肾性贫血和铁代谢的研究进展
Research Progress of Renal Anemia and Iron Metabolism
DOI: 10.12677/ACM.2022.121071, PDF, HTML, XML, 下载: 357  浏览: 548  国家自然科学基金支持
作者: 刘 静:西安医学院,陕西 西安;何 鹏, 王汉民, 何丽洁, 张 鹏*:空军军医大学西京医院肾内科,陕西 西安
关键词: 慢性肾脏病肾性贫血铁代谢铁调素Chronic Kidney Disease Renal Anemia Iron Metabolism Hepcidin
摘要: 肾性贫血是慢性肾功能不全发展到终末期肾脏病常见的并发症之一,会导致患者机体功能受损和生活质量下降,同时增加慢性肾脏病(chronic kidney disease, CKD)患者的死亡风险。铁代谢平衡对维持机体正常生理功能至关重要,铁稳态失衡是导致CKD患者绝对或功能性缺铁性贫血的一个重要原因。本文将就近些年来肾性贫血的诊断与治疗目标、铁代谢、铁调素和肾性贫血药物治疗的研究进展作一综述。
Abstract: Renal anemia is one of the common complications of chronic renal insufficiency to end-stage renal disease, which will lead to impaired body function and decreased quality of life, and increase the risk of death in patients with chronic kidney disease. Iron metabolism balance is crucial to maintain normal physiological functions of the body, and iron homeostasis imbalance is an important cause of absolute or functional iron deficiency anemia in patients with CKD. This article will review the diagnosis and treatment of renal anemia, iron metabolism, hepcidin and drug therapy of renal anemia in recent years.
文章引用:刘静, 何鹏, 王汉民, 何丽洁, 张鹏. 肾性贫血和铁代谢的研究进展[J]. 临床医学进展, 2022, 12(1): 483-489. https://doi.org/10.12677/ACM.2022.121071

1. 前言

慢性肾脏病(chronic kidney disease, CKD)是一个重大的公共健康卫生问题。据估计,CKD全球患病率约为8%~16%,其发病率逐年升高 [1]。贫血是CKD患者最常见的并发症之一,我国非透析CKD患者贫血患病率高达72.0%,透析患者贫血患病率高达98.2% [2]。造成众多CKD患者贫血的主要原因是内源性促红细胞生成素(EPO)缺乏,而铁代谢异常亦是一个主要因素 [3]。其治疗也从基于给药促红细胞生成素(erythropoiesis stimulating agents, ESAs)转向调节铁代谢。

2. 肾性贫血的诊断与治疗目标

肾性贫血指由于肾功能受损,尤其是患者肾小球滤过率低于30 ml/min或血清肌酐浓度高于300 μmol/L且血红蛋白降低时出现的正细胞正色素性、增生低下性贫血 [4]。诊断标准同世界卫生组织(WHO)推荐:居住海平面地区的成年人,男性Hb < 130 g/L,非妊娠女性Hb < 120 g/L,妊娠女性Hb < 110 g/L,可诊断贫血;还应考虑患者年龄、种族、居住地的海拔高度对Hb的影响 [2]。目前临床上关于CKD贫血患者治疗Hb目标值尚无明确定论,指南推荐Hb的下限为110 g/L,上限不超过130 g/L,以达到贫血治疗的最大获益,并尽可能减少其不良反应 [2]。

3. 铁代谢

铁是人体新陈代谢的重要元素,铁代谢平衡是维持机体正常生理功能的一个重要因素。铁的吸收部位主要位于十二指肠和空肠上端,其吸收量主要取决于体内铁的储存量以及红细胞生成速度。吸收入血的二价铁经氧化后与血浆中的转铁蛋白结合,运转到铁利用和储存的场所。幼红细胞和网织红细胞膜上有丰富的转铁蛋白受体,与转铁蛋白结合后形成受体-转铁蛋白复合物,通过细胞的胞饮作用进入胞质中将铁释放,参与形成血红蛋白。多余的铁则以铁蛋白和含铁血黄素形式贮存于肝、脾等器官的单核-巨噬细胞系统中,待需要增加时动用。

