HIF-1α及CD31促进晚期肝癌转移及侵袭的分子机制
Molecular Mechanism of HIF-1α and CD31 Promoting Metastasis and Invasion of Advanced Hepatocellular Carcinoma
DOI: 10.12677/ACM.2022.121036, PDF, HTML, XML, 下载: 276  浏览: 737 
作者: 李 晗:滨州医学院第二临床医学院,山东 烟台;孔令群, 曹学峰:滨州医学院附属医院,山东 滨州;王学文:潍坊医学院附属医院,山东 潍坊;吴燕彬:平邑县人民医院,山东 平邑县;牛洪凯, 成 雨:滨州医学院烟台附属医院,山东 烟台
关键词: HIF-1αCD31肝癌上皮间充质转化(EMT)血管生成拟态(VM)转移侵袭HIF-1α CD31 Hepatocellular Carcinoma Epithelial-Mesenchymal Transition (EMT) Vasculogenic Mimicry (VM) Transfer Invasion
摘要: 缺氧是实体肿瘤微环境(TME)的重要生物学特征,与肿瘤的侵袭转移密切相关。由于正常组织的氧供无法为肿瘤细胞提供充足的生长条件,肿瘤细胞内部会加速新生血管的形成进一步加重缺氧。低氧诱导因子(HIF-1α)被认为是在低氧条件下激活的关键转录调节因子,相关研究表明HIF-1α在肝癌组织中呈高度表达,促进血管生成及肿瘤的侵袭和转移,并维持着肿瘤细胞的代谢,是肝细胞癌发生、发展过程中重要的调控蛋白之一,与HIF-1α相关的HCC治疗也取得了快速地进展。与此同时,研究发现TME可以通过血小板内皮细胞粘附因子1 (PECAM-1/CD31)发挥作用,推动晚期转移进展,并在肿瘤进展的前终末阶段中起关键作用,且HIF-1α与CD31表达具有相关性。本综述重点总结HIF-1α及CD31促进晚期肝癌(HCC)转移及侵袭的分子机制。
Abstract: Hypoxia is an important biological feature of solid tumor microenvironment (TME), which is closely related to tumor invasion and metastasis. As normal tissue oxygen supply cannot provide sufficient growth conditions for tumor cells, the formation of new blood vessels will be accelerated inside tumor cells to further aggravate hypoxia. HIF-1α is considered under the condition of low oxygen activation key transcriptional regulation factor. Related studies have shown that HIF-1α is highly expressed in liver cancer tissue, promotes angiogenesis and tumor invasion and metastasis, and maintains the tumor cell’s metabolism, which is one of the important regulatory proteins in the occurrence and development of hepatocellular carcinoma. HIF-1α-related HCC treatment has also made rapid progress. At the same time, TME was found to play a role through platelet endothelial cell adhesion factor 1 (PECAM-1/CD31), promoting the progression of late metastasis and playing a key role in the preterminal stage of tumor progression, and hiF-1α was correlated with CD31 expression. This review focuses on the molecular mechanisms by which HIF-1α and CD31 promote metastasis and invasion of advanced hepatocellular carcinoma (HCC).
文章引用:李晗, 孔令群, 曹学峰, 王学文, 吴燕彬, 牛洪凯, 成雨. HIF-1α及CD31促进晚期肝癌转移及侵袭的分子机制[J]. 临床医学进展, 2022, 12(1): 236-245. https://doi.org/10.12677/ACM.2022.121036

1. 引言

肝细胞癌(简称肝癌,hepatocellular carcinoma, HCC)是世界上常见的恶性肿瘤之一 [1],发病率和死亡率均较高,占全球肿瘤病死率的第4位,严重威胁着人民的健康 [2] [3]。肝脏肿瘤的治疗首选肝切除,但是在初次确诊为肝癌患者中,仅10%~15%有机会行手术治疗 [4] [5] [6]。且大多数患者在首次确诊的时候就已经属于中晚期,病变也已经不仅仅局限于局部,即使是能够接受根治性治疗的患者,其总体的疗效也不是十分理想 [7] [8],术后5年的复发率也高达60%~70% [9]。HCC与其他实体肿瘤一样,具有快速生长的共同特点。然而,HCC细胞的生长往往超过功能血管的生长,导致HCC区域经常出现氧气不足的情况 [3] [10]。缺氧会使TME发生变化,如激活HIF-1α,多项研究表明HIF-1α在调节肿瘤对缺氧的适应中起关键作用。HIF-1α可以调节肿瘤细胞微环境代谢(促进肿瘤细胞更好的适应肿瘤微环境)、促进肝癌细胞发生上皮间充质转化(EMT)以及血管生成拟态(VM)的形成。此外,在开发涉及靶向HIF-1α的HCC治疗方面也取得了进展。本综述旨在总结HIF-1α及CD31在促进HCC的复发和转移中的机制,进一步明确HIF-1α与CD31在促进肝癌复发转移过程中是否有协同作用。

