生物信息学和网络药理学分析山奈酚通过靶向CDK1和TOP2A抑制胶质瘤增殖
Kaempferol Inhibiting Glioma Proliferation by Targeting CDK1 and TOP2A Based on Bioinformatics and Network Pharmacology Analysis
DOI: 10.12677/ACM.2022.121077, PDF, HTML, XML, 下载: 310  浏览: 729 
作者: 李怀旭, 高 鹏, 杨亚飞, 代兴亮, 叶 雷, 程宏伟:安徽医科大学第一附属医院神经外科,安徽 合肥
关键词: 中药胶质瘤网络药理学增殖治疗靶点Traditional Chinese Medicine Glioma Network Pharmacology Proliferation Therapeutic Targets
摘要: 目的:本研究旨在通过生物信息学和中药网络药理学分析探索影响胶质瘤恶性进展的中药靶点及有效成分。方法:通过基因表达数据库中GSE29796、GSE50161和GSE66354数据集分析胶质瘤与癌旁组织的差异表达基因。通过GO和KEGG富集分析,利用Cytoscape获得hub基因。从中药系统药理学数据库和分析平台中获得白芍、人参、石菖蒲和知母等四种中药有效成分和相关靶点,利用Cytoscape软件将目标差异表达基因构建蛋白质–蛋白质相互作用网络。通过对比关键成分所对应的潜在靶点基因和hub基因,获得潜在治疗靶点基因。结果:差异表达基因的GO富集分析提示参与细胞粘附、细胞分裂、有丝分裂核分裂和G2/M有丝分裂细胞周期等过程,KEGG结果提示参与4个信号通路,包括p53信号通路、细胞周期、粘着斑和癌症中的蛋白多糖。生物信息学和网络药理学分析共筛选到11个潜在靶点基因和8种关键成分构建化合物–靶标网络,PPI网络和拓扑分析获取潜在治疗靶点基因:CDK1TOP2A。结论:山奈酚可能通过靶向CDK1TOP2A抑制胶质瘤增殖,为胶质瘤治疗提供了一种新的途径。
Abstract: Background: The purpose of this study was to explore the targets and active components of traditional Chinese medicine (TCM) affecting the malignant progression of glioma through bioinformatics and TCM network pharmacology analysis. Methods: Differentially expressed genes in glioma and adjacent tissues were analyzed by GSE29796, GSE50161 and GSE66354 datasets in gene expression database. Through GO and KEGG enrichment analysis, the hub gene was obtained by Cytoscape. Four active components and related targets of Paeonia lactiflora, Ginseng, Acorus graminis and Anemarrhenae anemarrhenae were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and the protein-protein interaction network was constructed by using Cytoscape software. Potential target genes and HUB genes corresponding to key components were compared to obtain potential therapeutic target genes. Results: GO enrichment analysis of differentially expressed genes suggests that they are involved in protein binding, cell adhesion, cell division, mitotic nuclear division and G2/M transition of mitotic cell cycle etc. KEGG results suggested that four signaling pathways were involved, including p53 signaling pathway, cell cycle, focal adhesion and proteoglycans in cancer. A total of 11 potential target genes and 8 key components were screened by bioinformatics and network pharmacology analysis to construct a compound-target network. PPI network and topological analysis were used to obtain potential therapeutic target genes: CDK1 and TOP2A. Conclusion: Kaempferol may inhibit the proliferation of gliomas by targeting CDK1 and TOP2A, providing a new approach for the treatment of gliomas.
文章引用:李怀旭, 高鹏, 杨亚飞, 代兴亮, 叶雷, 程宏伟. 生物信息学和网络药理学分析山奈酚通过靶向CDK1和TOP2A抑制胶质瘤增殖[J]. 临床医学进展, 2022, 12(1): 519-529. https://doi.org/10.12677/ACM.2022.121077