正常情况下,体内铁处于进出平衡状态,铁除了是构成血红蛋白必不可少的成分外,还参与氧化还原反应,在细胞呼吸、氧气运输和储存、多种酶的合成中起着重要的作用,也与炎症调节息息相关 [5]。铁缺乏会影响机体的正常生理功能,而铁过载会产生过多自由基团,氧化应激导致甲状腺、心脏等多种器官的损伤 [5]。铁缺乏以及铁过载都将对机体产生不利的影响,维持铁稳态对机体至关重要。

CKD患者铁稳态失衡主要是因为铁吸收减少、丢失增多、消耗增加和铁利用障碍 [6]。绝对性铁缺乏表现为骨髓、肝脏、脾脏中铁储存量严重减少或无铁储存,血清铁蛋白和转铁蛋白饱和度均明显降低,其主要原因是铁吸收减少、丢失与消耗过多,可通过补充铁缓解 [5] [6]。功能性缺铁则表现为全身总铁量正常或增加,但是无法与红细胞前体细胞结合,转铁蛋白饱和度降低,即铁利用障碍,铁在网状内皮系统滞留而无法供给红细胞生成所需,铁调素是其主要调节剂 [5] [6] [7]。

4. 铁调素

铁调素(hepcidin)是一种由肝合成并分泌的富含半胱氨酸的抗菌多肽,2000年由Krause等人于人血浆中将其分离出来 [8],2001年由Park等人在研究人体体液的抗微生物特性时从尿液中分离纯化出来 [9]。人类Hepcidin分子是由8个半胱氨酸残基组成的单一发夹结构,它的2个臂由4个二硫键连接形成1个梯样构型,其中1个二硫键于发夹状结构转弯处与其附近的2个半胱氨酸相连接 [10]。铁调素主要有3种形式:Hepcidin-20、Hepcidin-22、Hepcidin-25,其中Hepcidin-25 为主要形式并起调节铁代谢作用。铁调素作用于与肠上皮细胞、肝细胞、巨噬细胞膜表面的铁转运蛋白,使其内化降解,铁从细胞内转出受阻 [11]。机体铁过载时,Hepcidin表达增加,结合铁转运蛋白,促使其在溶酶体中内化降解 ,从而有效阻止细胞内铁的排出,以维持内环境中铁稳态。相反,当铁缺乏时,Hepcidin表达减少,允许细胞内大部分的铁通过铁转运蛋白流出,维持机体铁稳态,负性调节铁代谢 [12]。

铁状态可以直接影响铁调素的表达。肝脏铁储备与血循环中转铁蛋白饱和度的双重效应激活BMP6-HJV-SMAD信号通路诱导铁调素基因的转录,上调铁调素水平 [13]。Uehata等人对505例非透析CKD患者的横断面研究发现:铁调素水平与铁蛋白浓度呈正相关关系;而在铁充足的情况下,即高铁蛋白组,铁调素水平与Hb浓度成负相关关系,表明铁利用发生障碍,铁状态直接关系到铁调素的表达 [14]。对于CKD患者来说,若处在正常铁状态或功能性铁缺乏的情况下,铁调素表达会相应提高,若处在绝对性铁缺乏的情况下,铁调素表达会相应降低。

大多数CKD患者存在微炎症状态,微炎症可以使EPO减少、红系祖细胞增殖分化受损,还会导致红细胞存活率下降。炎症细胞因子IL-1、IL-6、干扰素γ、激活素B等会导致铁调素病理性增加 [15],减少铁的利用。IL-6通过JAK/STAT3信号通路发挥作用,IL-6与其受体结合激活Janus激酶(Janus kinase, JAKs),使STAT3磷酸化,磷酸化后的STAT蛋白进入细胞核,与铁调素基因启动子相结合,从而促进其表达 [16]。IL-6-JAK-STAT3信号通路和BMP6-HJV-SMAD信号通路的表达存在相互影响,但这些通路之间的相互作用尚不明确。炎症状态较轻时,干扰素γ与IL-1在早期诱导铁调素表达时起关键作用 [17]。激活素B作为一种炎性细胞因子能通过BMP/SMAD信号激活铁调素基因的表达 [18],而IL-1不仅可以刺激BMP/SMAD信号传导 [19],还可以通过诱导C/EBP (CCAT增强子结合蛋白)增强铁调素转录,炎症相关的内质网应激可通过SMAD1/5/8和CREB/CREBH (cAMP反应元件结合蛋白)激活铁调素启动子活性 [20]。

