|
[1]
|
Chevallier, M., Borgeaud, M., Addeo, A. and Friedlaender, A. (2021) Oncogenic Driver Mutations in Non-Small Cell Lung Cancer: Past, Present and Future. World Journal of Clinical Oncology, 12, 217-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Yu, J.-J., Zhou, D.-D., Yang, X.-X., Cui, B., Tan, F.-W., Wang, J., et al. (2020) TRIB3-EGFR Interaction Promotes Lung Cancer Progression and Defines a Therapeutic Target. Nature Communications, 11, Article No. 3660. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Le, X., Nilsson, M., Goldman, J., Reck, M., Nakagawa, K., Kato, T., et al. (2021) Dual EGFR-VEGF Pathway Inhibition: A Promising Strategy for Patients with EGFR-Mutant NSCLC. Journal of Thoracic Oncology, 16, 205-215. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Lu, Y., Liu, Y., Oeck, S., Zhang, G.J., Schramm, A. and Glazer, P.M. (2020) Hypoxia Induces Resistance to EGFR Inhibitors in Lung Cancer Cells via Upregulation of FGFR1 and the MAPK Pathway. Cancer Research, 80, 4655-4667. [Google Scholar] [CrossRef]
|
|
[5]
|
He, D., Wang, D., Lu, P., Yang, N., Xue, Z., Zhu, X., et al. (2021) Single-cell RNA Sequencing Reveals Heterogeneous Tumor and Immune Cell Populations in Early-Stage Lung Adenocarcinomas Harboring EGFR Mutations. Oncogene, 40, 355-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Passarelli, A., Aieta, M., Sgambato, A. and Gridelli, C. (2020) Targeting Immunometabolism Mediated by CD73 Pathway in EGFR-Mutated Non-Small Cell Lung Cancer: A New Hope for Overcoming Immune Resistance. Frontiers in Immunology, 11, Article No. 1479. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Jin, R., Zhao, J., Xia, L., Li, Q., Li, W., Peng, L., et al. (2020) Application of Immune Checkpoint Inhibitors in EGFR-Mutant Non-Small-Cell Lung Cancer: From Bed to Bench. Therapeutic Advances in Medical Oncology, 12, Article ID: 1758835920930333. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Guo, Y., Song, J., Wang, Y., Huang, L., Sun, L., Zhao, J., et al. (2020) Concurrent Genetic Alterations and Other Biomarkers Predict Treatment Efficacy of EGFR-TKIs in EGFR-Mutant Non-Small Cell Lung Cancer: A Review. Frontiers in Oncology, 10, Article No. 610923. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Papadimitrakopoulou, V.A., Mok, T.S., Han, J.-Y., Ahn, M.-J., Delmonte, A., Ramalingam, S.S., et al. (2020) Osimertinib versus Platinum-Pemetrexed for Patients with EGFR T790M Advanced NSCLC and Progression on a Prior EGFR-Tyrosine Kinase Inhibitor: AURA3 overall Survival Analysis. Annals of Oncology, 31, 1536-1544. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Nagasaka, M., Zhu, V.W., Lim, S.M., Greco, M., Wu, F. and Ou, S.I. (2021) Beyond Osimertinib: The Development of Third-Generation EGFR Tyrosine Kinase Inhibitors for Advanced EGFR+ NSCLC. Journal of Thoracic Oncology, 16, 740-763. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Qin, Y.R., Jian, H., Tong, X., Wu, X., Wang, F., Shao, Y.W., et al. (2020) Variability of EGFR Exon 20 Insertions in 24 468 Chinese Lung Cancer Patients and Their Divergent Responses to EGFR Inhibitors. Molecular Oncology, 14, 1695-1704. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Passaro, A., Mok, T., Peters, S., Popat, S., Ahn, M.J., de Marinis, F., et al. (2021) Recent Advances on the Role of EGFR Tyrosine Kinase Inhibitors in the Management of NSCLC with Uncommon, Non Exon 20 Insertions, EGFR Mutations. Journal of Thoracic Oncology, 16, 764-773. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Donald Harvey, R., Adams, V.R., Beardslee, T. and Medina, P. (2020) Afatinib for the Treatment of EGFR Mutation-Positive NSCLC: A Review of Clinical Findings. Journal of Oncology Pharmacy Practice, 26, 1461-1474. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhao, B., Wang, Y., Wang, Y., Chen, W., Zhou, L., Liu, P.H., et al. (2020) Efficacy and Safety of Therapies for EGFR-Mutant Non-Small Cell Lung Cancer with Brain Metastasis: An Evidence-Based Bayesian Network Pooled Study of Multivariable Survival Analyses. Aging (Albany NY), 12, 14244-14270. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kashima, K., Kawauchi, H., Tanimura, H., Tachibana, Y., Chiba, T., Torizawa, T., et al. (2020) CH7233163 Overcomes Osimertinib Resistant EGFR-Del19/T790M/C797S Mutation. Molecular Cancer Therapeutics, 19, 2288-2297. [Google Scholar] [CrossRef]