2. HIF-1α促进肝癌转移及侵袭的分子机制

2.1. HIF-1α的结构和功能

HIF是一种异二聚体,由一个O2-不稳定的α亚基和一个稳定的β亚基(也被称为ARNT)组成。在人类和其他脊椎动物中,有三种不同的HIF基因:HIF-1、HIF-2、HIF-3。HIFs包含一个基本的螺旋环螺旋(bHLH)结构域,两个Per-Arnt-Sim (PAS)结构域,一个PAS相关的COOH-末端(PAC)结构域、氧依赖降解(ODD)结构域以及位于ODD结构域的NH2末端反转录激活域(N-TAD)和位于COOH末端的C-TAD。在正常氧张力下,HIF-1α蛋白被脯氨酸羟基化结构域(PHDs)在ODD结构域的两个保守脯氨酸残基上羟基化。在羟化之后,von Hippel-Lindau (VHL)肿瘤抑制因子E3连接酶复合物发生泛素化,后者招募拉长素B、拉长素C和Cullin-2,形成E3泛素连接酶复合物(HIF-2α由E2泛素结合酶泛素化),最终通过26S蛋白酶体降解 [11] [12] [13]。当在低氧条件下稳定时,HIF-1α不再被PHDs修饰并被蛋白酶体降解,而是易位到细胞核,与它的伴生分子ARNT/HIF-1β通过HLH和PAS结构域的相互作用,招募CBP/p300等共激活剂。HIF异二聚体通过在靶基因启动子区域内与缺氧响应元件(HREs)的一致序列G/ACGTG结合和识别,驱动参与缺氧应激适应的基因转录 [14] [15]。

2.2. 缺氧时HIF-1α调节肝癌肿瘤细胞代谢

在正常细胞中,几乎所有ATP都是由线粒体氧化活性产生的,即正常细胞将葡萄糖转化为丙酮酸,通过三羧酸循环和氧化磷酸化再线粒体中进一步代谢,彻底氧化用于ATP依赖的生化反应。而在1920年Warburg发现,在肿瘤细胞中,肿瘤细胞摄取葡萄糖且分泌乳酸增加,即依赖无氧糖酵解来获取能量,我们称之为Warburg效应。与大多数正常组织不同,肿瘤细胞即使在氧气足以支持线粒体氧化磷酸化的情况下,也倾向于将葡萄糖“发酵”成乳酸。在此过程中,HIF-1α积极调节一系列糖酵解基因,促进糖酵解,有利于肿瘤细胞适应缺氧应激。许多参与糖酵解的关键酶已被证明是肝癌细胞中HIF1α的直接靶点,包括ALDOA、GPI、GAPDH、HK2、LDHA、PGK1、PGAM1、PFKFB4、ENO1和PKM2 [16] [17]。此外,与原代肝细胞相比,HIF-1α可直接上调葡萄糖转运体1 (GLUT1) [18],并在HCC细胞和患者样本中高表达,GLUT1的高表达与增殖增强、分化差以及晚期的组织学有关 [19]。己糖激酶2 (HK2)和乳酸脱氢酶A (LDHA)会增强糖酵解从葡萄糖向丙酮酸的转换,同时也是HIF-1α的直接靶点 [20] [21]。此外,HIF-1α是丙酮酸脱氢酶激酶1 (PDK1)表达所必需的,在PDK1表达时会抑制三羧酸循环。异位表达PDK1不仅可以挽救缺氧诱导的细胞凋亡,还可以减少缺氧ROS的产生,恢复HIF-1α缺陷细胞中ATP的产生 [22]。NDUFA4L2也受缺氧和HIF-1α诱导。在HCC患者中,NDUFA4L2的过表达与肿瘤微卫星的形成、肿瘤包膜缺失和总体生存率差密切相关。抑制HIF-1α/NDUFA4L2可增加氧消耗和线粒体活性,导致ROS积累和凋亡细胞死亡。NDUFA4L2的耗尽抑制了肝癌移植瘤的生长和转移 [23]。此外,除了氧,2-羟戊二酸、铁(II)和抗坏血酸也需要羟化酶对HIFα进行适当的羟化,从而将HIF-1α激活与代谢应激反应联系起来 [24]。

2.3. 缺氧时HIF-1α促进EMT过程来促进肝癌转移复发

晚期肝癌及肝癌术后复发的主要原因是肿瘤的侵袭和转移,许多上皮细胞失去了细胞极性,失去与基底膜连接的能力而转化具有侵袭转移能力的间质细胞,此过程我们称为上皮间充质转化(EMT)。EMT的主要特征有:细胞黏附分子(如E-钙黏蛋白)表达的减少、细胞角蛋白细胞骨架转化为波形蛋白(Vimentin)为主的细胞骨架及形态上具有间充质细胞的特征等。HIF-1α被认为是调控上皮间充质转化(EMT)的关键因子。研究表明在肝癌中,HIF-1α能激活Snail,Twist1等多种转录因子的表达从而促进EMT。Snail能作用于上皮细胞标志物E-cadherin启动子中E-box元件,促使E-cadherin降表达,促进EMT的发生;Twist形成复合物作用于E-cadherin诱导发生EMT [25]。此外,其他蛋白分子或信号通路也会通过HIF-1α来促进肝癌的EMT。

TGF-β信号通路是肝癌中最重要的信号通路之一,与多种癌症中的免疫抑制、肿瘤血管生成、肿瘤细胞迁移、增殖、分化、发育、凋亡和侵袭等生物活性有关。相关研究表明TGF-β与HIF-1α之间存在着正相关,Tabatabai等认为在缺氧条件下,肝细胞中的HIF-1α能够促进TGF-β信号转导。在某些细胞中,缺氧激活HIF-1α需要TGF-β信号,而TGF-β能够独立于缺氧激活HIF-1α [26] [27] [28]。而Bryan L等认为 [26],在肝细胞中,HIF-1α的激活并不需要TGF-β,而且在介导低氧所诱导的EMT时,TGF-β又是HIF-1α的下游信号通路。TGF-β通路是smad介导的,SMAD复合物与Sanil、E盒结合锌指蛋白(ZEB)等转录因子结合特定DNA区域,从而调节EMT相关基因的表达,促进肝癌的EMT。