1. 引言

胶质瘤是成人中枢神经系统最常见的原发性恶性肿瘤,是当今世界的主要健康问题 [1]。世界卫生组织(世卫组织)根据恶性程度将胶质瘤分为四个等级,I~II级胶质瘤被视为低级胶质瘤(Low-grade Gliomas, LGGs),而III~IV级胶质瘤称为高级胶质瘤(High-grade Gliomas, HGGs) [2]。恶性胶质瘤具有极高的致死率,5年生存率低于10% [3]。传统治疗方式包括手术、化疗和放疗,目前,脑胶质瘤患者最常见的治疗策略是手术切除联合放疗和辅助化疗,但其对胶质瘤患者的预后改善有限 [4] [5]。因此,进一步分析胶质瘤恶性增殖的潜在分子机制,开发新的治疗靶点有助于改善患者预后,提高生存率。

网络药理学是药理学的一个分支,它使用网络方法分析药物与疾病和目标之间的“多靶点、多组分和多通道”协同关系,其具有系统性、完整性和注重药物间相互作用的优点 [6]。研究表明网络药理学分析应用于多种癌症,包括急性骨髓性白血病(AML) [7]、胰腺癌 [8]、三阴性乳腺癌 [9] 和骨肉瘤 [10] 等。文献报道白芍、人参、石菖蒲和知母 [11] [12] [13] [14] 等均为具有抗癌作用的中草药。部分中药化合物已被报道应用于肿瘤的治疗或辅助治疗 [15] [16],甚至已被证明在许多疾病(如肝细胞癌、乳腺癌和肺癌等)的治疗中发挥重要作用 [17] [18]。然而,中药与胶质瘤相关的研究却鲜有报道,研究胶质瘤潜在中药治疗靶点及探索有效中药成分有望提高治疗效果,改善胶质瘤患者预后。

本研究基于GEO数据库通过生物信息学分析胶质瘤差异表达基因,进行GO与KEGG富集分析,通过cytoscape获得hub基因。利用网络药理学方法,在TCMSP中获得五种中药的有效成分和相关靶点,构建化合物靶标网络。对比关键成分所对应的潜在靶点基因和hub基因,获得潜在治疗靶点基因。探索胶质瘤治疗的中药有效成分及其潜在治疗靶点,为开发新的胶质瘤治疗策略奠定基础。

2. 材料与方法

2.1. 数据获得

GEO数据库是一个储存芯片、二代测序以及其他高通量测序数据的一个数据库。利用这个数据库,我们可以检索到其他一些人上传的一些实验测序数据。我们从中选取了3个数据集,分别是GSE29796、GSE50161和GSE66354。白芍、人参、石菖蒲和知母等中药的成分及相关靶基因均从TCMSP (中药系统药理学数据库和分析平台)中获得 [19]。同时满足OB (口服生物利用度值) ≥ 40%和DL (药物相似性值) ≥ 0.18被视为有意义的数据 [20]。

2.2. 差异性表达基因的分析

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/)就是一个基于GEO数据库来对表达谱芯片进行差异分析的一个网址。我们利用GEO2R检测胶质瘤组织与癌旁组织之间的差异,并且计算调整后的p值和|logFC|。其中满足调整后的p < 0.01并且|logFC| ≥ 2的基因被认为是有意义的,即为差异性表达基因(DEGs) [21]。然后对每个数据集进行分析,并使用Venn diagram webtool (bioinformatics.psb.ugente.be/webtools/Venn/)画出三个数据集的相交部分。然后用perl软件(版本5.2.8.1;https://www.perl.org/)将五种中草药的有效成分和相关靶点进行组合,最后用Perl软件用于找出差异表达基因与中药靶点的交集部分。

2.3. 活性成分靶基因网络和PPI网络构建及模块分析

应用Perl软件,结合有效成分、活性成分靶基因和DEGs筛选出有治疗意义的靶基因DEGs。获得了目标DEGs、关键成分及其相互关系。Cytoscape (3.8.2版)是一款用于分子可视化的开源软件。应用Cytoscape结合DEGs构建活性成分靶网络。利用Cytoscape软件的Bisogenet包,将目标DEGs应用于构建PPI网络(蛋白质–蛋白质相互作用网络)。PPI网络的数据来源于HPRD、BIND、DIP、MINT、UNTABLE和BIOGRID。输入节点及其相邻节点的距离必须达到1。基于Cytoscape软件的CytoNCA包进行PPI网络拓扑分析,采用Cytoscape的CytoNCA软件包来进行DC (度)分析,满足degree value > 100。然后,获得有治疗意义的关键成分及其对应的关键基因。