|
|
[16]
|
Amodio, V., Yaeger, R., Arcella, P., Cancelliere, C., Lamba, S. and Lorenzato, A, et al. (2020) EGFR Blockade Reverts Resistance to KRAS G12C Inhibition in Colorectal Cancer. Cancer Discovery, 10, 1129-1139. [Google Scholar] [CrossRef]
|
|
[17]
|
Ghimessy, A., Radeczky, P., Laszlo, V., Hegedus, B., Renyi-Vamos, F., Fillinger, J., et al. (2020) Current Therapy of KRAS-Mutant Lung Cancer. Cancer and Metastasis Reviews, 39, 1159-1177. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hamarsheh, S., Groß, O., Brummer, T. and Zeiser, R. (2020) Immune Modulatory Effects of Oncogenic KRAS in Cancer. Nature Communications, 11, Article No.5439. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Uras, I.Z., Moll, H.P. and Casanova, E. (2020) Targeting KRAS Mutant Non-Small-Cell Lung Cancer: Past, Present and Future. International Journal of Molecular Sciences, 21, Article No. 4325. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Hofmann, M.H., Gmachl, M., Ramharter, J., Savarese, F., Gerlach, D., Marszalek, J.R., et al. (2021) BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers through Combined MEK Inhibition. Cancer Discovery, 11, 142-157. [Google Scholar] [CrossRef]
|
|
[21]
|
Radeczky, P., Ghimessy, Á., Berta, J., László, V., Hegedűs, B., Rényi-Vámos, F., et al. (2020) Therapeutic Possibilities in KRAS-Mutant Lung Adenocarcinoma. Magyar Onkologia, 64, 231-244.
|
|
[22]
|
Hong, D.S., Fakih, M.G., Strickler, J.H., Desai, J., Durm, G.A., Shapiro, G.I., et al. (2020) KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors. New England Journal of Medicine, 383, 1207-1217. [Google Scholar] [CrossRef]
|
|
[23]
|
Addeo, A., Luigi Banna, G. and Friedlaender, A. (2021) KRASG12C Mutations in NSCLC: From Target to Resistance. Cancers, 13, Article No. 2541. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Tanaka, N., Lin, J.J., Li, C., Ryan, M.B., Zhang, J., Kiedrowski, L.A., et al. (2021) Clinical Acquired Resistance to KRASG12C Inhibition through a Novel KRAS Switch-II Pocket Mutation and Polyclonal Alterations Converging on RAS-MAPK Reactivation. Cancer Discovery, 11, 1913-1922. [Google Scholar] [CrossRef]
|
|
[25]
|
Yun, M.R., Kim, D.H., Kim, S.-Y., Joo, H.S., Lee, Y.W., Choi, H.M., et al. (2020) Repotrectinib Exhibits Potent Antitumor Activity in Treatment-Naïve and Solvent-Front-Mutant ROS1-Rearranged Non-Small Cell Lung Cancer. Clinical Cancer Research, 26, 3287-3295. [Google Scholar] [CrossRef]
|
|
[26]
|
Cui, M., Han, Y., Li, P., Zhang, J., Ou, Q., Tong, X., et al. (2020) Molecular and Clinicopathological Characteristics of ROS1-Rearranged Non-Small-Cell Lung Cancers Identified by Next-Generation Sequencing. Molecular Oncology, 14, 2787-2795. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, W., Guo, L., Liu, Y., Dong, L., Yang, L., Chen, L., et al. (2021) Potential Unreliability of Uncommon ALK, ROS1, and RET Genomic Breakpoints in Predicting the Efficacy of Targeted Therapy in NSCLC. Journal of Thoracic Oncology, 16, 404-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sato, H., Schoenfeld, A.J., Siau, E., Lu, Y.C., Tai, H., Suzawa, K., et al. (2020) MAPK Pathway Alterations Correlate with Poor Survival and Drive Resistance to Therapy in Patients with Lung Cancers Driven by ROS1 Fusions. Clinical Cancer Research, 26, 2932-2945. [Google Scholar] [CrossRef]
|
|
[29]
|