Notch是另一种可被缺氧诱导的EMT信号通路。Sahlgren等研究表明,在缺氧HIF-1α/Notch/EMT轴上,Notch主要通过两种协同方式调节Snail。首先,N1ICD可以被招募到Snail启动子中,与HIF-1α相互作用,直接上调Snail。Notch调节Snail的另一种方式是通过调节LOX来间接调节:HIF-1α可以结合LOX启动子,增加LOX蛋白的产生,从而增加Snail。此外,Notch还可以和TGF-β/SMAD通路相互作用,从而激活EMT [29]。

HIF-2α能够诱导EMT的另一个关键通路是PI3k/Akt,该通路激活后会同时激活NF-κB/TWIST,下调E-cadherin,进而诱导EMT。缺氧也可以直接刺激肝癌细胞的EMT,HIF-1/2可以结合TWIST1基因的HRE,促进其表达,从而导致EMT。缺氧条件下,Wnt通路可以通过GSK-3β介导的Wnt/β-catenin通路使β-catenin上调从而促进EMT [30]。研究显示,Wnt/β-catenin通路可以增强HIF-1α转录,促进肝癌细胞的EMT [31]。此外,miRNAs也通过HIF-1α来影响肿瘤的转移和复发,缺氧时,miR-204的表达下调,刺激血管扩张的磷蛋白(VASP)表达上调,促进肝癌的肝内转移。miR-199a-5p/miR-592、miR-3662、miR-338-3p、miR-93和miR-122通过下调HIF-1α的表达来调节Warburg效应和肝癌进展 [32] - [37]。Chang等发现miR130b可能通过PTEN/p-AKT/HIF-1α信号通路促进EMT [38]。m除miRNAs外,长链非编码RNA (IncRNAs)也能以HIF-1α为中介影响肝癌细胞的增殖、侵袭和迁移,从而影响肝癌的EMT。如:InRNA UBE2CP3通过激活ERK1/2/HIF-1α/VEGFA信号增强肝癌细胞VEGF分泌,促进血管生成 [39]。

2.4. 缺氧时HIF-1α促进VM过程来促进肝癌转移复发

血管生成拟态(vasculogenic mimicry, VM)的概念是由Maniotis等在1999年提出。很多恶性肿瘤(如肝癌)经过无血管的缓慢生长期后(体积小于2 mm时期),为维持自身的生长和代谢,会释放多种血管生成因子,引起血管内皮细胞形态改变,基底膜及周围的细胞外基质降解,内皮细胞迁移、增殖,血管形成、改建,形成以内皮细胞围成的管道样结构。最近,EMT被认为是导致VM的一种机制 [40] [41]。EMT的分子转变是间充质成分如波形蛋白和N-钙粘蛋白的上调,同时上皮细胞粘附分子E-钙粘蛋白表达的降低 [42]。多项研究表明,HIF-1α活性具有促进作用,HIF-1α在调节肿瘤对缺氧适应VM形成中起关键作用 [13] [43] [44] [45]。

当有氧生命形式缺乏氧气和气体交换时,呼吸组织迅速酸化,因为二氧化碳积累形成羧酸,当癌细胞依赖糖酵解和Warburg效应时,细胞内就会产生乳酸 [46]。胞内的酸性环境对癌细胞来说是具有杀伤作用的,因此肿瘤细胞为保持胞内pH值在7.2至7.5之间,就会通过质子泵(称为pH调节剂)如单羧酸转运蛋白、HCO3-转运蛋白和碳酸酐酶将细胞外酸碱度驱动至5.6~6.8,以促进细胞在这些细胞毒性条件下的存活 [47]。高酸性细胞外微环境与恶性细胞有关,因为这些代谢变化沿着氧梯度形成pH梯度(随着氧水平的降低,pH值降低)。伴随着这种pH梯度,癌基因激活,肿瘤抑制活性随着HIF-1α和HIF-2α的激活而丧失,因为肿瘤细胞代谢方式向厌氧细胞转变,导致细胞外酸中毒增加,进一步加剧了这些影响 [47]。这些效应主要是通过HIF-1α来驱动的,HIF-1α可增强许多葡萄糖转运蛋白的基因表达,如葡萄糖转运蛋白1 (GLUT-1)、葡萄糖转运蛋白3 (GLUT-3)和许多糖酵解酶,以跟上无氧代谢的需求,因为无氧代谢需要分解比有氧呼吸多约18~19倍的葡萄糖分子 [48] [49]。

在概念层面上,肿瘤缺氧似乎只与极其巨大、快速生长的进程有关。然而,情况并非如此,因为Li等人在显微镜下观察到亚毫米尺寸的肿瘤是极度缺氧的,而继续使用显微镜来观察时,1~4 mm的肿瘤却未见明显的缺氧 [50]。从这些数据和他们随后的研究来看,这意味着当肿瘤从无血管到直径几百微米时,它们就开始出现缺氧了 [51],并且在肿瘤血管生成的初始阶段之前,肿瘤缺氧是非常明显的,一旦这些肿瘤缺氧,这些肿瘤血管生成效应就会增强 [52]。参与缺氧的三种最重要的缺氧信号因子是HIF-1α、HIF-2α以及信号转导子和转录因子3 (STAT3)的激活。STAT3在缺氧期间在肿瘤中上调 [53],驱动肿瘤的侵袭性。在常氧条件下,HIF-1α迅速降解,而在缺氧过程中,STAT3阻断HIF-1α降解,同时促进HIF-1α蛋白合成,导致HIF-1α信号传导整体增强 [54]。由于缺氧或过度表达p-STAT3的癌症的相互作用,HIF-1α反式激活包含缺氧反应元件(例如MMP-2)的基因,驱动血管拟态 [55]。MMP-2还通过p-STAT3/HIF-1α/MMP-2血管拟态通路增强肿瘤的侵袭和转移 [56]。

