老红坡区易滑坡段天然气管道应力分析
Gas Pipeline Stress-Analysis of Landslides-Prone Section in Laohongpo Area
DOI: 10.12677/JOGT.2021.434079, PDF, HTML, XML, 下载: 327  浏览: 493  科研立项经费支持
作者: 卢 艳*, 伍 颖:西南石油大学土木工程与测绘学院,四川 成都
关键词: 埋地天然气管道滑坡数值模拟应力分析Buried Natural Gas Pipeline Landslides Numerical Analysis Stress Analysis
摘要: 云南省滑坡地质灾害频发,对燃气管道安全运营造成较大危害。为明确滑坡地质灾害对实际天然气埋地管道的危害,本文针对实际老红坡区中缅天然气管道易滑坡地段开展了全线应力分析。研究发现,管道轴向应力和弯曲应力较大的节点均出现在弯管处,且弯管处是复杂应力的集中点;通过增加管道壁厚和降低覆土密度,能够有效避免特定滑坡地质灾害产生时管线应力超载的发生。滑坡地质灾害时天然气管道危险点的确定及管线应力超载的有效避免,能够减少滑坡时天然气管道事故的发生,对管道运营过程中优选监测目标及采取有效措施保障全线安全运营至关重要。
Abstract: The frequent occurrence of landslides and geological disasters has caused serious damage to the safety of gas pipelines in Yunnan Province. In order to clarify the hazards of landslides geological, this paper conducts a full-simulation of stress analysis for the actual landslides-prone section in the actual Laohongpo area of the Sino-Myanmar natural gas pipeline. It turns out that the nodes with larger axial stress and bending stress appear at the elbow, and the elbow is a concentrated point of complex stress. By increasing the wall thickness of the pipeline and reducing the density of the overlying soil, it is possible to effectively avoid the occurrence of stress overload for the pipeline when a specific landslides geological disaster occurs. The determination of landslides geological hazards that break natural gas pipelines and the effective avoidance of pipeline stress overload could reduce the occurrence of the accidents during landslides. It is of great significance to select the monitoring targets during pipeline operation and take effective measures to ensure the safety of the entire line.
文章引用:卢艳, 伍颖. 老红坡区易滑坡段天然气管道应力分析[J]. 石油天然气学报, 2021, 43(4): 103-114. https://doi.org/10.12677/JOGT.2021.434079

1. 引言

云贵高原山区地段地形复杂,地质灾害频发,在选线过程中因实际需要无法完全避开不良工程地质地段,这对实际天然气管道的安全运营、环境保护及生命财产安全危害极大。天然气输气管道因铺设距离长,将穿越复杂的地质地貌,管道安全时常受到崩塌、滑坡、泥石流、塌陷等地质灾害的威胁,而云贵高原山区主要的地质灾害是滑坡 [1]。

据不完全统计,截至2014年兰成渝输油管道、中贵输气管道、西气东输管道沿线地质灾害多达282处,涉及崩塌、滑坡、采空、泥石流等,其中滑坡灾害107处 [2],占比高达38%。近年来,国内天然气产业大力发展,天然气的普及率已大大提高,但其易燃易爆的性质使得天然气管道爆炸时有发生 [3]。管道附近发生滑坡地质灾害时,在地质滑坡推力作用下会造成管道受到显著的附加应力和应变,缓慢滑坡能够导致管道大范围变形,而突发滑坡则会造成管道瞬间失效 [4]。滑坡是引发油气管道失效的常见原因之一,轻者可致管道裸露、悬空和屈曲,重者导致管道破裂,引发油气泄漏污染环境,造成重大经济损失,甚至发生爆燃事故,危及生命及财产安全。

目前管道应力监测技术方法已多种多样,一直发展到今天,主要有:电阻应变测量、机械应变计、X光衍射法 [5] 等。刘永峰 [6] 发现当前技术最成熟、运用最广泛的是电阻应变测量,简称电测法;霍小亮 [7] 在分析研究采空区位置的管道应力变化时,采用振弦式应力监测系统;在管道应力监测中,传统的电阻式应变片、振弦式应变计等传感器发挥了重要的作用。张乐廷 [8] 等通过给管道内壁粘贴应变片提出了超高压管道残余应力检测方法;贾振安 [9] 等利用布里渊散射技术,获得地质灾害区域管道沿线周围土层应变分布变化信息,但上述传感器精度不高、耐腐蚀性能差、易受电磁干扰等问题没有得到彻底解决;为了弥补以上缺陷,冷建成等 [10] 提出了一种基于光纤光栅(FBG)传感的管道应力监测方法等。