2.4. DEGs的GO和KEGG分析

GO分析是大规模功能富集研究的常用方法,GO有三种本体论描述基因的分子功能、细胞成分和生物过程。KEGG(京都基因和基因百科全书)数据库是一个系统分析基因功能并链接基因组信息和功能信息的数据库,包括代谢途径数据库、层次分类数据库、基因数据库、基因组数据库等等。本研究中利用DAVID在线对DEGs进行GO注释分析和KEGG路径富集分析(https://david.ncifcrf.gov/)。其中,FDR < 0.01和count ≥ 10被认为具有统计学意义。最后,我们使用微生信(http://www.bioinformatics.com.cn/)对分析结果进行气泡图的绘制。

2.5. hub基因获取与相关分析

在本研究中,我们使用STRING (http://string-db.org) (version 11.5)在线数据库来构建DEGs的PPI网络。此外,每个大于0.4的组合轮毂之间的相互作用被认为具有统计显著性。Cytoscape是一个专注于开源网络可视化和分析的软件。它的核心是提供基础的功能布局和查询网络,并依据基本的数据的结合成可视化网络。我们使用cytoscape中的CytoHubba插件,计算每个蛋白节点的程度。在该研究中,节点联系紧密的前十个基因被确定为hub基因。然后用string来构建出hub基因的PPI网络。其次,在Gene Set Cancer Analysis (http://bioinfo.life.hust.edu.cn/)中构建出hub基因在胶质母细胞瘤中的相互关联以及hub基因与免疫细胞浸润的关系。最后,在TCGA数据库中,使用survival R包对hub基因mRNA分别做生存分析(KM分析),采用log-rank方法。我们以P < 0.05作为筛选条件,得到与生存相关的生存曲线。

3. 结果

3.1. 数据处理

本研究共选取三个数据库,其中,GSE29796数据集包括2个胶质母细胞瘤样本和8个癌旁组织样本,GSE50161数据集包含34个胶质母细胞瘤样本和13个癌旁组织样本,GSE66354数据集有19个胶质母细胞瘤样本和13个癌旁组织样本。在TCMSP中,从白芍中获得10种有效成分,982个靶点;人参中提取22种有效成分,747个靶点;石菖蒲中提取2种有效成分,1079个靶点;从知母中提取15种有效成分,405个靶点。

3.2. 差异性表达基因的分析和活性成分靶标网络构建

满足调整后的p < 0.01并且|logFC| ≥ 2的差异性表达基因中,GSE29796数据集中有3536个,上调的有3105个,下调的有431个(图1(a));GSE50161数据集中有2116个,上调的有876个,下调的有1240个(图1(b));GSE66354数据集中有1729个,上调的有749个,下调的有1348个(图1(c))。用Venn图分别画出上调与下调的基因交集,其中,上调的共同基因有270个(图1(d)),下调的共同基因有129个(图1(e))。基于上述三个数据库的DEGs构建PPI网络(图2(a))。通过Perl将GBM的DEGs与活性成分靶标结合,获得活性成分靶标网络。再通过Cytoscape,获得了11个目标DEGs(CDK1、CDK2、TOP2A、CHEK1、SLPI、HAS2、CASP1、VCAM1、CASP8、ICAM1、PLAU)和8个关键成分(MOL000422、MOL000449、MOL000787、MOL004373、MOL004528、MOL000492、MOL005344、MOL000358),以构建活性成分靶标网络。然后,利用Cytoscape软件的Bisogenet包和CytoNCA包进行DC (度)分析,基于degree value > 100获得有治疗意义关键基因(图2(b))。

Figure 1. The volcano map and the Venn map of DEGs for three GEO datasets: (a) DEGs volcano map of GSE35493; (b) DEGs volcano map of GSE50161; (c) DEGs volcano map of GSE104291. The red dot indicates that the gene is significantly up-regulated. Blue dots indicate genes that are significantly down-regulated. Black spots mean that genes are no differentially expressed genes; (d) Down-regulated genes; (e) Up-regulated genes