目前对于HIF-1α诱导HCC发生VM的完整信号通路尚未阐明,且各分子信号之间互相影响。Zhang等发现缺氧条件下,缺氧可增强肝癌细胞中RhoA/ROCK和Rac1/PAK的表达,进一步调节HIF-1α的表达。最终,RhoA/ROCK和Rac1/PAK通过HIF-1α的稳定和p-波形蛋白(Ser72和56)激活的上皮间质转化诱导血管生成 [57]。缺氧情况下,HIF-1α可通过与缺氧反应元件直接结合的方式来调节VEGF-A、VEGFR1、EPHA2、Twist、Nodal、骨桥蛋白和COX-2等基因的表达,或通过激活调节基因转录或中介蛋白来间接调节VE-cadherin、TF和PEDF表达 [58]。缺氧也可以调节notch反应基因的表达;具体来说,缺氧稳定了NICD蛋白,该蛋白与HIF-1α相互作用,并激活Notch启动子基因,包括Nodal [59] [60]。HIF-1α和Notch信号通路之间的这种非典型的相互干扰被认为促进了未分化的细胞状态,进一步阐明了VM下肿瘤细胞可塑性的可能病因。Li等发现肿瘤细胞经EMT抑制剂处理后,其VM的形成明显减弱,说明EMT调控VM的形成 [61]。Wang等发现肝癌细胞经COCl2处理后模拟的缺氧下,HIF-1α可以诱导LOXL2水平升高;进而导致上皮钙粘蛋白的抑制和波形蛋白的激活,以及随后促进EMT和VM过程的发生,这两者最终导致HCC肿瘤的进展 [44]。

3. CD31促进肝癌转移复发的分子机制

3.1. CD31的结构和功能

血小板内皮细胞粘附分子-1 (PECAM-1/CD31)是一种跨膜糖蛋白,相对分子量为130 kda,属于免疫球蛋白超家族。PECAM-1的胞外区域包括6个免疫球蛋白亚基组成的6个同源区域,每个同源区域由单独的外显子编码,每个亚基分别包含94、103、90、93、91和81个氨基酸残基。胞外区CD31直接参与细胞间的相互作用。CD31一旦与内皮细胞接触,通过其细胞外带正电荷的氨基酸,可定位于内皮细胞的细胞连接点 [62]。CD31胞内区域包含两个一致序列,分别构成两个免疫受体酪氨酸基抑制基序(ITIM)。ITIM可以特异性结合SHP-2,SHP-2是一种广泛表达的细胞质酪氨酸磷酸酶,具有两个src-同源2 (SH2)结构域。这两个酪氨酸分别是Y663和Y686,磷酸化后的Y663和Y686可以与SHP-2结合,从而具有多种生理作用。CD31胞内区域包含12个Ser残基、4个Thr残基和5个Tyr残基,均为磷酸化位点。到目前为止,只报道了Ser和Tyr的磷酸化 [63]。CD31同源结合和非同源结合可以相互转化。细胞表面表达的PECAM-1以同源结合为主,非同源结合为辅。

CD31以往被认为是血管内皮细胞的标志物。近年来研究者发现某些肿瘤细胞上也有CD31的表达 [64] [65] [66] [67],促进晚期肿瘤的侵袭和迁移。如Tang等人发现 [68],CD31广泛表达在小鼠黑色素瘤细胞,小鼠Lewis肺癌细胞,大鼠癌肉瘤细胞以及人类的某些肿瘤细胞系中 [11]:在人肝癌SK-HEP-1细胞系中,DNA和RNA水平都有CD31的表达 [68],在乳腺癌细胞中,CD31和CD44的共表达与侵入性表型相关,此外,CD31的表达可以使形态及功能未分化的乳腺癌MDA-MB-231 [64] [65] 细胞出现攻击性行为。在非霍奇金淋巴瘤中,CD31表达在小淋巴细胞瘤及大淋巴细胞瘤中。在白血病细胞系中,在体外终末髓样分化模型中报道了CD31的上调 [66]。同样的,研究者发现在一例胆囊腺癌病例中,也可以检测到CD31的表达 [69]。因此,CD31也可能是未来抗癌药物开发的一个有吸引力的靶点 [70] [71] [72]。

3.2. CD31促进晚期肝癌转移及侵袭的分子机制

Horace [6] 等发现晚期肿瘤中,CD31主要是通过调节肿瘤微环境(TME)中内皮细胞的黏附及促进肿瘤细胞增殖,而不是通过刺激肿瘤血管生成来促进肿瘤的侵袭及转移的。CD31表达在肿瘤细胞上时,晚期TME中的信号作用于胞外结构域后,向胞内传导,激活胞内的多条信号通路来介导抗肿瘤细胞凋亡作用,如 [1] CD31/SHP-2、CD31/stats 3&5等。Valsamma [73] 等证实CD31通过同性相互作用介导肿瘤和内皮细胞之间的相互干扰,参与从肿瘤到内皮细胞信号的接收/整合,并转化为介质的释放,如TIMP-1,以受体介导的方式进一步刺激肿瘤细胞增殖。在肝癌细胞中,Zhang等人 [74] 通过相关实验证实,CD31在MHCC97H,HCC-LM3系上有所表达,同时证实了CD31通过上调整合素β1或β3进而激活FAK-Akt通路诱导EMT。此外,在Giuseppe等人 [75] 的相关研究中,发现多形性胶质母细胞瘤(GBM)中,CD31和HIF-1α的表达水平呈正相关。由于CD31在促进晚期肿瘤侵袭及转移的分子机制未明确,且肝癌是富血供肿瘤,抗血管及联合治疗晚期肝癌疗效欠佳,因此进一步研究CD31与肝癌肿瘤细胞的分子机制对降低肿瘤细胞耐药,提高患者生存率有较高的临床研究价值。