血清铁调素浓度随肾功能恶化逐步升高 [21]。在患者肾功能正常的情况下,铁调素可以像β2微球蛋白一样,从肾小球自由滤过,后在近端小管被重吸收、降解,未被降解的铁调素则随尿液排出,每日的排泄量与血浆铁调素浓度成正比;慢性肾功能不全患者因肾脏排尿量减少会导致铁调素排泄降低,循环铁调素升高 [22]。有研究表明:在排除炎症影响后,CKD患者血清铁调素浓度与eGFR呈负相关 [23]。

氧含量是铁调素表达的独立保护性因素,缺氧会抑制铁调素的生成,从而增加铁的生物利用度 [24]。肾脏内负责调节生成EPO的氧感应机制存在于肾脏EPO生成细胞,主要涉及HIF通路与PHD系统。对于健康个体,机体氧气充足的情况下,PHD迅速羟化HIF-a致其降解;而在机体低氧环境下,羟基化反应受阻,HIF-a水平升高,进入细胞核后与HIF-β结合,激活HIF通路并导致靶基因转录,HIF通路的激活不仅可以导致EPO生成增加进而刺激红细胞生成,还可以通过血小板源性生长因子降解可溶性铁调素调节蛋白(一种铁调素正性调节蛋白)进而抑制铁调素的产生,改善铁的吸收与转运,增加铁的生物利用 [25] [26] [27]。

EPO对于铁调素的表达也是一个不可缺乏的重要影响因素,红细胞生成增加引起铁的需求剧增可抑制铁调素的表达,同时,生长分化因子-15和原肠形成蛋白通过抑制BMP/SMAD信号传导来抑制铁调素的表达。有研究表明,失血或注射EPO等刺激红细胞生成的因素可促使骨髓中的有核红细胞增殖并分泌一种糖蛋白类激素Erythroferrone (ERFF),ERFF可直接作用于肝脏,抑制EPO介导的铁调素的表达 ,从而增加铁的吸收及储备铁的释放利用 [28],以满足正常成熟红细胞生成所需。

维生素D也是铁调素的调节因子。有研究表明,1,25-二羟维生素D与其受体结合后,直接影响铁调素启动子,抑制铁调素基因转录,下调铁调素水平,同时伴有铁蛋白的下降及转铁蛋白的升高 [29]。

5. 肾性贫血药物治疗

1989年,促红细胞生成素(ESAs)用于治疗CKD贫血,开启了CKD贫血治疗的新纪元,目前ESAs+铁剂治疗已经成为治疗肾性贫血的主要手段。对于绝对性铁缺乏CKD患者,治疗效果十分显著;然而对于功能性铁缺乏CKD患者,疗效欠佳。缺氧诱导因子–脯氨酰羟化酶抑制剂(Hypoxia inducible factor prolyl hydroxylase inhibitor, HIF-PHIs)的问世为此类CKD贫血患者带来了福音。

HIF-PHIs可以抑制HIF-α亚基中的脯氨酸结构域发生羟化,避免HIF-α羟化后与希佩尔林道肿瘤抑制因子(von Hippel-Lindau tumor suppressor, pVHL)结合,进而被泛素E3连接酶复合体识别,通过泛素-蛋白酶体途径降解,发挥着稳定HIF-α的作用,后者可与HIF-β发生异二聚化形成稳定分子,该分子与靶基因的低氧反应元件(hypoxia response element, HRE)结合,激活EPO的转录 [30]。HIF-PHIs不仅可从转录水平上增加EPO的生成,还可以改善铁代谢水平 [31]。而人体中的脯氨酸羟化酶有3种同源形式:脯氨酸羟化酶-1,脯氨酸羟化酶-2,脯氨酸羟化酶3 [32]。