图1. 三种GEO数据集的DEGs的火山图和deg的Venn图:(a) GSE35493的DEGs火山图;(b) GSE50161的DEGs火山图;(c) GSE104291的DEGs火山图。红点表示基因显著上调。蓝点表示显著下调的基因。黑点,无差异表达基因;(d) 下调基因;(e) 上调的基因

Figure 2. The PPI network of the target gene and the topological analysis of the gene after molecular docking: (a) Red indicates that the gene is up-regulated, and green indicates that the gene is down-regulated; (b) Use the Bisogenet package and cytoNCA package of Cytoscape software for DC (degree) analysis, according to degree > 100 get key genes with therapeutic significance

图2. 靶基因的PPI网络及分子对接后基因的拓扑分析:(a) 红色表示基因上调,绿色表示基因下调;(b) 使用Cytoscape软件的Bisogenet包和cytoNCA包进行DC (degree)分析,根据degree值 > 100得到具有治疗意义的关键基因

3.3. DEGs的GO和KEGG分析

使用DAVID进行DEGs的GO和KEGG富集分析。GO分析结果表明DEGs主要富集于CCs,主要包括细胞外基质、细胞外间隙、胞质核周区和胞外浓缩区等;BP分析显示DEGs显著富集在细胞粘附、细胞分裂,有丝分裂核分裂和G2/M有丝分裂细胞周期的过渡;对于MF,DEGs主要富集在蛋白质结合、胶原结合、细胞外基质结构成分(图3(a))。KEGG分析结果显示DEGs主要富集于p53信号通路、细胞周期、粘着斑和癌症中的蛋白多糖(图3(b))。

Figure 3. GO and KEGG analysis: (a) GO analysis of DEGs will be divided into 3 categories (molecular function, biological process and cellular components); (b) DEGs will be conducted using websites such as KEGG pathway, Reactomen, BioCyc, Panther, NHGRI and Gene Ontology analysis Function and signal pathways are enriched; the size of the bubble indicates the number of genes, and the color of the bubble indicates the degree of correlation

图3. GO和KEGG分析:(a) DEGs的GO分析将分为3类(分子功能、生物过程和细胞成分);(b) 利用KEGG pathway、Reactomen、BioCyc、Panther、NHGRI和Gene Ontology analysis等网站进行DEGs功能和信号通路富集;气泡的大小表示基因的数量,气泡的颜色表示相关性的程度

3.4. hub基因获取与相关分析

使用cytoscape中的CytoHubba插件,通过PPI网络中的连接程度获得10个hub基因,分别是CDK1、CCNB1、TOP2A、ASPM、CCNB2、BUB1B、AURKA、NDC80、UBE2C、RRM2 (图4(a))。然后用string获得了hub基因的PPI网络(图4(b))。进一步的,在Gene Set Cancer Analysis (http://bioinfo.life.hust.edu.cn/)中获得了hub基因在胶质母细胞瘤中的相互关联(图4(c))以及hub基因与免疫细胞浸润的关系(图4(d))。基于TCGA数据库中的信息,使用survival R包得到hub基因在胶质瘤中与生存相关的生存曲线和差异性表达的箱式图(图5)。

3.5. 中药有效成分及潜在治疗靶点的获得

通过对比中药活性成分靶标网络和利用Cytoscape软件的Bisogenet包和CytoNCA包获得的有治疗意义关键基因以及hub基因,我们选择出2个枢纽基因来进行对接,即CDK1、TOP2A。然后,我们从化合物-靶基因相互作用网络中获得了8个靶向蛋白质的活性化合物(表1),从图中我们可以看出MOL000422与枢纽基因联系最为紧密(图6),MOL000422对应的单体化合物为山奈酚,且为多种中药的共有单体成分,因此推测山奈酚是潜在作用于胶质瘤中CDK1和TOP2A的有效中药成分。

Figure 4. PPI network and its correlation in glioblastoma and the relationship between hub gene and immune cell infiltration: (a) 15 hub genes; (b) PPI network of Hub genes; (c) Central genes in glioblastoma Correlation in tumors; (d) The relationship between Hub gene and immune cell infiltration