纵观国内外有关管道应力监测技术虽然方法众多,但由于实际地质情况复杂,不存在一种通用的监测技术,且管道本体应力监测数据较难实现无线传输,各种监测技术及手段均需要因地制宜选择合适的传感器以及配套的系统。因此,有必要针对易滑坡地段天然气管道进行管道应力分析研究,明确重点危害管段,对天然气管道运营安全部分进行风险隐患治理至关重要。

2. 天然气管道基本情况

老红坡区中缅天然气管道自北向南敷设,线路全长91.7 m,管径为406.4 mm,采用L 415钢级,设计压力6.3 MPa。线路经过地区属典型的高原喀斯特地貌,生态环境比较脆弱,易发生泥石流、滑坡等地质灾害情况。其中,老红坡段南侧地区,线路长约为2 km,天然气管道沿两侧边坡敷设,埋深1.5 m,局部深度达9.4 m,两侧坡角45˚,有滑坡趋向段的坡度在17.50˚~31.55˚之间,如图1所示。

Figure 1. Schematic diagram of pipeline and terrain and landslides tendency in Laohongpo district

图1. 老红坡段管道及地形与滑坡倾向示意图

根据老红坡段管道及地形与滑坡示意图,对所监测燃气段进行全线应力初步分析,通过滑坡地质灾害发生趋势与管道敷设特点,初步确定滑坡发生时的危险点7处,如图2所示。这七个危险点中,管道顶端(2、5)和底端(1、3、4)容易形成应力集中区,应力集中进一步发展会导致管道出现塑性变形,进而发生屈曲破坏,主要里程和高程以及可能的失效形式见表1

Figure 2. Primary selection of key dangerous points

图2. 重点危险点初选位置

Table 1. Monitor the relevant parameters of the pipe section and possible failure modes

表1. 监测管段有关参数及可能的失效形式

3. 埋地管道应力分析方法比选

埋地敷设的天然气管道主要受到天然气的内压作用和土壤的外载作用,即管道滑动时的摩擦力、土体产生的重力和内压引发的应力。由Ramberg-Osgood方程 [11] 可知,随着内压的增加,管道的许用应变将减少。对沟底管道来说,承受的是轴向压缩,由于土量堆高将引起径向失稳;另一方面,管道承受的土压力和内压方向是相反的,所以管道内压越大,管道破坏的几率越小。对于拉伸失效,随着内压的增加,管道的等效应力越大,因此坡顶管道破坏的几率越大 [12]。

通常情况下,工程上采用不连续的非线性弹簧模拟土壤对管道的作用。常用建立土壤模型的方法有ALA模型、Peng模型、ASME B31.1附录VII模型等 [13]。埋地管道应力计算模型是用不连续的非线性弹簧模拟土壤对管道的作用,其分析需要计算的两个基本极限载荷是轴向和横向极限载荷,刚度则可以通过极限载荷除以屈服位移得到,而应力增量与应变的关系和土壤载荷与土壤位移的关系,如图3图4

1) Peng理论 [8] (CAESAR II Basic Soil Modal)

工程中常用Peng L C算法,该方法认为土壤约束作用采用具有初始刚度、极限载荷和屈服刚度的双线性弹簧来模拟,将屈服刚度设为接近于零,即一旦达到极限载荷,即使位移不断增加,极限载荷的值也不会进一步增大 [14]。

Figure 3. Relationship between stress increment and strain

图3. 应力增量与应变的关系

Figure 4. Relationship between soil load and soil displacement

图4. 土壤载荷与土壤位移的关系

① 轴向极限载荷

F a x = μ D ( 2 ρ S H + π ρ p t + π 4 D ρ f ) (2-1)

式中: F a x 为轴向极限载荷,N/mm; μ 为管道与土壤的摩擦因数,一般淤泥取0.3,细沙取0.4,沙砾取0.5,粘土取0.6~2.4;D管道的直径,mm; ρ S 为土壤密度,N/mm3 ρ p 为管道材料密度,N/mm; ρ f 为管内介质密度,N/mm;t为管道壁厚,mm;H为土壤表面到管道顶部的深度,mm。