罗沙司他(roxadustat)是我国及日本首个获批的口服HIF-PHI,对3种脯氨酸羟化酶均有抑制作用,可以模拟生理性低氧反应,促进内源性EPO的生成,疗效与ESAs相当,还可以降低铁调素水平,增加铁的利用,减少铁剂的使用。口服给药更加便利,而且其疗效与剂量不受炎症状态的影响,同时还可以降低患者的胆固醇水平 [33]。III期临床研究表明:罗沙司他可显著纠正透析或非透析CKD患者的血红蛋白的水平,达标率较高,为CKD贫血患者的治疗提供了新的选择 [34] [35]。

达普司他(daprodustat)、伐达司他(vadadustat)和enarodustat是HIF-PHI的新成员,其III期临床实验圆满完成,疗效和安全性进一步得到验证,2020年已在日本获批用于肾性贫血的治疗 [36] [37] [38] [39]。达普司他也可以抑制3种脯氨酸羟化酶,对脯氨酸羟化酶-1和脯氨酸羟化酶-2特异性更高,基于心血管事件发生的风险,专家更偏向于其应用于透析依赖的CKD贫血患者 [40] [41]。莫利度他(molidustat)于2021年获得PMDA批准,目前有关其治疗非透析依赖的CKD贫血正在进行Ⅲ期临床试验 [42] [43]。另有2种较新的药物:desidustat处于临床研发阶段,JNJ-429045343则处于临床前研发阶段 [44]。

此外,拮抗铁调素的治疗如BMP6-HJV-SMAD抑制剂、IL-6/STAT3抑制剂、铁调素肽中和剂和铁转运蛋白激动剂的稳定剂等,均处于研发阶段。针对骨髓造血的激活素配体结合剂也是目前科学家研究的新方向。激活素是转换生长因子β超家族的一员,与其受体ActRI/ActRII结合后,通过激活Smad信号通路发挥作用,增强骨髓中红系祖细胞和混合系祖细胞的形成,诱导未成熟红系祖细胞向成熟的红细胞分化。而激活素配体结合剂为人类糖基化二聚体融合蛋白,与激活素受体结合后可以发挥类似“激活素”的作用,目前临床研发的有2种新药:Sotatercept和Luspatercept [45] [46]。

6. 结论与展望

肾性贫血在CKD患者中越来越常见,铁调素作为一种负向调节铁代谢的激素,受铁含量、炎症、氧含量和EPO等多种因素影响,在肾性贫血发生、发展中扮演着重要角色。目前,肾性贫血的治疗趋于多元化,新的治疗手段值得期待,针对铁贮量方面的研究是科学家研究的新方向,未来有望成为治疗贫血的有效手段,并为CKD贫血患者提供更多治疗选择。

