碳酸氢钠林格氏液对开放右半肝切除术镁离子和的炎性因子影响
Effect of Bicarbonate Ringer’s Solution on Magnesium Ion and Inflammatory Factors in Patients Undergoing Open Right Hepatectomy
DOI: 10.12677/ACM.2022.121023, PDF, HTML, XML, 下载: 292  浏览: 450  科研立项经费支持
作者: 刘莹莹, 张慕春, 刘晓芬, 陈 齐, 周玉梅, 胡宪文*:安徽医科大学第二附属医院麻醉与围术期医学科,安徽 合肥
关键词: 碳酸氢钠林格氏液开放右半肝切除术镁离子炎症因子Bicarbonate Ringer’s Solution Open Right Hepatectomy Magnesium Ion Inflammatory Factor
摘要: 目的:该文旨在观察碳酸氢钠林格氏液(BRS)对开放右半肝切除术患者术后血清镁和炎性因子的影响。方法:选取安徽医科大学第二附属医院2020年10月至2021年4月收治择期全麻下开放右半肝切除术患者60例,男35例,女25例,年龄40~65岁,BMI 18~26 kg∕m2,ASA分级II或III级,采用随机数字表法分为两组:乳酸钠林格氏液组(L组)和碳酸氢钠林格氏液组(B组),两组采用5~7 ml/kg−1∙h−1为基础输液速度分别使用乳酸钠林格氏液和碳酸氢钠林格氏液。记录术前(T0)、手术结束时(T1) PH、BE、HCO3- 、LAC值,记录T0、术后1 d (T2)、术后3 d (T3)镁离子浓度,记录T0、T2、T3时血浆白细胞介素-6 (IL-6)、肿瘤坏死因子-α (TNF-α)水平。记录患者术后住院时间、术后1个月、6个月、12个月的死亡率。结果:与T0相比,T1时L组PH、BE、HCO3-降低,Lac值升高,T2时L组镁离子浓度水平降低,T2、T3时两组IL-6、TNF-α水平升高(P < 0.05),与L组相比,B组T1时PH、BE、HCO3-升高,Lac值降低,T2时镁离子浓度升高,T2、T3时IL-6、TNF-α水平降低,术后住院时间缩短,术后12个月死亡率下降(P < 0.05)。结论:碳酸氢钠林格氏液维持开放右半肝切除术术后酸碱平衡和镁离子浓度,减轻术后炎性反应,降低术后死亡率。
Abstract: Objective: To observe the effect of Bicarbonate Ringer’s solution (BRS) on magnesium ion and inflammatory factors in patients undergoing open right hepatectomy. Methods: Sixty patients, including 35 males and 25 females, aged 40 to 65 years, with BMI 18 to 26 kg/m2, ASA grade II or III, who were admitted to the Second Affiliated Hospital of Anhui Medical University from October 2020 to April 2021 for elective open right hepatectomy under general anesthesia were selected and divided into two groups by random number table method. Sodium lactate Ringer’s solution (group L) and Bicarbonate Ringer’s solution (group B) were used at the infusion rate of 5~7 ml/kg−1∙h−1 crystal solution, respectively. Record the values of PH, BE, HCO3-, LAC before operation (T0) and at the end of operation (T1). Record T0, postoperative 1 d (T2), postoperative 3 d (T3) magnesium ion concentration, and record plasma interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels at T0, T2, and T3. Record the postoperative hospital stay, mortality rate at 1 month, 6 months, and 12 months after surgery. Results: Compared with T0, the PH, BE, HCO3- of the L group decreased, the Lac value increased at T1, the magnesium ion concentration level of L group decreased at T2, and the IL-6 and TNF-α levels of the two groups increased at T2 and T3 (P < 0.05). Compared with group L, PH, BE, HCO3-increased at T1, Lac value decreased, magnesium ion concentration increased at T2, IL-6 and TNF-α levels decreased at T2, T3, and postoperative hospital stay was shortened; the mortality rate decreased in 12 months after operation of group B (P < 0.05). Conclusion: Bicarbonate Ringer’s solution maintains the concentration of magnesium ions after open right hepatectomy, reduces postoperative inflammatory reactions, and reduces postoperative mortality rate.
文章引用:刘莹莹, 张慕春, 刘晓芬, 陈齐, 周玉梅, 胡宪文. 碳酸氢钠林格氏液对开放右半肝切除术镁离子和的炎性因子影响[J]. 临床医学进展, 2022, 12(1): 149-156. https://doi.org/10.12677/ACM.2022.121023