图4. hub基因PPI网络和其在胶质母细胞瘤相关性以及hub基因与免疫细胞浸润关系:(a) 15个hub基因;(b) hub基因的PPI网络;(c) 中枢基因在胶质母细胞瘤中的相关性;(d) hub基因与免疫细胞浸润的关系

Table 1. 8 active compounds targeting proteins and their corresponding Chinese medicines

表1. 8种靶向蛋白质的活性化合物及其对应中药

Figure 5. Survival rate and its differential expression in normal tissues and tumor tissues of hub gene: (a) Hub gene survival rate; (b) Hub gene differential expression in normal tissues and tumor tissues. p < 0.05 indicates that there is a significant difference between the normal group and the cancerous group

图5. hub基因生存率及其在正常组织和肿瘤组织差异表达情况:(a) hub基因的生存率;(b) hub基因在正常组织和肿瘤组织的差异表达情况。p < 0.05表示正常组与癌变组之间差异存在显著性

Figure 6. Compound-target gene interaction network: Pink is a common component of many Chinese medicines, and the components represented by other colors correspond to a Chinese medicine

图6. 化合物–靶基因相互作用网络:粉红色是许多中药的共同成分,其他颜色所代表的成分分别对应一种中药

4. 讨论

胶质瘤是具有复杂微环境和高度异质性的恶性脑肿瘤,并且预后较差 [22]。目前治疗胶质瘤的方式主要包括手术、放疗和化疗,即使用最佳疗法治疗的胶质母细胞瘤的两年存活率仍不到30%。虽然在低级胶质瘤患者中,有着相对良好的预后,但治疗几乎从来不是治愈 [23]。中医药在中国长期用于各种疾病的治疗。在药物活性成分的研究中,基于网络相互作用的方法有助于加深对药物在多层次信息中作用的理解 [24]。药物、活性成分、疾病的相互作用网络,而靶蛋白是表达药物及其活性成分在治疗某种疾病中作用机制的重要途径,有助于加深对药物疗效的理解,为新药开发提供理论依据 [25]。作为一种重要的药理学研究方法,网络制药、生态学可以更好地证明药物、成分和靶点之间的关系。将这一思想应用于中药研究,有助于理解中药多组分多靶点模型的相互作用机理 [26]。

本研究基于公开数据库进行基因表达和蛋白质–蛋白质表达分析,以确定与胶质瘤相关的潜在关键基因。根据GEO数据库中的基因表达谱数据,筛选出胶质瘤组织和临近正常组织之间的DEGs。我们总共识别出270个上调DEGs和129个下调DEGs。这些DEGs主要富集于CCs,包括细胞粘附、细胞分裂、有丝分裂核分裂和G2/M有丝分裂细胞周期的过渡等,并在KEGG分析中于p53信号通路、细胞周期、粘着斑和癌症中的蛋白多糖信号通路中显著富集。利用cystoscape构建了一个PPI网络来研究DEGs之间的相互关系,并确定了10个hub基因,包括CDK1、CCNB1、TOP2A、ASPM、CCNB2、BUB1B、AURKA、NDC80、UBE2C、RRM2。所有这些基因在胶质瘤中均上调。最后,利用TCGA数据库中数据使用survival R包预测hub基因表达与胶质瘤患者预后之间的关系。发现上述所有基因(除了CCNB1)的过度表达与胶质瘤患者的不良预后有关,CCNB1在TCGA数据库中与胶质瘤预后不明确,但通过研究筛选出CCNB1可能成为胶质瘤的潜在治疗靶点,CCNB1具体功能有待探索。通过网络药理学分析,我们的研究结果表明,四种中草药的8个关键成分通过作用于11个目标DEGs发挥作用。其中,8种关键成分中有2种为中药的共有成分,是潜在的有效抗癌分子;11个目标靶基因中有2个(CDK1、TOP2A),是胶质瘤的潜在治疗靶点的hub基因。我们的研究结果提示MOL000422与目标DEGs联系更为紧密,极有可能成为治疗胶质瘤的关键有效中药单体成分,且与2个枢纽基因均有分子药物治疗靶点。MOL000422对应的单体成分为山奈酚。文献报道山奈酚能通过抗菌、抗炎、抗氧化、诱导细胞凋亡、抑制细胞周期等多种机制在多种癌症中起到抗癌作用,例如乳腺癌、前列腺癌、卵巢癌、结肠癌、肝癌、肺癌等 [27] [28] [29] [30]。文献报道山奈酚与胶质瘤的研究如下,山奈酚通过诱导细胞凋亡、抑制瘤细胞的迁移/侵袭以及调节细胞外基质蛋白和金属蛋白酶的表达来抑制人胶质母细胞瘤细胞的生长 [31] [32] [33];山奈酚能减少人肿瘤细胞中血管生成肽和血管内皮生长因子的释放,抑制胶质瘤细胞的增殖 [34]。但目前却没有山奈酚对CDK1和TOP2A靶向治疗的相关文献研究。本研究基于公开数据库筛选出来的中药成分山奈酚极有可能成为治疗胶质瘤的关键单体成分,且与之对应筛选出来的2个枢纽基因可能成为其对应的分子药物治疗靶点。