② 横向极限载荷

未给定排水抗剪切强度:

F tr = 0.5 ρ S ( H + D ) 2 tan 2 ( 45 + φ 2 ) C (2-2)

给定排水抗剪切强度:

F tr = [ 0.5 ρ S ( H + D ) 2 tan 2 ( 45 + φ 2 ) C ] S u / 250 (2-3)

式中: F tr 为横向极限载荷,N/mm; S u 为无排水抗剪切强度,MPa; φ 为土壤内摩擦角(沙土取27˚~45˚,淤泥取26˚~35˚,粘土取0˚);C为土壤压缩因数。屈服位移:屈服位移系数默认为0.015。

管道单位长度上的轴向刚度:

K ax = F ax Y d

管道单位长度上的横向刚度:

K tr = F tr Y d

2) 埋地直管段轴向应力

按照受约束的埋地直管段轴向应力计算和当量应力校核的要求 [15],应满足下列两个要求:

① 由内压和温度引起的轴向应力按下列公式计算:

σ L = μ σ h + E α ( t 1 t 2 ) (2-4)

σ h = P d 2 σ n (2-5)

② 受约束热胀直管段,按最大剪应力强度理论计算当量应力,并应满足下式要求:

σ e = σ h σ L < 0.9 σ s (2-6)

式中: σ L 为管道的轴向应力,拉应力为正,压应力为负,MPa; μ 为泊桑比,取0.3; σ h 为由内压产生的管道换向应力,MPa;E为钢材的弹性模量,MPa (取E = 203390 MPa,软件自动赋值,ASME B31.8给出的E为203 GPa); α 为钢材的线膨胀系数(一般取 α = 1.1 × 10 5 ); t 1 为管道下沟回填时的温度(取 t 1 = 30 ˚ C ); σ e 为当量应力,MPa; σ s 为管材标准规定的最小屈服强度,MPa (取415 MPa)。

3) 管道基本应力与校核

对于输气管道应力的校核,国内通常依照GB50251《输气管道工程设计规范》的要求 [16],国外通常遵循ASME B31.8《气体输送和分配管道系统》标准 [17],这两种标准对于应力校核的方法基本一致,CAESAR II软件应力的校核遵循ASME B31.8的要求。

根据应力基本特征可以将管道应力划分为一次应力、二次应力和操作应力。一次应力是由于压力、重力和其他外力载荷作用而在管道内部产生的应力,是平衡外力荷载所需的,随外力荷载的增加而增加。二次应力是由于热胀、冷缩、端点位移等位移荷载的作用所产生的应力,不直接与外力相平衡。由于载荷、结构形状的局部突变而引起局部应力集中的最高应力值称为操作应力,是导致脆性断裂和疲劳破坏的原因 [18]。为保证管道的强度安全,危险点处最大工作应力不允许达到(或接近)材料的极限应力 [19]。

在进行强度设计时,一般规定许用应力 [ σ ] 作为衡量构件是否满足强度要求的依据, [ σ ] = F φ σ ,其中F值为不同地区强度设计系数, φ 为焊缝系数。管道由于热胀冷缩、曲率发生突变、端点附加位移会受到约束,产生相应的轴力、剪力、弯矩和扭矩,一般需要进行一次应力、二次应力和操作应力的校核 [20]。

管道一次应力不得超过设计温度下管材的许用应力,即

σ L [ σ ] (2-7)

管道二次应力不得超过许用应力范围,即

σ E σ a = f ( 1.25 σ c + 0.25 [ σ ] ) (2-8)

操作应力 σ L σ E 之和 σ OPE 应满足

σ L + σ E σ s (2-9)

式中, [ σ ] 为管材的许用应力,MPa; σ L 为由压力引起的纵向应力与重力、风荷载等外载荷在管道中产生的纵向弯曲应力之和,MPa; σ E 为二次应力,MPa; σ a 为许用应力范围,MPa; σ c 为管材在20℃时的许用应力,MPa; σ s 为管道材料标准中规定的最小屈服强度,MPa; σ OPE 为操作应力,MPa;f为预期寿命内,考虑循环总次数影响的许用应力范围减少系数。