1. 引言

炎性反应的本质是机体对手术创伤等各种损伤刺激的一种防御性反应 [1]。肝脏切除术后常发生的全身炎症反应,可对患者预后有负面影响,导致住院时间延长,术后死亡率增加,增加家庭和社会负担 [2]。全身炎症反应的产生是多因素的。除了创伤、出血、低镁血症等 [1] [3],输入LRS已被证明是促进炎症反应的危险因素 [4]。研究表明,输入LRS可以使体内中性粒细胞活化,从而加重炎症反应 [5]。BRS (碳酸氢钠林格氏液),具有不经过肝脏代谢而产生碱化作用和含有镁离子的特点,更快速地改善酸碱失衡和维持镁离子浓度,目前关于BRS与LRS镁离子和炎性因子的影响尚无定论。本研究拟观察BRS对开放右半肝切除术的患者镁离子浓度以及炎性因子的影响,为临床救治该类患者提供参考。

2. 资料与方法

2.1. 一般资料

本研究已获本院医学伦理委员会批准(伦理号:YX2020-051),并与患者签署知情同意书。择期全麻开放右半肝切除术的原发性肝癌患者60例,性别不限,年龄40~65岁,BMI 18~26 kg∕m2,ASA分级Ⅱ或Ⅲ级。排除标准:入院前半年服用伤害肝功能的药品,心肺功能异常,肾功能障碍,糖尿病,肝功能child-pugh评分 > 6分。

2.2. 麻醉方法

术前常规禁饮禁食,入手术室后,连接多功能监护仪,监测ECG和SpO2,开放上肢静脉通路。穿刺右颈内静脉、右桡动脉,持续测量患者动脉血压,连接FloTrac EV1000A型心排血量监测系统,测量SV和CI的数值。BIS测量麻醉深度。麻醉诱导:静注咪达唑仑0.03 mg/kg,丙泊酚1~2 mg/kg,舒芬太尼0.5 μg/kg,顺式阿曲库铵0.15 mg/kg,气管插管后机械通气,接Drager-Fabius麻醉机。呼吸参数:VT 8 ml/kg,RR 10~15次/分,I:E 1:2,并随时根据PET CO2调节麻醉机呼吸参数,保持PETCO2在35~45 mmHg,使用医用保温毯保温度。麻醉维持:丙泊酚4~8 mg/kg−1·h−1,舒芬太尼0.2 μg/kg (切皮前追加),瑞芬太尼0.1~0.3 μg/kg−1·min−1,顺苯磺阿曲库铵3~4 μg/kg−1·min−1 。维持BIS值在40~60。如果动脉压下降超过基础血压的30%,单次静脉注射去氧肾40~80 µg,手术期间或肝门阻断时如果血压持续降低,并且对液体推注无反应者,去氧肾持续泵注,当血红蛋白 < 70 g/L输注悬浮红细胞。手术结束后,患者送往AICU,当患者有自主呼吸时,分别给予阿托品0.5 mg和新斯的明1 mg,以拮抗残余肌肉松弛作用;达到常规拔管指征后,拔出气管导管,连续面罩或鼻导管吸氧,监测生命体征。患者手术结束时均使用自控静脉镇痛(PCIA),配方:舒芬太尼2.5 μg/kg + 格拉司琼6 mg稀释至100 ml,负荷剂量2 ml,背景剂量2 ml/h,PCA剂量0.5 ml,锁定时间15 min,镇痛48 h。

2.3. 分组与液体选择与管理

采用随机数字表法分为2组:LRS组(L组)和BRS组(B组)。两组病人以5~7 ml/kg−1∙h−1晶体液为基础输液速度 [6],分别输入LRS和BRS。气管插管后,在5~10 min之内静脉推注200 ml羟乙基淀粉氯化钠注射液。如果SV (每博量)增加 > 10%,则重复静推,直到增加 < 10%。一旦达到SV平稳值后,将在术中用此值作为目标值。仅当SV比平台值降低 > 10%时,重复推注羟乙基淀粉氯化钠注射液200 ml [5]。