基金项目

国家自然科学基金(No. 81770764, 81770669)。

NOTES

*通讯作者。

参考文献

[1] Jha, V., Garcia-Garcia, G., Iseki, K., et al. (2013) Chronic Kidney Disease: Global Dimension and Perspectives [Published Correction Appears in Lancet. 2013 Jul 20; 382(9888): 208]. The Lancet, 382, 260-272.
https://doi.org/10.1016/S0140-6736(13)60687-X
[2] 中国医师协会肾脏内科医师分会肾性贫血指南工作组. 中国肾性贫血诊治临床实践指南[J]. 中华医学杂志, 2021, 101(20): 1463-1502.
[3] Ogawa, C., Tsuchiya, K., Maeda, K. and Nitta, K. (2018) Renal Anemia and Iron Metabolism. Contributions to Nephrology, 195, 62-73.
https://doi.org/10.1159/000486936
[4] KDOQI, National Kidney Foundation (2006) KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Anemia in Chronic Kidney Disease [Published Correction Appears in Am J Kidney Dis. 2006 Sep; 48(3): 518]. American Journal of Kidney Diseases, 47, S11-S145.
[5] Gafter-Gvili, A., Schechter, A. and Rozen-Zvi, B. (2019) Iron Deficiency Anemia in Chronic Kidney Disease. Acta Haematologica, 142, 44-50.
https://doi.org/10.1159/000496492
[6] Ratcliffe, L.E., Thomas, W., Glen, J., et al. (2016) Diagnosis and Management of Iron Deficiency in CKD: A Summary of the NICE Guideline Recommendations and Their Rationale. American Journal of Kidney Diseases, 67, 548-558.
https://doi.org/10.1053/j.ajkd.2015.11.012
[7] Ganz, T. and Nemeth, E. (2012) Hepcidin and Iron Homeostasis. Biochimica et Biophysica Acta, 1823, 1434-1443.
https://doi.org/10.1016/j.bbamcr.2012.01.014
[8] Krause, A., Neitz, S., Mägert, H.J., et al. (2000) LEAP-1, a Novel Highly Disulfide-Bonded Human Peptide, Exhibits Antimicrobial Activity. FEBS Letters, 480, 147-150.
https://doi.org/10.1016/S0014-5793(00)01920-7
[9] Park, C.H., Valore, E.V., Waring, A.J. and Ganz, T. (2001) Hepcidin, a Urinary Antimicrobial Peptide Synthesized in the Liver. Journal of Biological Chemistry, 276, 7806-7810.
https://doi.org/10.1074/jbc.M008922200
[10] Hunter, H.N., Fulton, D.B., Ganz, T. and Vogel, H.J. (2002) The Solution Structure of Human Hepcidin, a Peptide Hormone with Antimicrobial Activity That Is Involved in Iron Uptake and Hereditary Hemochromatosis. Journal of Biological Chemistry, 277, 37597-37603.
https://doi.org/10.1074/jbc.M205305200
[11] Zhang, D.L. and Rouault, T.A. (2018) How Does Hepcidin Hinder Ferroportin Activity? Blood, 131, 840-842.
https://doi.org/10.1182/blood-2018-01-824151
[12] Ueda, N. and Takasawa, K. (2017) Role of Hepcidin-25 in Chronic Kidney Disease: Anemia and Beyond. Current Medicinal Chemistry, 24, 1417-1452.
https://doi.org/10.2174/0929867324666170316120538
[13] Core, A.B., Canali, S. and Babitt, J.L. (2014) Hemojuvelin and Bone Morphogenetic Protein (BMP) Signaling in Iron Homeostasis. Frontiers in Pharmacology, 5, Article No. 104.
https://doi.org/10.3389/fphar.2014.00104
[14] Uehata, T., Tomosugi, N., Shoji, T., et al. (2012) Serum Hepcidin-25 Levels and Anemia in Non-Dialysis Chronic Kidney Disease Patients: A Cross-Sectional Study. Nephrology Dialysis Transplantation, 27, 1076-1083.
https://doi.org/10.1093/ndt/gfr431
[15] Rodriguez, R., Jung, C.L., Gabayan, V., et al. (2014) Hepcidin Induction by Pathogens and Pathogen-Derived Molecules Is Strongly Dependent on Interleukin-6. Infection and Immunity, 82, 745-752.
https://doi.org/10.1128/IAI.00983-13
[16] Łukaszyk, E., Łukaszyk, M., Koc-Żórawska, E., et al. (2015) Iron Status and Inflammation in Early Stages of Chronic Kidney Disease. Kidney and Blood Pressure Research, 40, 366-373.