纵向滑坡体土体的滑动方向与斜坡敷设管道的轴线方向相同,所受的均布载荷方向主要有:管道的轴向和纵向的滑坡推力 [21]。由图2表1可知,老红坡区天然气管道易滑坡地点产生的滑坡属纵向滑坡,因此在计算纵向滑坡推力的均布载荷时,轴向滑坡推力为滑坡推力与 α (滑坡面与水平面间的夹角)余弦值的乘积;纵向滑坡推力为滑坡推力与 α (滑坡面与水平面间的夹角)正弦值的乘积 [22]。

4. 老红坡易滑坡段管道应力分析

1) 应力校核判据

应力的校核根据不同工况,主要分为安装工况[SUS]、操作工况[OPE]和偶然载荷工况[OCC]。穿越滑坡体的管道属于嵌固管道,操作工况下输气管道的应力值应小于管道最小屈服强度的0.9倍,即 σ < 0.9 σ s ;对于偶然载荷工况下的输气管道,则要求应力值不得超过管道的最小屈服强度,即 σ < σ s 。其中, σ 为各工况下管道的应力值,MPa; σ s 为管道的最小屈服强度,MPa。

2) 老红坡滑坡区滑坡体管道应力模拟

① 管系基础

进行静力分析的基础,包括管道参数(管长、管径、壁厚、腐蚀裕量等)、空间走向(DX、DY)、外界条件(温度、设计压力、流体密度等)、管材参数(管材型号、许用应力、泊松比等)、约束条件等。沿坡敷设仅两端采用固定支墩,固定支墩可简化为固支约束(ANC)。管系输入从节点10开始,输入过程中数值要根据具体情况变化,管道长度与壁厚应根据实际情况确定。

② 覆土模型

老红破区天然气管道埋地敷设,覆土载荷需要进行加载,包括输入土壤参数(土壤密度、摩擦/压实系数等)、选择入土点与出土点。覆土后的管道模型即为近似于实际情况的管道。

③ 载荷工况

斜坡内管道工况应力分析包括操作应力、一次应力计算和二次应力计算工况。

操作应力工况: [ OPE ] L 1 = W + T + P ,载荷、结构形状的局部突变引起的局部应力集中的最高应力值;一次应力计算工况: [ SUS ] L 2 = W + P ,由内压、自重(管道及管内介质)引起;二次应力计算工况: [ EXP ] L 3 = L 1 L 2 ,由纯热态应力引起 [23]。

式中,W为自重载荷,N;T为温度载荷,N;P为压力载荷,N。

根据老红坡易滑坡段输气管道的设计资料,整段管线全部采用埋地敷设的方式,为嵌固管道模型。地区等级按GB50251标准 [24] 中划分方式为1级,设计系数为0.72。纵向穿越滑坡体示意图,见图5

Figure 5. Schematic diagram of longitudinal traversing landslide body

图5. 纵向穿越滑坡体示意图

滑坡参数、管道参数、土壤参数以及工况的设置情况如表2~5所示。

Table 2. Basic parameters of easy landslide

表2. 老红坡易滑坡基础参数

Table 3. Pipeline foundation

表3. 管道基础

Table 4. Soil parameters

表4. 土壤参数

Table 5. Working condition establishment

表5. 工况建立

3) 滑坡时管道应力分析

根据详细基础构建物理模型进行分析,明确易滑坡区管线应力情况如图6

(a) (b) (c) (d) (e) (f)

Figure 6. Stress analysis results of different working conditions. (a) W + P1 Working condition stress (Wall thickness 6.5 mm/Sandy soil); (b) W + P1 Working condition stress (Wall thickness 12.5 mm/Ceramsite); (c) W + P1 + U1 Working condition stress (Wall thickness 6.5 mm/Sandy soil); (d) W + P1 + U1 Working condition stress (Wall thickness 12.5 mm/Ceramsite); (e) U1 Working condition stress (Wall thickness 6.5 mm/Sandy soil); (f) U1 Working condition stress (Wall thickness 12.5 mm/Ceramsite)

图6. 不同工况应力分析结果。(a) W + P1工况应力(壁厚6.5 mm沙土);(b) W + P1工况应力(壁厚12.5 mm陶粒);(c) W + P1 + U1工况应力(壁厚6.5 mm沙土);(d) W + P1 + U1工况应力(壁厚12.5 mm陶粒);(e) UI工况应力(壁厚6.5 mm沙土);(f) UI工况应力(壁厚12.5 mm陶粒)