2.4. 观察指标

记录术前(T0)、手术结束时(T1)时的PH、BE、 HCO 3 、LAC值,记录术前(T0)、术后1 d (T2)、术后3 d (T3)时镁离子浓度;抽取术前、术后1 d (T2)、术后3 d (T3)患者空腹肘静脉血5 ml,经4℃、3700 r/min离心 18 min (离心半径12 cm),分离上清液,置于冰箱中保存备用,采用酶联免疫吸附试验测定白细胞介素-6 (IL-6)、肿瘤坏死因子-α (TNF-α)浓度。记录患者术后住院时间和术后1个月、6个月、12个月的死亡率。

2.5. 统计学方法

采用SPSS24.0软件进行分析,正态分布的计量资料以均数 ± 标准差( x ¯ ± s )表示,组间比较采用配对t检验;不同时间点组间比较采用重复测量设计的方差分析。非正态分布的计量资料以M (P25, P75)表示,2组间比较采用 Mann-Whitney U检验。计数资料组间比较采用χ2检验,P < 0.05为差异有统计学意义。

3. 结果

1) 两组患者年龄、性别、BMI、手术时间、肝门阻断时间、术中晶体液输入量、胶体输入量、输液总量、失血量及尿量比较差异无统计学意义(P > 0.05),见表1

Table 1. Comparison on basic data between the two groups ( x ¯ ± s , n)

表1. 两组患者一般情况比较的比较( x ¯ ± s , n)

2) 与T0时比较,T1时L组PH、BE、 HCO 3 降低,Lac值升高(P < 0.05);与L组比较,B组T1时,PH、BE、 HCO 3 升高,Lac值降低(P < 0.05)见表2

Table 2. Comparison of blood gas analysis indexes between two groups at different time points ( x ¯ ± s )

表2. 两组患者血气分析指标的比较( x ¯ ± s )

*P < 0.05,**P < 0.01;组内比较:a与T0比较,P < 0.05;组间比较:b与L组比较,P < 0.05;PH:F组间 = 41.384**F组内 = 62.495**F 交互 = 6.009*;BE:F组间 = 56.322**F组内 = 81.419**F交互 = 27.007** HCO 3 F组间 = 29.152**F组内 = 51.529**F交互 = 17.752**;LAC:F 组间=54.602**,F组内 = 166.369**,F交互 = 25.380**

3) 与T0时比较,T2时L组Mg2+降低(P < 0.05);与L组比较,B组T2时Mg2+升高(P < 0.05)见表3

Table 3. Comparison of magnesium ion concentration between two groups at different time points ( x ¯ ± s )

表3. 两组患者不同时间点镁离子浓度的比较( x ¯ ± s )

*P < 0.05,**P < 0.01;组内比较:a与T0比较,P < 0.05;组间比较:b与L组比较,P < 0.05;F组间 = 44.180**F组内 = 91.941**F交互 = 97.594**

4) 与T0时比较,T2T3时两组IL-6、TNF-α升高(P < 0.05);与L组比较,B组T2T3时IL-6、TNF-α降低(P < 0.05)见表4

Table 4. Comparison of postoperative inflammatory factors between the two groups

表4. 两组患者炎性因子水平的比较( x ¯ ± s )

*P < 0.05,**P < 0.01;组内比较:a与同组术前比较,P < 0.05;组间比较:b与L组比较,P < 0.05,IL-6:F组间 = 44.330**F组内 = 1481.428**F交互 = 18.262**IL-6:F组间 = 172.833**,TNF-αF:组内 = 1126.834**F交互 = 41.453**

5) 与L组比较,B组住院时间缩短和术后12个月的死亡率降低(P < 0.05),见表5

Table 5. Comparison of postoperative the length of hospital stay and mortality between the two group ( x ¯ ± s , n)

表5. 两组患者术后住院时间和术后死亡率的比较( x ¯ ± s , n)