4. 结论和未来展望

HIF-1α是HCC适应低氧环境的重要调节因子,通过多个靶基因来调节肿瘤微环境的代谢,来影响肝癌细胞的增殖、生长、转移、侵袭及血管生成的过程。大量的研究已被证实使用HIF-1α作为治疗靶点的可行性,但这些药物仅使中晚期HCC患者的中位总生存期延长时间有限,总体有效率也较低。对于目前抗血管生成治疗的效果是否源于脱靶效应、是否受到肿瘤微环境以及肿瘤细胞本身的变化等方面的影响还存在许多争议。且CD31对晚期肿瘤的影响也越来越受研究者的关注,虽CD31在HCC中的机制尚未明确,依然需要进行大量、深入的研究,如早期应用HIF-1α抑制剂联合晚期抗CD31药物治疗比单用其中一种效果要好,同时HIF-1α是一种转录因子,在肿瘤微环境中是否可以调控CD31的表达也可以进行深入研究。

参考文献

[1] Semenza, G.L. (2011) Oxygen Sensing, Homeostasis, and Disease. The New England Journal of Medicine, 365, 537-47.
https://doi.org/10.1056/NEJMra1011165
[2] Topalian, S.L., et al. (2012) Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. The New England Journal of Medicine, 366, 2443-2454.
[3] Herbst, R.S., et al. (2014) Predictive Correlates of Response to the Anti-PD-L1 Antibody MPDL3280A in Cancer Patients. Nature, 515, 563-567.
https://doi.org/10.1038/nature14011
[4] Gao, Q., et al. (2009) Overexpression of PD-L1 Significantly Associates with Tumor Aggressiveness and Postoperative Recurrence in Human Hepatocellular Carcinoma. Clinical Cancer Research, 15, 971-979.
https://doi.org/10.1158/1078-0432.CCR-08-1608
[5] Calderaro, J., et al. (2016) Programmed Death Ligand 1 Expression in Hepatocellular Carcinoma: Relationship with Clinical and Pathological Features. Hepatology, 64, 2038-2046.
[6] DeLisser, H., et al. (2010) Vascular Endothelial Platelet Endothelial Cell Adhesion Molecule 1 (PECAM-1) Regulates Advanced Metastatic Progression. Proceedings of the National Academy of Sciences of the United States of America, 107, 18616-18621.
https://doi.org/10.1073/pnas.1004654107
[7] (2020) Erratum: Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 70, 313.
https://doi.org/10.3322/caac.21609
[8] 王奕鸿, 方永平, 李坤平. 手术治疗余肝体积不足肝癌的研究进展[J]. 临床医学研究与实践, 2021(6): 190-192.
[9] Tanaka, M., et al. (2011) Hepatitis B and C Virus Infection and Hepatocellular Carcinoma in China: A Review of Epidemiology and Control Measures. Journal of Epidemiology, 21, 401-416.
https://doi.org/10.2188/jea.JE20100190
[10] Postow, M.A., Callahan, M.K. and Wolchok, J.D. (2015) Immune Checkpoint Blockade in Cancer Therapy. Journal of Clinical Oncology, 33, 1974-1982.
https://doi.org/10.1200/JCO.2014.59.4358
[11] Cockman, M.E., et al. (2000) Hypoxia Inducible Factor-Alpha Binding and Ubiquitylation by the von Hippel-Lindau Tumor Suppressor Protein. Journal of Biological Chemistry, 275, 25733-25741.
https://doi.org/10.1074/jbc.M002740200
[12] Jaakkola, P., et al. (2001) Targeting of HIF-alpha to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation. Science, 292, 468-472.
https://doi.org/10.1126/science.1059796
[13] Maxwell, P.H., et al. (1999) The Tumour Suppressor Protein VHL Targets Hypoxia-Inducible Factors for Oxygen-Dependent Proteolysis. Nature, 399, 271-275.
https://doi.org/10.1038/20459
[14] Greer, S.N., Metcalf, J.L., Wang, Y. and Ohh, M. (2012) The Updated Biology of Hypoxia-Inducible Factor. The EMBO Journal, 31, 2448-2460.
https://doi.org/10.1038/emboj.2012.125
[15] Shen, C. and Kaelin Jr., W.G. (2013) The VHL/HIF Axis in Clear Cell Renal Carcinoma. Seminars in Cancer Biology, 23, 18-25.
https://doi.org/10.1016/j.semcancer.2012.06.001
[16] Xia, X., et al. (2009) Integrative Analysis of HIF Binding and Transactivation Reveals Its Role in Maintaining Histone Methylation Homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 106, 4260-4265.
https://doi.org/10.1073/pnas.0810067106
[17] Thienpont, B., et al. (2016) Tumour Hypoxia Causes DNA Hypermethylation by Reducing TET Activity. Nature, 537, 63-68.
https://doi.org/10.1038/nature19081
[18] Chen, C., et al. (2001) Regulation of glut1 mRNA by Hypoxia-Inducible Factor-1. Interaction between H-ras and Hypoxia. Journal of Biological Chemistry, 276, 9519-9525.
https://doi.org/10.1074/jbc.M010144200
[19] Amann, T., et al. (2009) GLUT1 Expression Is Increased in Hepatocellular Carcinoma and Promotes Tumorigenesis. The American Journal of Pathology, 174, 1544-1552.
https://doi.org/10.2353/ajpath.2009.080596
[20] Gwak, G.Y., et al. (2005) Hypoxia Stimulates Proliferation of Human Hepatoma Cells through the Induction of Hexokinase II Expression. Journal of Hepatology, 42, 358-364.