得到应力分析结果如表6,分析发现,在[OCC] W + P1 + U1工况下,应力比率为1670.52%,按应力校核标准进行校核,此工况未能通过。此工况下的应变为 ε = σ E = 5183015 KPa 210000000.0 KPa = 0.002468 ,但X60钢管的弹性区允许应变为0.0024;弹塑性区允许应变为0.17,单以应变标准进行校核,则是不安全的。鉴于此,陈利琼等 [25] 采用CAESAR II软件和ANSYS软件研究了输气管道穿越滑坡地段的应力应变分布规律,认为CAESAR II的应力与位移计算结果均趋于保守。

同理分析了不同管壁厚度情况下应力状况,结果如表7表8所示。

分析可以发现,在[OCC] W + P1 + U1工况下,根据不同钢管壁厚计算滑坡推力作用下的应力,其应力比率分别为1457.83%和907.47%。按应力标准校核,在加大壁厚的情况下此工况也未能通过,但是对比分析发现其应力却显著减小,因此在其它条件不变的情况下,加大管道壁厚是解决滑坡破坏的解决办法之一。

Table 6. Maximum stress calculation under current working conditions

表6. 目前工况下最大应力计算情况

Table 7. Maximum stress calculation under current working conditions of wall thickness 7.5 mm

表7. 壁厚7.5 mm工况下最大应力计算情况

Table 8. Maximum stress calculation under current working conditions of wall thickness 12.5 mm

表8. 壁厚12.5 mm工况下最大应力计算情况

若按应变标准进行设计, ε 值分别为0.02154和0.01341,因此管线的设计也是不安全的。由于覆土在滑坡地质危害中也起到很大的作用,可以通过降低覆土作用来保障滑坡时管道的安全,为此进行了陶粒(陶粒密度约为本项目沙土的1/5)填充覆土的计算分析。结果如表9

Table 9. Maximum stress calculation under current working conditions of wall thickness 12.5 mm with ceramsite

表9. 壁厚12.5 mm工况下最大应力计算情况(采用陶粒)

表9可知,当壁厚为12.5 mm时并对滑坡地段采用陶粒填充覆盖(陶粒密度约为本项目沙土的1/5)以减少滑坡推力的作用,各工况下最大应力均满足要求。而管道壁厚为11 mm,滑坡工况校核结果是未获通过。

以此为基础,针对降低覆土密度的情况,开展了沙土回填和陶粒回填两种情况下比对,结果如表10表11

Table 10. Stress of each node or monitoring point under landslide conditions of [OCC] W + P1 + U1 with Wall thickness 12.5 mm by backfilling sandy soil

表10. 壁厚12.5 mm回填沙土[OCC] W + P1 + U1滑坡工况下各节点或监测点应力

Table 11. Stress of each node or monitoring point under landslide conditions of [OCC] W + P1 + U1 with Wall thickness 12.5 mm by backfilling ceramsite

表11. 壁厚12.5 mm回填陶粒[OCC] W + P1 + U1滑坡工况下各节点或监测点应力

分析表10表11应力分析结果,可以发现,若纵向滑坡的产生会造成管道应力过载,轴向应力和弯曲应力较大的节点均出现在弯管处,弯头处是复杂应力的集中点。应采用增大管道壁厚和优选低密度回填材料等多措并举的方法才能有效解决管道应力超载的状况。

5. 结论与建议

1) 结论

通过对老红坡区天然气管道应力状态进行了数值模拟,明确了易滑坡区管线轴向应力和弯曲应力较大的节点。通过与监测数据对比发现,轴向应力和弯曲应力较大的节点均出现在弯管处,弯头处是复杂应力的集中点。

利用CAESAR II软件开展滑坡时管道应力分析,针对老红坡区天然气管道易滑坡位置处,通过增加管道壁厚和改变回填材料性质减小滑坡推力,能够有效避免滑坡时管道应力超载。

2) 建议

CAESAR II应力计算结果趋于保守,可采用其它有限元软件分析管线直径、壁厚、滑坡段长度、埋深、土壤性质等因素对管线穿越滑坡段的应力应变影响,以便做出更精确的数值计算。