https://doi.org/10.1159/000368512
[17] Nemeth, E., Rivera, S., Gabayan, V., et al. (2004) IL-6 Mediates Hypoferremia of Inflammation by Inducing the Synthesis of the Iron Regulatory Hormone Hepcidin. Journal of Clinical Investigation, 113, 1271-1276.
https://doi.org/10.1172/JCI200420945
[18] Nai, A., Rubio, A., Campanella, A., et al. (2016) Limiting Hepatic Bmp-Smad Signaling by Matriptase-2 Is Required for Erythropoietin-Mediated Hepcidin Suppression in Mice. Blood, 127, 2327-2336.
https://doi.org/10.1182/blood-2015-11-681494
[19] Shanmugam, N.K., Chen, K. and Cherayil, B.J. (2015) Commensal Bacteria-Induced Interleukin 1β (IL-1β) Secreted by Macrophages Up-Regulates Hepcidin Expression in Hepatocytes by Activating the Bone Morphogenetic Protein Signaling Pathway. Journal of Biological Chemistry, 290, 30637-30647.
https://doi.org/10.1074/jbc.M115.689190
[20] Ueda, N. and Takasawa, K. (2018) Impact of Inflammation on Ferritin, Hepcidin and the Management of Iron Deficiency Anemia in Chronic Kidney Disease. Nutrients, 10, 1173.
https://doi.org/10.3390/nu10091173
[21] Shoji, S., Inaba, M., Tomosugi, N., et al. (2013) Greater Potency of Darbepoetin-α than Erythropoietin in Suppression of Serum Hepcidin-25 and Utilization of Iron for Erythropoiesis in Hemodialysis Patients. European Journal of Haematology, 90, 237-244.
https://doi.org/10.1111/ejh.12067
[22] Swinkels, D.W., Girelli, D., Laarakkers, C., et al. (2008) Advances in Quantitative Hepcidin Measurements by Time-of-Flight Mass Spectrometry. PLoS ONE, 3, e2706.
https://doi.org/10.1371/journal.pone.0002706
[23] Troutt, J.S., Butterfield, A.M. and Konrad, R.J. (2013) Hepcidin-25 Concentrations Are Markedly Increased in Patients with Chronic Kidney Disease and Are Inversely Correlated with Estimated Glomerular Filtration Rates. Journal of Clinical Laboratory Analysis, 27, 504-510.
https://doi.org/10.1002/jcla.21634
[24] Nicolas, G., Chauvet, C., Viatte, L., et al. (2002) The Gene Encoding the Iron Regulatory Peptide Hepcidin Is Regulated by Anemia, Hypoxia, and Inflammation. Journal of Clinical Investigation, 110, 1037-1044.
https://doi.org/10.1172/JCI0215686
[25] Semenza, G.L. (2000) HIF-1: Mediator of Physiological and Pathophysiological Responses to Hypoxia. Journal of Applied Physiology (1985), 88, 1474-1480.
https://doi.org/10.1152/jappl.2000.88.4.1474
[26] Liu, Q., Davidoff, O., Niss, K. and Haase, V.H. (2012) Hypoxia-Inducible Factor Regulates Hepcidin via Erythropoietin-Induced Erythropoiesis. Journal of Clinical Investigation, 122, 4635-4644.
https://doi.org/10.1172/JCI63924
[27] Pasricha, S.R., McHugh, K. and Drakesmith, H. (2016) Regulation of Hepcidin by Erythropoiesis: The Story So Far. Annual Review of Nutrition, 36, 417-434.
https://doi.org/10.1146/annurev-nutr-071715-050731
[28] Kautz, L., Jung, G., Valore, E.V., Rivella, S., Nemeth, E. and Ganz, T. (2014) Identification of Erythroferrone as an Erythroid Regulator of Iron Metabolism [Published Correction Appears in Nat Genet. 2020 Apr; 52(4): 463]. Nature Genetics, 46, 678-684.
https://doi.org/10.1038/ng.2996
[29] Bacchetta, J., Zaritsky, J.J., Sea, J.L., et al. (2014) Suppression of Iron-Regulatory Hepcidin by Vitamin D. Journal of the American Society of Nephrology, 25, 564-572.
https://doi.org/10.1681/ASN.2013040355
[30] Schödel, J. and Ratcliffe, P.J. (2019) Mechanisms of Hypoxia Signalling: New Implications for Nephrology. Nature Reviews Nephrology, 15, 641-659.
