|
[1]
|
J. Tyrrell, S. M. Campbell and A. Curnow. Monitoring the accu- mulation and dissipation of the photosensitizer protoporphyrin IX during standard dermatological methyl-aminolevulinate photo- dynamic therapy utilizing noninvasive fluorescence imaging and quantification. Photodiagnosis and Photodynamic Therapy, 2011, 1(8): 30-38.
|
|
[2]
|
C. P. Chang, D. J. Nagel and M. E. Zaghloul. Irradiance depen- dence of photobleaching of resorufin. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 2(217): 430-432.
|
|
[3]
|
J. S. Dysart, M. S. Patterson, T. J. Farrell, et a1. Relationship between mTHPC fluorescence photobleaching and cell viability during in Vitro photodynamic treatment of DP16 cells. Photo- chemistry Photobiology A, 2002, 2(75): 289-295.
|
|
[4]
|
R. Bakalova, H. Ohba, Z. Zhelev, et al. Quantum dot anti2CD conjugates: Are they potential photosensitizers or potentiators of classical photosensitizing agents in photody namictherapy of cancer. Nano Letters, 2004, 9(4): 1567-1573.
|
|
[5]
|
A. C. S. Samia, X. B. Chen and C. Burda. Semiconductor quan- tum dots for photodynamic therapy. Journal of the American Che- mical Society, 2003, 51(125): 15736-15737.
|
|
[6]
|
R. Generalov, S. Kavaliauskiene1, S. Westrom, et al. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots. International Journal of Nanomedicine, 2011, 6: 1875-1888.
|
|
[7]
|
S. P. Singh. Multifunctional magnetic quantum dots for cancer theranostics. Journal of Biomedical Nanotechnology, 2011, 7(1): 95-97.
|
|
[8]
|
M. Nyk, K. Palewska, L. Kepinski, K. A. Wilk, et al. Fluore- scence resonance energy transfer in a non-conjugated system of CdSe quantum dots/zinc-phthalocyanine. Journal of Lumine- scence, 2010, 12(130): 2487-2490.
|
|
[9]
|
C. R. Kagan, C. B. Murray and G. Bawendim. Long-range resonance transfer of electronic excitations in close-packed Cdse quantum dot solids. Physical Review, 1996, 12(54): 8633-8643.
|
|
[10]
|
L. Jasmina, J. C. Sung, M. Francoise, et al. Unmodified cad- mium telluride quantum dots induce resctive oxygen species formation leading to multiple organelle damage and cell death. Chemistry and Biology, 2005, 11(12): 1227-1234.
|
|
[11]
|
V. Biju, S. Mundayoor, R. V. Omkumar, et al. Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues. Biotechnology, 2010, 2(28): 199-213.
|
|
[12]
|
H. Zeng, M. Korbelik, D. I. Mclean, et a1. Monitoring photo- product formation and photobleaching by fuorescence spectro- scopy has the potentialto improve PDT dosimetry with a verte- porfin-like photosensitizer. Photochem Photobiol, 2002, 4(75): 398-405.
|
|
[13]
|
熊建文, 肖化, 张镇西. MTT法和CCK-8法检测细胞活性之测试条件比较[J]. 激光生物学报, 2007, 5(16): 526-531.
|
|
[14]
|
肖化, 熊建文, 吴继明等. ALA-PDT对白血病肿瘤细胞作用的参数研究[J]. 激光生物学报, 2004, 5(13): 353-357.
|
|
[15]
|
D. D. Xu, W. S. C. Cho, P. Wu, et al. Photo-activated pheo- phorbide a inhibits the growth of prostate cancer cells. Laser Physics, 2011, 9(21): 1670-1674.
|
|
[16]
|
Y. Han, G. Y. Xie, N. Liu, et al. Effects of CdTe quantum dots on the antioxidant enzymes activity and lipid peroxidation in testes of mice. Asian Journal of Ecotoxicology, 2010, 6(5): 894-898.
|