https://doi.org/10.1016/j.jhep.2004.11.020
[21] Semenza, G.L., et al. (1996) Hypoxia Response Elements in the Aldolase A, Enolase 1, and Lactate Dehydrogenase A Gene Promoters Contain Essential Binding Sites for Hypoxia-Inducible Factor 1. Journal of Biological Chemistry, 271, 32529-32537.
https://doi.org/10.1074/jbc.271.51.32529
[22] Kim, J.W., et al. (2006) HIF-1-Mediated Expression of Pyruvate Dehydrogenase Kinase: A Metabolic Switch Required for Cellular Adaptation to Hypoxia. Cell Metabolism, 3, 177-185.
https://doi.org/10.1016/j.cmet.2006.02.002
[23] Lai, R.K., et al. (2016) NDUFA4L2 Fine-Tunes Oxidative Stress in Hepatocellular Carcinoma. Clinical Cancer Research, 22, 3105-3117.
https://doi.org/10.1158/1078-0432.CCR-15-1987
[24] Masson, N. and Ratcliffe, P.J. (2014) Hypoxia Signaling Pathways in Cancer Metabolism: The Importance of Co-Selecting Interconnected Physiological Pathways. Cancer & Metabolism, 2, 3.
https://doi.org/10.1186/2049-3002-2-3
[25] Zhang, L., et al. (2013) Hypoxia Induces Epithelial-Mesenchymal Transition via Activation of SNAI1 by Hypoxia-Inducible Factor-1α in Hepatocellular Carcinoma. BMC Cancer, 13, 108.
https://doi.org/10.1186/1471-2407-13-108
[26] Copple, B.L. (2010) Hypoxia Stimulates Hepatocyte Epithelial to Mesenchymal Transition by Hypoxia-Inducible Factor and Transforming Growth Factor-Beta-Dependent Mechanisms. Liver International, 30, 669-682.
https://doi.org/10.1111/j.1478-3231.2010.02205.x
[27] Tabatabai, G., et al. (2006) Irradiation and Hypoxia Promote Homing of Haematopoietic Progenitor Cells towards Gliomas by TGF-Beta-Dependent HIF-1alpha-Mediated Induction of CXCL12. Brain, 129, 2426-2435.
https://doi.org/10.1093/brain/awl173
[28] McMahon, S., et al. (2006) Transforming Growth Factor beta1 Induces Hypoxia-Inducible Factor-1 Stabilization through Selective Inhibition of PHD2 Expression. Journal of Biological Chemistry, 281, 24171-24181.
https://doi.org/10.1074/jbc.M604507200
[29] Sahlgren, C., et al. (2008) Notch Signaling Mediates Hypoxia-Induced Tumor Cell Migration and Invasion. Proceedings of the National Academy of Sciences of the United States of America, 105, 6392-6397.
https://doi.org/10.1073/pnas.0802047105
[30] Tirpe, A.A., et al. (2019) Hypoxia: Overview on Hypoxia-Mediated Mechanisms with a Focus on the Role of HIF Genes. International Journal of Molecular Sciences, 20, 6140.
https://doi.org/10.3390/ijms20246140
[31] Zhang, L., Liu, H.J., Mu, X.D., Cui, J.L. and Peng, Z.G. (2017) Dysregulation of Fra1 Expression by Wnt/β-Catenin Signalling Promotes Glioma Aggressiveness through Epithelial-Mesenchymal Transition. Bioscience Reports, 37, BSR20160643.
https://doi.org/10.1042/BSR20160643
[32] Chen, Z., et al. (2018) MiR-3662 Suppresses Hepatocellular Carcinoma Growth through Inhibition of HIF-1α-Mediated Warburg Effect. Cell Death & Disease, 9, 549.
https://doi.org/10.1038/s41419-018-0616-8
[33] Li, B., et al. (2017) Mutual Regulation of MiR-199a-5p and HIF-1α Modulates the Warburg Effect in Hepatocellular Carcinoma. Journal of Cancer, 8, 940-949.
https://doi.org/10.7150/jca.17496
[34] Zhang, L.F., et al. (2015) Suppression of miR-199a Maturation by HuR Is Crucial for Hypoxia-Induced Glycolytic Switch in Hepatocellular Carcinoma. The EMBO Journal, 34, 2671-2685.
https://doi.org/10.15252/embj.201591803
[35] Jiang, Y., et al. (2015) Temporal Regulation of HIF-1 and NF-κB in Hypoxic Hepatocarcinoma Cells. Oncotarget, 6, 9409-9419.
https://doi.org/10.18632/oncotarget.3352
[36] Xu, H., et al. (2014) MiR-338-3p Inhibits Hepatocarcinoma Cells and Sensitizes These Cells to Sorafenib by Targeting Hypoxia-Induced Factor 1α. PLoS ONE, 9, e115565.
https://doi.org/10.1371/journal.pone.0115565
[37] Csak, T., et al. (2015) microRNA-122 Regulates Hypoxia-Inducible Factor-1 and Vimentin in Hepatocytes and Correlates with Fibrosis in Diet-Induced Steatohepatitis. Liver International, 35, 532-541.
https://doi.org/10.1111/liv.12633
[38] Chang, R.M., et al. (2016) MicroRNA-130b Promotes Proliferation and EMT-Induced Metastasis via PTEN/p-AKT/HIF-1α Signaling. Tumor Biology, 37, 10609-10619.
https://doi.org/10.1007/s13277-016-4919-z