5. 结论

结果表明,山奈酚潜在通过靶向CDK1和TOP2A抑制胶质瘤增殖发挥治疗作用,为胶质瘤治疗提供了一种新的途径。

参考文献

[1] Tamtaji, O.R., Behnam, M., Pourattar, M.A., Hamblin, M.R., Mahjoubin-Tehran, M., Mirzaei, H. and Asemi, Z. (2020) PIWI-Interacting RNAs and PIWI Proteins in Glioma: Molecular Pathogenesis and Role as Biomarkers. Cell Communication and Signaling, 18, Article No. 168.
https://doi.org/10.1186/s12964-020-00657-z
[2] Özcan, H., Emiroğlu, B.G., Sabuncuoğlu, H., Özdoğan, S., Soyer, A. and Saygı, T. (2021) A Comparative Study for Glioma Classification Using Deep Convolutional Neural Networks. Mathematical Biosciences and Engineering, 18, 1550-1572.
https://doi.org/10.3934/mbe.2021080
[3] Li, S. and Ding, X. (2017) TRPC Channels and Glioma. In: Wang, Y., Ed., Transient Receptor Potential Canonical Channels and Brain Diseases, Vol. 976, Springer, Dordrecht, 157-165.
https://doi.org/10.1007/978-94-024-1088-4_14
[4] Xu, S., Tang, L., Li, X., Fan, F. and Liu, Z. (2020) Immunotherapy for Glioma: Current Management and Future Application. Cancer Letters, 476, 1-12.
https://doi.org/10.1016/j.canlet.2020.02.002
[5] Chen, X., Mao, Y.G., Yu, Z.Q., Wu, J. and Chen, G. (2020) Potential Rules of Anesthetic Gases on Glioma. Medical Gas Research, 10, 50-53.
https://doi.org/10.4103/2045-9912.279984
[6] Hopkins, A.L. (2007) Network Pharmacology. Nature Biotechnology, 25, 1110-1111.
https://doi.org/10.1038/nbt1007-1110
[7] Fang, T., Liu, L. and Liu, W. (2020) Network Pharmacology-Based Strategy for Predicting Therapy Targets of Tripterygium wilfordii on Acute Myeloid Leukemia. Medicine, 99, Article ID: e23546.
https://doi.org/10.1097/MD.0000000000023546
[8] Zhu, J., Li, B., Ji, Y., Zhu, L., Zhu, Y. and Zhao, H. (2019) β-Elemene Inhibits the Generation of Peritoneum Effusion in Pancreatic Cancer via Suppression of the HIF1A-VEGFA Pathway Based on Network Pharmacology. Oncology Reports, 42, 2561-2571.
https://doi.org/10.3892/or.2019.7360
[9] Yu, H., Hu, K., Zhang, T. and Ren, H. (2020) Identification of Target Genes Related to Sulfasalazine in Triple-Negative Breast Cancer through Network Pharmacology. Medical Science Monitor, 26, Article ID: e926550.
https://doi.org/10.12659/MSM.926550
[10] Tan, J., Qin, X., Liu, B., Mo, H., Wu, Z. and Yuan, Z. (2020) Integrative Findings Indicate Anti-Tumor Biotargets and Molecular Mechanisms of Calycosin against Osteosarcoma. Biomedicine & Pharmacotherapy, 126, Article ID: 110096.
https://doi.org/10.1016/j.biopha.2020.110096
[11] Ma, Y., Li, G., Yu, M., Cao, K., Li, Q., Sun, X., et al. (2021) Anti-Lung Cancer Targets of Radix Paeoniae Rubra and Biological Molecular Mechanism: Network Pharmacological Analyses and Experimental Validation. OncoTargets and Therapy, 14, 1925-1936.
https://doi.org/10.2147/OTT.S261071
[12] Wang, C.-Z., et al. (2016) Red Ginseng and Cancer Treatment. Chinese Journal of Natural Medicines, 14, 7-16.