基金项目

四川省科技计划项目(2019YFS0075);四川省科技计划项目(2020YJ0153)。

NOTES

*通讯作者。

参考文献

[1] 王东源, 杨建, 谭秋霞. EPS块用于缓解滑坡区油气管道应变效果研究[J]. 自然灾害学报, 2021, 30(3): 76-82.
[2] 席莎. 滑坡区埋地管道变形破坏的临界判据与敏感区研究[D]: [博士学位论文]. 北京: 中国地质大学(北京), 2018.
[3] 虎继远, 刘中兰, 徐杰. 燃气管道泄漏事故成因与防范对策[J]. 煤气与热力, 2009, 29(11): 23-26.
[4] Chen, L.H., Yu, Y.P., Cheng, J.H., et al. (2021) Accurate Analytical Approximation to Post-Buckling of Column with Ramberg-Osgood Constitutive Law. Applied Mathematical Modelling, 98, 121-133.
https://doi.org/10.1016/j.apm.2021.04.025
[5] 安根旺. 应变电测技术中的误差分析及确定方法[J]. 兰州铁道学院学报, 1998, 17(4): 31-36.
[6] 刘永峰. 输气管道沉降变形的监测与应力分布研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2011.
[7] 霍小亮. 振弦式应力监测系统在采空区燃气管道上的应用[J]. 天然气技术与经济, 2018, 12(5): 43-46.
[8] 张乐廷, 张国民, 汲寿广. 超高压管道(容器)应力检测方法[J]. 化工机械, 2004, 31(4): 227-229.
[9] 贾振安, 王虎, 乔学光, 等. 基于分布式光纤布里渊散射的油气管道应力监测研究[J]. 光电子激光, 2012, 23(3): 534-537.
[10] 冷建成, 刘扬, 周国强, 等. 基于光纤光栅传感的管道应力监测方法研究[J]. 压力容器, 2013, 30(1): 70-74.
[11] Basan, R., Franulović, M., Prebil, I., et al. (2017) Study on Ramberg-Osgood and Chaboche Models for 42CrMo4 Steel and Some Approximations. Journal of Constructional Steel Research, 136, 65-74.
https://doi.org/10.1016/j.jcsr.2017.05.010
[12] 王一民, 王凯勃, 徐艳, 等. 冻结砂土层中埋地管道管土界面应力分析[J]. 压力容器, 2021, 38(6): 42-47.
[13] 李新亮, 李素贞, 申永刚. 交通荷载作用下埋地管道应力分析与现场测试[J]. 浙江大学学报(工学版), 2014, 48(11): 1976-1982.
[14] Peng, L.C. and Peng, T.L. (2009) Pipe Stress Engineering. ASME Press, New York.
https://doi.org/10.1115/1.802854
[15] 林俊丞. 天然气分输站不均匀沉降变形管线应力计算[D]: [硕士学位论文]. 青岛: 中国石油大学(华东), 2018.
[16] GB 50251-2003输气管道工程设计规范[S]. 北京: 中国计划出版社, 2015.
[17] ASME (2010) ASME B31.8 Gas Transmission and Distribution Piping Systems. American Society of Mechanical Engineers Press, New York.
[18] 王扬. 沙漠长输天然气管道应力分析及数值模拟[D]: [硕士学位论文]. 西安: 西安石油大学, 2021.
[19] 黄坤, 吴世娟, 卢泓方, 等. 沿坡敷设输气管道应力分析[J]. 天然气与石油, 2012, 30(4): 1-4.
[20] 刘志刚, 李宁, 公岩岭, 等. 长输天然气管道提高设计系数可行性探讨[J]. 油气田地面工程, 2021, 40(8): 75-79.
[21] 黄坤, 卢泓方, 吴世娟, 等. 穿越滑坡体埋地输气管道应力分析[J]. 应用力学学报, 2015, 32(4): 689-693.
[22] 张航. 管道滑坡应力分析及监测技术研究[D]: [硕士学位论文]. 北京: 中国石油大学(北京), 2019.
[23] 刘鑫, 张磊, 刘子健, 等. 基于CAESAR II输气站场架空及埋地管道应力分析研究[J]. 中国石油和化工标准与质量, 2020, 40(8): 125-126.
[24] SY/T 6477-2000含缺陷油气输送管道剩余强度评价方法第1部分: 体积型缺陷[S]. 北京: 石油工业出版社, 2000.
[25] 陈利琼, 宋利强, 吴世娟, 等. 基于有限元方法的滑坡地段输气管道应力分析[J]. 天然气工业, 2017, 37(2): 84-91.