[39] Lin, J., et al. (2018) Long Non-Coding RNA UBE2CP3 Enhances HCC Cell Secretion of VEGFA and Promotes Angiogenesis by Activating ERK1/2/HIF-1α/VEGFA Signalling in Hepatocellular Carcinoma. Journal of Experimental & Clinical Cancer Research, 37, 113.
https://doi.org/10.1186/s13046-018-0727-1
[40] Sun, T., et al. (2010) Expression and Functional Significance of Twist1 in Hepatocellular Carcinoma: Its Role in Vasculogenic Mimicry. Hepatology, 51, 545-556.
https://doi.org/10.1002/hep.23311
[41] Wang, L., et al. (2015) Metastasis-Associated in Colon Cancer-1 Promotes Vasculogenic Mimicry in Gastric Cancer by Upregulating TWIST1/2. Oncotarget, 6, 11492-11506.
https://doi.org/10.18632/oncotarget.3416
[42] Chaw, S.Y., et al. (2012) Epithelial to Mesenchymal Transition (EMT) Biomarkers—E-Cadherin, Beta-Catenin, APC and Vimentin—in Oral Squamous Cell Carcinogenesis and Transformation. Oral Oncology, 48, 997-1006.
https://doi.org/10.1016/j.oraloncology.2012.05.011
[43] Xu, Y., et al. (2012) Short-Term Anti-Vascular Endothelial Growth Factor Treatment Elicits Vasculogenic Mimicry Formation of Tumors to Accelerate Metastasis. Journal of Experimental & Clinical Cancer Research, 31, 16.
https://doi.org/10.1186/PREACCEPT-1800076486556870
[44] Wang, M., et al. (2017) HIF-1α Promoted Vasculogenic Mimicry Formation in Hepatocellular Carcinoma through LOXL2 Up-Regulation in Hypoxic Tumor Microenvironment. Journal of Experimental & Clinical Cancer Research, 36, 60.
https://doi.org/10.1186/s13046-017-0533-1
[45] Yang, J., et al. (2017) HIF-2α Promotes the Formation of Vasculogenic Mimicry in Pancreatic Cancer by Regulating the Binding of Twist1 to the VE-cadherin Promoter. Oncotarget, 8, 47801-47815.
https://doi.org/10.18632/oncotarget.17999
[46] Jiang, B. (2017) Aerobic Glycolysis and High Level of Lactate in Cancer Metabolism and Microenvironment. Genes and Diseases, 4, 25-27.
https://doi.org/10.1016/j.gendis.2017.02.003
[47] Chiche, J., Brahimi-Horn, M.C. and Pouysségur, J. (2010) Tumour Hypoxia Induces a Metabolic Shift Causing Acidosis: A Common Feature in Cancer. Journal of Cellular and Molecular Medicine, 14, 771-794.
https://doi.org/10.1111/j.1582-4934.2009.00994.x
[48] Pouysségur, J., Dayan, F. and Mazure, N.M. (2006) Hypoxia Signalling in Cancer and Approaches to Enforce Tumour Regression. Nature, 441, 437-443.
https://doi.org/10.1038/nature04871
[49] Semenza, G.L. (2003) Targeting HIF-1 for Cancer Therapy. Nature Reviews Cancer, 3, 721-732.
https://doi.org/10.1038/nrc1187
[50] Li, X.F., et al. (2007) Visualization of Hypoxia in Microscopic Tumors by Immunofluorescent Microscopy. Cancer Research, 67, 7646-7653.
https://doi.org/10.1158/0008-5472.CAN-06-4353
[51] Li, X.F. and O’Donoghue, J.A. (2008) Hypoxia in Microscopic Tumors. Cancer Letters, 264, 172-180.
https://doi.org/10.1016/j.canlet.2008.02.037
[52] Cao, Y., et al. (2005) Observation of Incipient Tumor Angiogenesis That Is Independent of Hypoxia and Hypoxia Inducible Factor-1 Activation. Cancer Research, 65, 5498-5505.
https://doi.org/10.1158/0008-5472.CAN-04-4553
[53] Yakata, Y., et al. (2007) Expression of p-STAT3 in Human Gastric Carcinoma: Significant Correlation in Tumour Invasion and Prognosis. International Journal of Oncology, 30, 437-442.
[54] Song, Y.Y., et al. (2014) STAT3, p-STAT3 and HIF-1α Are Associated with Vasculogenic Mimicry and Impact on Survival in Gastric Adenocarcinoma. Oncology Letters, 8, 431-437.
https://doi.org/10.3892/ol.2014.2059
[55] Xu, Q., et al. (2005) Targeting Stat3 Blocks both HIF-1 and VEGF Expression Induced by Multiple Oncogenic Growth Signaling Pathways. Oncogene, 24, 5552-5560.
https://doi.org/10.1038/sj.onc.1208719
[56] Li, S., Meng, W., Guan, Z.W., Guo, Y.L. and Han, X.Z. (2016) The Hypoxia-Related Signaling Pathways of Vasculogenic Mimicry in Tumor Treatment. Biomedicine & Pharmacotherapy, 80, 127-135.
https://doi.org/10.1016/j.biopha.2016.03.010
[57] Zhang, J.G., et al. (2020) Hypoxic Induction of Vasculogenic Mimicry in Hepatocellular Carcinoma: Role of HIF-1 α, RhoA/ROCK and Rac1/PAK Signaling. BMC Cancer, 20, Article No. 32.