[13] Zhang, Y., Wu, Y., Fu, Y., Lin, L., Lin, Y., Zhang, Y., et al. (2020) Anti-Alzheimer’s Disease Molecular Mechanism of Acori Tatarinowii Rhizoma Based on Network Pharmacology. Medical Science Monitor Basic Research, 26, Article ID: e924203.
https://doi.org/10.12659/msmbr.924203
[14] Liu, J., Deng, X, Sun, X., Dong, J. and Huang, J. (2020) Inhibition of Autophagy Enhances Timosaponin AIII-Induced Lung Cancer Cell Apoptosis and Anti-Tumor Effect in Vitro and in Vivo. Life Sciences, 257, Article ID: 118040.
https://doi.org/10.1016/j.lfs.2020.118040
[15] Zhou, J., Liu, Q., Qian, R., Liu, S., Hu, W. and Liu, Z. (2020) Paeonol Antagonizes Oncogenesis of Osteosarcoma by Inhibiting the Function of TLR4/MAPK/NF-κB Pathway. Acta Histochemica, 122, Article ID: 151455.
https://doi.org/10.1016/j.acthis.2019.151455
[16] Kim, J.W., Han, S.W., Cho, J.Y., Chung, I.J., Kim, J.G., Lee, K.H., et al. (2020) Korean Red Ginseng for Cancer-Related Fatigue in Colorectal Cancer Patients with Chemotherapy: A Randomised Phase III Trial. European Journal of Cancer, 130, 51-62.
https://doi.org/10.1016/j.ejca.2020.02.018
[17] Xue, L., Qi, H., Zhang, H., Ding, L., Huang, Q., Zhao, D., et al. (2020) Targeting SREBP-2-Regulated Mevalonate Metabolism for Cancer Therapy. Frontiers in Oncology, 10, Article No. 1510.
https://doi.org/10.3389/fonc.2020.01510
[18] Lin, Y., Zhao, W.-R., Shi, W.-T., Zhang, J., Zhang, K.-Y., Ding, Q., et al. (2020) Pharmacological Activity, Pharmacokinetics, and Toxicity of Timosaponin AIII, a Natural Product Isolated from Anemarrhena asphodeloides Bunge: A Review. Frontiers in Pharmacology, 11, Article No. 764.
https://doi.org/10.3389/fphar.2020.00764
[19] Ru, J., Li, P., Wang, J., Li, B., Huang, C., Li, P., et al. (2014) TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13.
https://doi.org/10.1186/1758-2946-6-13
[20] Liu, H., Wang, J., Zhou, W., Wang, Y. and Yang, L. (2013) Systems Approaches and Polypharmacology for Drug Discovery from Herbal Medicines: An Example Using Licorice. Journal of Ethnopharmacology, 146, 773-793.
https://doi.org/10.1016/j.jep.2013.02.004
[21] Li, M.X., Jin, L.T., Wang, T.J., Feng, Y.J., Pan, C.P., Zhao, D.M. and Shao, J. (2018) Identification of Potential Core Genes in Triple Negative Breast Cancer Using Bioinformatics Analysis. OncoTargets and Therapy, 11, 4105-4112.
https://doi.org/10.2147/OTT.S166567
[22] Cheng, J., Meng, J., Zhu, L. and Peng, Y. (2020) Exosomal Noncoding RNAs in Glioma: Biological Functions and Potential Clinical Applications. Molecular Cancer, 19, Article No. 66.
https://doi.org/10.1186/s12943-020-01189-3
[23] Norden, A.D. and Wen, P.Y. (2006) Glioma Therapy in Adults. Neurologist, 12, 279-292.
https://doi.org/10.1097/01.nrl.0000250928.26044.47