4. 讨论

原发性肝癌是最常见的恶性肿瘤之一,高发病率和死亡率严重危害人类健康。目前外科手术仍是原发性肝癌最理想的根治性治疗手段 [7],肝脏手术后发生显著的炎症反应,适当程度的炎症反应有助于机体对抗感染,但炎症反应过度与术后并发症、器官功能障碍、恢复时间和死亡率相关 [2] [8],在老年患者中,术后炎性因子水平与认知功能相关 [1]。研究发现手术创伤、术中肝脏出血、肝门阻断后缺血再灌注反应、低镁血症以及晶体液的选择与肝脏切除术后患者产生SIR有关 [9] [10] [11]。

术后SIR的危险因素包括术前和术中两个方面,先前的一项研究也表明,肥胖与可促进炎性反应 [12]。本研究将肥胖患者排除,排除了术前因素对SIR的影响。术中因素手术时间、失血量等方面差异无统计学意义,保证了两组的可比性。据报道,术中肝门阻断导致的缺血再灌注损伤将加重炎症反应 [11]。在本研究中,两组患者肝门阻断方法和总时间差异无统计学意义。

肝脏切除术后残余肝脏肝动脉血流减少,门静脉血流增加 [13]。导致残余肝脏缺氧 [14]。低氧供应会降低肝细胞中的线粒体氧化磷酸化并降低能量产生 [15]。因此,乳酸产生过多,乳酸清除率降低。增加碱性离子消耗并导致代谢性酸中毒 [16]。BRS,不经过肝脏切除术后残余肝脏代谢而产生碱化作用,与LRS相比,没有额外的乳酸输入,更快速地补充碱性离子,改善代谢性酸中毒。既往一项动物研究发现,BRS可以减少代谢性酸中毒的发生,并且对肝肾功能具有保护作用 [17],在临床实验中,与LRS相比,BRS在维持酸碱平衡方面,显示出极大优势 [10]。我们的研究显示,与T0时相比,T1时两组的Lac浓度升高,PH、BE、 HCO 3 降低,与L组相比,B组T1时的Lac浓度降低,PH、BE、 HCO 3 升高。提示BRS可以减轻代谢性酸中毒,减慢乳酸升高速度。

血清镁是生命的必需元素,参与调节所有组织的新陈代谢和体内平衡 [3]。同时,镁离子作用于先天性和适应性免疫系统的细胞,调节免疫功能。镁离子的缺乏可激活吞噬细胞,增强粒细胞氧化爆发,激活内皮细胞并增加细胞因子的水平,从而促进炎症 [3] [18]。肝脏切除术后,镁离子浓度往往会降低 [19]。我们的研究显示与T0相比,T2时L组镁离子浓度降低,T3时恢复基线水平,T2、T3时B组镁离子浓度无明显变化。与L组相比,B组T2时镁离子浓度升高,提示与LRS相比,BRS内含有的镁离子可以维持右半肝脏切除术镁离子浓度的稳定,减少术后低镁血症的发生。

研究表明,细胞因子IL-6和TNF-α与SIR的严重程度正相关,可以作为判断SIR严重程度的指标 [20] [21]。本研究发现,两组患者术后1个月、6个月死亡率无统计学差异,与T0相比,T2、T3时两组IL-6和TNF-α浓度升高。与L组相比,B组T2、T3时IL-6和TNF-α浓度降低,术后住院时间缩短,术后12个月的死亡率显著降低,提示两组在肝脏切除术后都发生了SIR,与LRS相比,术中输入BRS可以减轻SIR的程度,缩短术后住院时间,降低术后12个月死亡率。

本研究中,与B组相比L组SIR程度较高可能的原因包括第一,术中输入LRS会促进中性粒细胞的氧化应激反应,它能促进IL-6、TNF-α等多种细胞因子的表达 [4]。第二,L组发生的代谢性酸中毒和乳酸升高可以增加机体的炎症反应 [22],第三,L组发生的低镁血症促进炎症反应 [9]。