https://doi.org/10.1038/s41581-019-0182-z
[31] Haase, V.H. (2017) HIF-Prolyl Hydroxylases as Therapeutic Targets in Erythropoiesis and Iron Metabolism. Hemodialysis International, 21, S110-S124.
https://doi.org/10.1111/hdi.12567
[32] Bruick, R.K. and McKnight, S.L. (2001) A Conserved Family of Prolyl-4-hydroxylases That Modify HIF. Science, 294, 1337-1340.
https://doi.org/10.1126/science.1066373
[33] Dhillon, S. (2019) Roxadustat: First Global Approval. Drugs, 79, 563-572.
https://doi.org/10.1007/s40265-019-01077-1
[34] Barratt, J., Sulowicz, W., Schömig, M., et al. (2021) Efficacy and Cardiovascular Safety of Roxadustat in Dialysis-Dependent Chronic Kidney Disease: Pooled Analysis of Four Phase 3 Studies. Advances in Therapy, 38, 5345-5360.
https://doi.org/10.1007/s12325-021-01903-7
[35] Akizawa, T., Iwasaki, M., Otsuka, T., Yamaguchi, Y. and Reusch, M. (2021) Phase 3 Study of Roxadustat to Treat Anemia in Non-Dialysis-Dependant CKD. Kidney International Reports, 6, 1810-1828.
https://doi.org/10.1016/j.ekir.2021.04.003
[36] Wish, J.B., Eckardt, K.U., Kovesdy, C.P., Fishbane, S., Spinowitz, B.S. and Berns, J.S. (2021) Hypoxia-Inducible Factor Stabilization as an Emerging Therapy for CKD-Related Anemia: Report from a Scientific Workshop Sponsored by the National Kidney Foundation. American Journal of Kidney Diseases, 78, 709-718.
https://doi.org/10.1053/j.ajkd.2021.06.019
[37] Dhillon, S. (2020) Daprodustat: First Approval. Drugs, 80, 1491-1497.
https://doi.org/10.1007/s40265-020-01384-y
[38] Markham, A. (2020) Vadadustat: First Approval. Drugs, 80, 1365-1371.
https://doi.org/10.1007/s40265-020-01383-z
[39] Markham, A. (2021) Enarodustat: First Approval. Drugs, 81, 169-174.
https://doi.org/10.1007/s40265-020-01444-3
[40] Singh, A.K., Carroll, K., Perkovic, V., et al. (2021) Daprodustat for the Treatment of Anemia in Patients Undergoing Dialysis. The New England Journal of Medicine, 385, 2325-2335.
https://doi.org/10.1056/NEJMoa2113379
[41] Singh, A.K., Carroll, K., McMurray, J.J.V., et al. (2021) Daprodustat for the Treatment of Anemia in Patients Not Undergoing Dialysis. The New England Journal of Medicine, 385, 2313-2324.
https://doi.org/10.1056/NEJMoa2113380
[42] Akizawa, T., Nobori, K., Matsuda, Y., et al. (2021) Molidustat for the Treatment of Anemia in Japanese Patients Undergoing Peritoneal Dialysis: A Single-Arm, Open-Label, Phase 3 Study [Published Online Ahead of Print, 2021 Jul 26]. Therapeutic Apheresis and Dialysis.
https://doi.org/10.1111/1744-9987.13713
[43] Akizawa, T., Yamada, T., Nobori, K., et al. (2021) Molidustat for Japanese Patients with Renal Anemia Receiving Dialysis. Kidney International Reports, 6, 2604-2616.
https://doi.org/10.1016/j.ekir.2021.07.015
[44] Yap, D.Y.H., McMahon, L.P., Hao, C.M., et al. (2021) Recommendations by the Asian Pacific Society of Nephrology (APSN) on the Appropriate Use of HIF-PH Inhibitors. Nephrology (Carlton), 26, 105-118.
https://doi.org/10.1111/nep.13835
[45] Locatelli, F., Del Vecchio, L. and Luise, M.C. (2017) Current and Future Chemical Therapies for Treating Anaemia in Chronic Kidney Disease. Expert Opinion on Pharmacotherapy, 18, 781-788.
https://doi.org/10.1080/14656566.2017.1323872
[46] Jelkmann, W. (2018) Activin Receptor Ligand Traps in Chronic Kidney Disease. Current Opinion in Nephrology and Hypertension, 27, 351-357.
https://doi.org/10.1097/MNH.0000000000000433