derived Exosomes Ameliorated Diabetic Nephropathy by Autophagy Induction through the mTOR Signaling Pathway. Cells, 7, 226.
https://doi.org/10.3390/cells7120226
[31] Pomatto, M., Gai, C., Negro, F., Cedrino, M., Grange, C., Ceccotti, E., Togliatto, G., Collino, F., Tapparo, M., Figliolini, F., Lopatina, T., Brizzi, M.F. and Camussi, G. (2021) Differential Therapeutic Effect of Extracellular Vesicles Derived by Bone Marrow and Adipose Mesenchymal Stem Cells on Wound Healing of Diabetic Ulcers and Correlation to Their Cargoes. International Journal of Molecular Sciences, 22, 3851.
https://doi.org/10.3390/ijms22083851
[32] Eirin, A. and Lerman, L.O. (2021) Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles for Chronic Kidney Disease: Are We There Yet? Hypertension (Dallas, Tex.: 1979), 78, 261-269.
https://doi.org/10.1161/HYPERTENSIONAHA.121.14596