本研究仍有一些局限性。首先,我们只比较了两种晶体平衡液体,LRS和BRS。设计一项包括醋酸钠林格氏液、碳酸氢钠溶液和生理盐水在内的多组研究将更有意义。其次,仅在术中进行BRS,应用时间较短。第三,缺乏术后肝肾功能的检查。此外,考虑到本研究样本量小,单中心单一,患者有严格和广泛的纳入和排除标准,我们的研究对其他人群的外推范围有限。因此,需要更多的指标、大样本量、多中心研究来比较LRS和BRS镁离子和炎症因子的影响。

5. 结论

综上所述,碳酸氢钠林格氏液能减少开放右半肝切除术患者的代谢酸中毒和低镁血症的发生,减慢乳酸升高速度,减轻术后炎症反应,缩短术后住院时间,降低术后死亡率。

基金项目

医路“格”新–液体治疗科研基金(编号:YLGX-WS-2020019)。

参考文献

[1] Margraf, A., Ludwig, N., Zarbock, A. and Rossaint, J. (2020) Systemic Inflammatory Response Syndrome after Surgery: Mechanisms and Protection. Anesthesia & Analgesia, 131, 1693-1707.
https://doi.org/10.1213/ane.0000000000005175
[2] Bressan, A., Isherwood, S., Bathe, O., Dixon, E., Sutherland, F.R. and Ball, C.G. (2020) Preoperative Single-Dose Methylprednisolone Prevents Surgical Site Infections after Major Liver Resection: A Randomized Controlled Trial. Annals of Surgery.
https://doi.org/10.1097/sla.0000000000004720
[3] Maier, J.A., Castiglioni, S., Locatelli, L., Zocchi, M. and Mazur, A. (2021) Magnesium and Inflammation: Advances and Perspectives. Seminars in Cell and Developmental Biology, 115, 37-44.
https://doi.org/10.1016/j.semcdb.2020.11.002
[4] Kusza, K., Mielniczuk, M., Krokowicz, L., Cywiński, J.B. and Siemionow, M. (2018) Maria Siemionow Ringer’s Lactate Solution Enhances the Inflammatory Response during Fluid Resuscitation of Experimentally Induced Haemorrhagic Shock in Rats. Archives of Medical Science, 14, 655-670.
https://doi.org/10.5114/aoms.2017.69771
[5] Rhee, P., Burris, D., Kaufmann, C., Pikoulis, M., Austin, B., Ling, G., et al. (1998) Lactated Ringer’s Solution Resuscitation Causes Neutrophil Activation after Hemorrhagic Shock. The Journal of Trauma, 44, 313-319.
https://doi.org/10.1097/00005373-199802000-00014
[6] Calvo-Vecino, J.M., Ripolles-Melchor, J., Mythen, M.G., Casans-Francés, R., Balik, A., Artacho, J.P., et al. (2018) Effect of Goal-Directed Haemodynamic Therapy on Postoperative Complications in Low-Moderate Risk Surgical Patients: A Multicentre Randomised Controlled Trial (FEDORA Trial). British Journal of Anaesthesia, 120, 734-744.
https://doi.org/10.1016/j.bja.2017.12.018
[7] Orcutt, S.T. and Anaya, D.A. (2018) Liver Resection and Surgical Strategies for Management of Primary Liver Cancer. Cancer Control, 25, Article ID: 1073274817744621.
https://doi.org/10.1177/1073274817744621
[8] Munteanu, A., Samasca, G., Lupan, I. and Iancu, C. (2017) Cornel Iancu Immunological Evaluation of Surgical Stress in Liver Resections. Maedica, 12, 289-292.
[9] Shahi, A., Aslani, S., Ataollahi, M. and Mahmoudi, M. (2019) The Role of Magnesium in Different Inflammatory Diseases. Inflammopharmacology, 27, 649-661.
https://doi.org/10.1007/s10787-019-00603-7
[10] 赵德俊, 张福龙, 徐志鹏, 宋琦, 姜海,李磊, 邱兆磊, 纪忠, 王振杰. 碳酸氢钠林格液限制性复苏对创伤失血性休克内环境的影响[J]. 蚌埠医学院学报, 2021, 46(4): 447-450.
[11] Cannistra, M., Ruggiero, M., Zullo, A., Gallelli, G., Serafini, S., Maria, M., et al. (2016) Hepatic Ischemia Reperfusion Injury: A Systematic Review of Literature and the Role of Current Drugs and Biomarkers. International Journal of Surgery, 33, S57-S70.