[24] Fotis, C., Antoranz, A., Hatziavramidis, D., Sakellaropoulos, T. and Alexopoulos, L.G. (2018) Network-Based Technologies for Early Drug Discovery. Drug Discovery Todayy, 23, 626-635.
https://doi.org/10.1016/j.drudis.2017.12.001
[25] Boezio, B., Audouze, K., Ducrot, P. and Taboureau, O. (2017) Network-Based Approaches in Pharmacology. Molecular Informatics, 36, Article ID: 1700048.
https://doi.org/10.1002/minf.201700048
[26] Ge, Q., Chen, L., Yuan, Y., Liu, L., Feng, F., Lv, P., et al. (2020) Network Pharmacology-Based Dissection of the Anti-Diabetic Mechanism of Lobelia Chinensis. Frontiers in Pharmacology, 11, Article No. 347.
https://doi.org/10.3389/fphar.2020.00347
[27] Imran, M., Salehi, B., Sharifi-Rad, J., Aslam Gondal, T., Saeed, F., Imran, A., et al. (2019) Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules, 24, Article No. 2277.
https://doi.org/10.3390/molecules24122277
[28] Wang, X., Yang, Y., An, Y. and Fang, G. (2019) The Mechanism of Anticancer Action and Potential Clinical Use of Kaempferol in the Treatment of Breast Cancer. Biomedicine & Pharmacotherapy, 117, Article ID: 109086.
https://doi.org/10.1016/j.biopha.2019.109086
[29] Yang, S., Si, L., Jia, Y., Jian, W., Yu, Q., Wang, M., et al. (2019) Kaempferol Exerts Anti-Proliferative Effects on Human Ovarian Cancer Cells by Inducing Apoptosis, G0/G1 Cell Cycle Arrest and Modulation of MEK/ERK and STAT3 Pathways. Journal of the Balkan Union of Oncology, 24, 975-981.
[30] Zhu, L. and Xue, L. (2019) Kaempferol Suppresses Proliferation and Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Breast Cancer Cells. Oncology Research, 27, 629-634.
https://doi.org/10.3727/096504018X15228018559434
[31] Sharma, V., Joseph, C., Ghosh, S., Agarwal, A., Mishra, M.K. and Sen, E. (2007) Kaempferol Induces Apoptosis in Glioblastoma Cells through Oxidative Stress. Molecular Cancer Therapeutics, 6, 2544-2553.
https://doi.org/10.1158/1535-7163.MCT-06-0788
[32] Lin, C.-W., Shen, S.-C., Chien, C.-C., Yang, L.-Y., Shia, L.-T. and Chen, Y.-C. (2010) 12-O-Tetradecanoylphorbol- 13-Acetate-Induced Invasion/Migration of Glioblastoma Cells through Activating PKCα/ERK/NF-κB-Dependent MMP-9 Expression. Journal of Cellular Physiology, 225, 472-481.
https://doi.org/10.1002/jcp.22226
[33] Santos, B.L., Oliveira, M.N., Coelho, P.L., Pitanga, B.P., da Silva, A.B., Adelita, T., et al. (2015) Flavonoids Suppress Human Glioblastoma Cell Growth by Inhibiting Cell Metabolism, Migration, and by Regulating Extracellular Matrix Proteins and Metalloproteinases Expression. Chemico-Biological Interactions, 242, 123-138.
https://doi.org/10.1016/j.cbi.2015.07.014
[34] Schindler, R. and Mentlein, R. (2006) Flavonoids and Vitamin E Reduce the Release of the Angiogenic Peptide Vascular Endothelial Growth Factor from Human Tumor Cells. The Journal of Nutrition, 136, 1477-1482.
https://doi.org/10.1093/jn/136.6.1477