https://doi.org/10.1186/s12885-019-6501-8
[58] Fernández-Barral, A., et al. (2012) Hypoxia Negatively Regulates Antimetastatic PEDF in Melanoma Cells by a Hypoxia Inducible Factor-Independent, Autophagy Dependent Mechanism. PLoS ONE, 7, e32989.
https://doi.org/10.1371/journal.pone.0032989
[59] Gustafsson, M.V., et al. (2005) Hypoxia Requires Notch Signaling to Maintain the Undifferentiated Cell State. Developmental Cell, 9, 617-628.
https://doi.org/10.1016/j.devcel.2005.09.010
[60] Quail, D.F., et al. (2011) Low Oxygen Levels Induce the Expression of the Embryonic Morphogen Nodal. Molecular Biology of the Cell, 22, 4809-4821.
https://doi.org/10.1091/mbc.e11-03-0263
[61] Li, W., Zong, S.Q., Shi, Q., Li, H.J., Xu, J. and Hou, F.G. (2016) Hypoxia-Induced Vasculogenic Mimicry Formation in Human Colorectal Cancer Cells: Involvement of HIF-1a, Claudin-4, and E-Cadherin and Vimentin. Scientific Reports, 6, Article No. 37534.
https://doi.org/10.1038/srep37534
[62] Sun, J., et al. (2000) Contributions of the Extracellular and Cytoplasmic Domains of Platelet-Endothelial Cell Adhesion Molecule-1 (PECAM-1/CD31) in Regulating Cell-Cell Localization. Journal of Cell Science, 113, 1459-1469.
https://doi.org/10.1242/jcs.113.8.1459
[63] Newman, D.K., et al. (2002) Nitration of PECAM-1 ITIM Tyrosines Abrogates Phosphorylation and SHP-2 Binding. Biochemical and Biophysical Research Communications, 296, 1171-1179.
https://doi.org/10.1016/S0006-291X(02)02060-0
[64] Righi, L., et al. (2003) Role of CD31/Platelet Endothelial Cell Adhesion Molecule-1 Expression in in Vitro and in Vivo Growth and Differentiation of Human Breast Cancer Cells. The American Journal of Pathology, 162, 1163-1174.
https://doi.org/10.1016/S0002-9440(10)63912-0
[65] Sapino, A., et al. (2001) Expression of CD31 by Cells of Extensive Ductal in Situ and Invasive Carcinomas of the Breast. The Journal of Pathology, 194, 254-261.
https://doi.org/10.1002/1096-9896(200106)194:2<254::AID-PATH880>3.0.CO;2-2
[66] Stacchini, A., et al. (2003) Expression of the CD31 Antigen in Normal B-Cells and Non Hodgkin’s Lymphomas. Journal of Biological Regulators and Homeostatic Agents, 17, 308-315.
[67] Goldberger, A., Middleton, K.A. and Newman, P.J. (1994) Changes in Expression of the Cell Adhesion Molecule PECAM-1 (CD31) during Differentiation of Human Leukemic Cell Lines. Tissue Antigen, 44, 285-293.
https://doi.org/10.1111/j.1399-0039.1994.tb02397.x
[68] Tang, D.G., et al. (1993) Identification of PECAM-1 in Solid Tumor Cells and Its Potential Involvement in Tumor Cell Adhesion to Endothelium. Journal of Biological Chemistry, 268, 22883-22894.
https://doi.org/10.1016/S0021-9258(18)41609-2
[69] Handra-Luca, A. (2019) CD31 Immunohistochemical Expression in Tumors. Applied Immunohistochemistry & Molecular Morphology, 27, e98-e99.
https://doi.org/10.1097/PAI.0000000000000693
[70] Newman, P.J. and Newman, D.K. (2003) Signal Transduction Pathways Mediated by PECAM-1: New Roles for an Old Molecule in Platelet and Vascular Cell Biology. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 953-964.
https://doi.org/10.1161/01.ATV.0000071347.69358.D9
[71] Ilan, N. and Madri, J.A. (2003) PECAM-1: Old Friend, New Partners. Current Opinion in Cell Biology, 15, 515-524.
https://doi.org/10.1016/S0955-0674(03)00100-5
[72] Jackson, D.E. (2003) The Unfolding Tale of PECAM-1. FEBS Letters, 540, 7-14.
https://doi.org/10.1016/S0014-5793(03)00224-2
[73] Abraham, V., et al. (2018) Involvement of TIMP-1 in PECAM-1-Mediated Tumor Dissemination. International Journal of Oncology, 53, 488-502.
https://doi.org/10.3892/ijo.2018.4422
[74] Zhang, Y.Y., et al. (2018) CD31 Regulates Metastasis by Inducing Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma via the ITGB1-FAK-Akt Signaling Pathway. Cancer Letters, 429, 29-40.
https://doi.org/10.1016/j.canlet.2018.05.004
[75] Musumeci, G., et al. (2015) Enhanced Expression of CD31/Platelet Endothelial Cell Adhesion Molecule 1 (PECAM1) Correlates with Hypoxia Inducible Factor-1 Alpha (HIF-1α) in Human Glioblastoma Multiforme. Experimental Cell Research, 339, 407-416.
https://doi.org/10.1016/j.yexcr.2015.09.007