https://doi.org/10.1016/j.ijsu.2016.05.050
[12] Dias, L.I.D.N., Leite, V.D.P., Brandão, J.M., Roso, A.P., Miranda, E.C.M., Antunes, E., et al. (2021) Association of an Expanded Inflammatory Mediators Response with Clinical and Laboratory Data in the Postoperative Period of Pulmonary Resection: A Prospective Clinical Study. Revista do Colégio Brasileiro de Cirurgiões, 48, Article ID: e20213008.
https://doi.org/10.1590/0100-6991e-20213008
[13] Golriz, M., El Sakka, S., Majlesara, A., Edalatpour, A., Hafezi, M., Rezaei, N., et al. (2016) Hepatic Hemodynamic Changes Following Stepwise Liver Resection. Journal of Gastrointestinal Surgery, 20, 587-594.
https://doi.org/10.1007/s11605-015-3021-y
[14] Vollmar, B., Conzen, P.F., Kerner, T., Habazettl, H., Vierl, M., Waldner, H. and Peter, K. (1992) Blood Flow and Tissue Oxygen Pressures of Liver and Pancreas in Rats: Effects of Volatile Anesthetics and of Hemorrhage. Anesthesia & Analgesia, 75, 421-430.
https://doi.org/10.1213/00000539-199209000-00019
[15] Dold, S., Richter, S., Kollmar, O., von Heese,n M., Scheuer, C., Laschke, M.W., et al. (2015) Portal Hyperperfusion after Extended Hepatectomy Does Not Induce a Hepatic Arterial Buffer Response (HABR) but Impairs Mitochondrial Redox State and Hepatocellular Oxygenation. PLoS ONE, 10, Article ID: e0141877.
https://doi.org/10.1371/journal.pone.0141877
[16] Hasanin, A.S., Mahmoud, F.M.A. and Soliman, H.M. (2019) Factors Affecting Acid Base Status during Hepatectomy in Cirrhotic Patients. Egyptian Journal of Anaesthesia, 29, 305-310.
https://doi.org/10.1016/j.egja.2013.05.003
[17] Wang, L., Lou, J., Cao, J., Wang, T., Liu, J. and Mi, W. (2021) Bicarbonate Ringer’s Solution for Early Resuscitation in Hemorrhagic Shock Rabbits. Annals of Translational Medicine, 9, Article No. 462.
https://doi.org/10.21037/atm-21-97
[18] Liu, M. and Dudley Jr., S.C. (2020) Magnesium, Oxidative Stress, Inflammation, and Cardiovascular Disease. Antioxidants, 9, Article No. 907.
https://doi.org/10.3390/antiox9100907
[19] Kamel, E., Abdullah, M., Hassanin, A., Fayed, N., Ahmed, F., Soliman, H., et al. (2012) Live Donor Hepatectomy for Liver Transplantation in Egypt: Lessons learned. Saudi Journal of Anaesthesia, 6, 234-241.
https://doi.org/10.4103/1658-354X.101214
[20] Moutachakkir, M., Lamrani Hanchi, A., Baraou, A., Boukhira, A. and Chellak, S. (2017) Immunoanalytical Characteristics of C-Reactive Protein and High Sensitivity C-Reactive Protein. Annales de Biologie Clinique, 75, 225-229.
https://doi.org/10.1684/abc.2017.1232
[21] Watt, D.G., Horgan, P.G. and McMillan, D.C. (2015) Routine Clinical Markers of the Magnitude of the Systemic Inflammatory Response after Elective Operation: A Systematic Review. Surgery, 157, 362-380.
https://doi.org/10.1016/j.surg.2014.09.009
[22] Wu, D., Kraut, J.A. andAbraham, W.M. (2013) Sabiporide Improves Cardiovascular Function, Decreases the Inflammatory Response and Reduces Mortality in Acute Metabolic Acidosis in Pigs. PLoS ONE, 8, Article ID: e53932.
https://doi.org/10.1371/journal.pone.0053932