Suda, K. and Mitsudomi, T. (2020) Emerging Oncogenic Fusions Other than ALK, ROS1, RET, and NTRK in NSCLC and the Role of Fusions as Resistance Mechanisms to Targeted Therapy. Translational Lung Cancer Research, 9, 2618-2628. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Cai, L.L., Duan, J.C., Qian, L., Wang, Z., Wang, S., Li, S., et al. (2020) ROS1 Fusion Mediates Immunogenicity by Upregulation of PD-L1 after the Activation of ROS1-SHP2 Signaling Pathway in Non-Small Cell Lung Cancer. Frontiers in Immunology, 11, Article ID: 527750. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhu, V.W., Lin, Y.-T., Kim, D.-W., Loong, H.H., Nagasaka, M., To, H., et al. (2020) An International Real-World Analysis of the Efficacy and Safety of Lorlatinib through Early or Expanded Access Programs in Patients with Tyrosine Kinase Inhibitor-Refractory ALK-Positive or ROS1-Positive NSCLC. Journal of Thoracic Oncology, 15, 1484-1496. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Araujo, J.M., Gomez, A.C., Pinto, J.A., Rolfo, C. and Raez, L.E. (2020) Profile of Entrectinib in the Treatment of ROS1-Positive Non-Small Cell Lung Cancer: Evidence to Date. Hematology/Oncology and Stem Cell Therapy, 14, 192-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Chu, P., Antoniou, M., Bhutani, M.K., Aziez, A. and Daigl, M. (2020) Matching-Adjusted Indirect Comparison: Entrectinib versus Crizotinib in ROS1 Fusion-Positive Non-Small Cell Lung Cancer. Journal of Comparative Effectiveness Research, 9, 861-876. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
D’Angelo, A., Sobhani, N., Chapman, R., Bagby, S., Bortoletti, C., Traversini, M., et al. (2020) Focus on ROS1-Positive Non-Small Cell Lung Cancer (NSCLC): Crizotinib, Resistance Mechanisms and the Newer Generation of Targeted Therapies. Cancers, 12, Article No. 3293. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Holger, F., Ullah, M., de la Cruz, C.C., Hunsaker, T., Senn, C., Wirz, T., et al. (2020) Entrectinib, a TRK/ROS1 Inhibitor with Anti-CNS Tumor Activity: Differentiation from Other Inhibitors in Its Class due to Weak Interaction with P-Glycoprotein. Neuro-Oncology, 22, 819-829. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liu, H., Nazmun, N., Hassan, S., Liu, X. and Yang, J. (2020) BRAF Mutation and Its Inhibitors in Sarcoma Treatment. Cancer Medicine, 9, 4881-4896. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Roviello, G., D’Angelo, A., Sirico, M., Pittacolo, M., Conter, F.U., Sobhani, N., et al. (2021) Advances in Anti-BRAF Therapies for Lung Cancer. Investigational New Drugs, 39, 879-890. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Peiffer, L., Farahpour, F., Sriram, A., Spassova, I., Hoffmann, D., Kubat, L., et al. (2021) BRAF and MEK Inhibition in Melanoma Patients Enables Reprogramming of Tumor Infiltrating Lymphocytes. Cancer Immunology, Immunotherapy, 70, 1635-1647. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Johnson, D.B., Nebhan, C.A. and Noel, M.S. (2020) MEK Inhibitors in Non-V600 BRAF Mutations and Fusions. Oncotarget, 11, 3900-3903. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Cotto-Rios, X.M., Agianian, B., Gitego, N., Zacharioudakis, E., Giricz, O., Wu, Y., et al. (2020) Inhibitors of BRAF Dimers Using an Allosteric Site. Nature Communications, 11, Article No. 4370. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Proietti, I., Skroza, N., Bernardini, N., Tolino, E., Balduzzi, V., Marchesiello, A., et al. (2020) Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancer, 12, Article No. 2801. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Meng, P., Koopman, B., Kok, K., Ter Elst, A., Schuuring, E., van Kempen, L.C., et al. (2020) Combined Osimertinib, Dabrafenib and Trametinib Treatment for Advanced Non-Small-Cell Lung Cancer Patients with an Osimertinib-Induced BRAF V600E Mutation. Lung Cancer, 146, 358-361. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Subbiah, V., Baik, C. and Kirkwood, J.M. (2020) Clinical Development of BRAF Plus MEK Inhibitor Combinations. Trends in Cancer, 6, 797-810. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ganna P., Tang, X., Maisonneuve, P., Jin, T., Lavoie, H., Daou, S., et al. (2020) Functional Characterization of a PROTAC Directed against BRAF mutant V600E. Nature Chemical Biology, 16, 1170-1178. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Gerard O’Leary, C., Andelkovic, V., Ladwa, R., Pavlakis, N., Zhou, C., Hirsch, F., et al. (2019) Targeting BRAF Mutations in Non-Small Cell Lung Cancer. Translational Lung Cancer Research, 8, 1119-1124. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Vittoria Dieci, M., Miglietta, F., Griguolo, G. and Guarneri, V. (2020) Biomarkers for HER2-Positive Metastatic Breast Cancer: Beyond Hormone Receptors. Cancer Treatment Reviews, 88, Article ID: 102064. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zimmer, A.S., Van Swearingen, A.E.D. and Anders, C.K. (2020) HER2-Positive Breast Cancer Brain Metastasis: A New and Exciting Landscape. Cancer Reports, Article No. e1274. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Vranić, S., Bešlija, S. and Gatalica, Z. (2021) Targeting HER2 Expression in Cancer: New Drugs and New Indications. Bosnian Journal of Basic Medical Sciences, 21, 1-4. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Chen, K., Pan, G., Cheng, G., Zhang, F., Xu, Y., Huang, Z., et al. (2021) Immune Microenvironment Features and Efficacy of PD-1/PD-L1 Blockade in Non-Small Cell Lung Cancer Patients with EGFR or HER2 Exon 20 Insertions. Thoracic Cancer, 12, 218-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Hackshaw, M.D., Danysh, H.E., Singh, J., Ritchey, M.E., Ladner, A., Taitt, C., et al. (2020) Incidence of Pneumonitis/Interstitial Lung Disease Induced by HER2-Targeting Therapy for HER2-Positive Metastatic Breast Cancer. Breast Cancer Research and Treatment, 183, 23-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Horvath, L. and Pircher, A. (2021) ASCO 2020 Non-Small Lung Cancer (NSCLC) Personal Highlights. Magazine of European Medical Oncology, 14, 66-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Santos, E.S. and Hart, L. (2020) Advanced Squamous Cell Carcinoma of the Lung: Current Treatment Approaches and the Role of Afatinib. OncoTargets and Therapy, 13, 9305-9321. [Google Scholar] [CrossRef]
|
|
[53]
|
Kazmi, S., Chatterjee, D., Raju, D., Hauser, R. and Kaufman, P.A. (2020) Overall Survival Analysis in Patients with Metastatic Breast Cancer and Liver or Lung Metastases Treated with Eribulin, Gemcitabine, or Capecitabine. Breast Cancer Research and Treatment, 184, 559-565. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
André, F., Ciruelos, E.M., Juric, D., Loibl, S., Campone, M., Mayer, I.A., et al. (2021) Alpelisib plus Fulvestrant for PIK3CA-Mutated, Hormone Receptor-positive, Human Epidermal Growth Factor Receptor-2—Negative Advanced Breast Cancer: Final Overall Survival Results from SOLAR-1. Annals of Oncology, 32, 208-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Drilon, A., Oxnard, G.R., Tan, D.S.W., Loong, H.H.F., Johnson, M., Gainor, J., et al. (2020) Efficacy of Selpercatinib in RET Fusion-Positive Non-Small-Cell Lung Cancer. New England Journal of Medicine, 383, 813-824. [Google Scholar] [CrossRef]
|
|
[56]
|
Lin, J.J., Liu, S.V., McCoach, C.E., Zhu, V.W., Tan, A.C., Yoda, S., Peterson, J., et al. (2020) Mechanisms of Resistance to Selective RET Tyrosine Kinase Inhibitors in RET Fusion-Positive Non-Small-Cell Lung Cancer. Annals of Oncology, 31, 1725-1733. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Fancelli, S., Caliman, E., Mazzoni, F., Brugia, M., Castiglione, F., Voltolini, L., et al. (2021) Chasing the Target: New Phenomena of Resistance to Novel Selective RET Inhibitors in Lung Cancer. Updated Evidence and Future Perspectives. Cancers, 13, Article ID: 1091. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Rosen, E.Y., Johnson, M.L., Clifford, S.E., Somwar, R., Kherani, J.F., Son, J., et al. (2021) Overcoming MET-Dependent Resistance to Selective RET Inhibition in Patients with RET Fusion-Positive Lung Cancer by Combining Selpercatinib with Crizotinib. Clinical Cancer Research, 27, 34-42. [Google Scholar] [CrossRef]
|
|
[59]
|
Subbiah, V., Shen, T., Terzyan, S.S., Liu, X., Hu, X., Patel, K.P., et al. (2021) Structural Basis of Acquired Resistance to Selpercatinib and Pralsetinib Mediated by Non-Gatekeeper RET Mutations. Annals of Oncology, 32, 261-268. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Solomon, B.J., Zhou, C.C., Drilon, A., Park, K., Wolf, J., Elamin, Y., et al. (2021) Phase III Study of Selpercatinib versus Chemotherapy ± Pembrolizumab in Untreated RET Positive Non-Small-Cell lung Cancer. Future Oncology, 17, 763-773. [Google Scholar] [CrossRef] [PubMed]
|