腹部听诊肠鸣音的临床分析研究进展及展望
Research Progress and Prospects of Clinical Analysis of Bowel Sounds in Abdominal Auscultation
DOI: 10.12677/ACM.2022.121090, PDF, HTML, XML, 下载: 259  浏览: 596 
作者: 胥博愈:西安医学院,陕西 西安;段降龙:西安医学院,陕西 西安;陕西省人民医院普外二科,陕西 西安
关键词: 腹部听诊肠鸣音检测进展Abdominal Auscultation Bowel Sounds Detection Progress
摘要: 腹部肠鸣音听诊长期以来被认为是检查胃肠道功能的方法之一,被广泛应用于临床实践中,主要用于疾病的诊断及指导临床工作,且在临床工作中具有重要的地位。科学技术的快速发展为医学技术带来巨大的变化,逐渐解决了肠鸣音数据采集及数据分析等难题,为肠鸣音的临床研究带来巨大的潜能。本文通过对文献的回顾,对临床工作中腹部听诊肠鸣音临床研究发展历程进行综述。
Abstract: Abdominal bowel sounds auscultation has long been regarded as one of the examinations of gastrointestinal function. It is widely used in clinical practice. It is mainly used to diagnose diseases and guide clinical work, and it has an important position in clinical work. With the rapid development of science and technology bringing about tremendous changes in medical technology, the problem of data collection and data analysis of bowel sounds has been gradually solved, which brings huge potential to the clinical research of bowel sounds. This article reviews the development of clinical research on bowel sounds in abdominal auscultation by reviewing the literature.
文章引用:胥博愈, 段降龙. 腹部听诊肠鸣音的临床分析研究进展及展望[J]. 临床医学进展, 2022, 12(1): 606-612. https://doi.org/10.12677/ACM.2022.121090

1. 引言

胃肠蠕动是每个人随时都会发生的事件,肠鸣音是人体在进行消化过程中肠道内进行肌肉收缩消化传送食物时与气体相互摩擦产生的声音 [1],肠鸣音一直以来都与胃肠道的功能状态相联系,肠鸣音听诊在临床工作过程中是一项重要的查体项目。早在20世纪初由Cannon [2] 开创了肠鸣音听诊技术后,被临床医生广泛学习并应用,是腹部查体的重要部分。由于肠鸣音的听诊容易受到人的主观影响,肠鸣音的多变性及无标准的听诊结果导致其临床价值有限 [3]。

随着科学技术的快速发展及计算机的不断发展,为医学技术带来巨大的变化,逐渐解决了肠鸣音数据采集及数据分析等难题,为肠鸣音的临床研究带来巨大的潜能。文章旨在回顾肠鸣音的研究进展及探讨肠鸣音临床研究潜力。

2. 传统的肠鸣音听诊方式。

传统的肠鸣音听诊方式主要通过听诊器进行腹部听诊。根据人体解剖,腹部表面可根据“九分法”细分为:左上腹部、左侧腹部、左下腹部、上腹部、中腹部、下腹部、右上腹部、右侧腹部、右下腹部。而根据“四分法”分为:为左上腹部、左下腹部、右上腹部、右下腹部。腹部每个分区都对应着腹腔内脏器在腹壁的投影,通过腹部查体可以大致确定病灶部位。在临床工作中医师常采用听诊器对患者腹部听诊查体采用从左下腹开始逆时针听诊顺序,有些学者认为腹部听诊一个部位就可以,因为声音可以依靠腹壁传递,因此听诊三个以上听诊部位是没有必要的 [1]。对于腹部听诊时间上也没有一个统一规定,大多数专家建议如果在没有听到声音时至少再听诊5分钟。有作者建议在听诊前避免进行腹部触诊,认为触诊会影响肠蠕动进而影响肠鸣音听诊结果。相反一些作者认为不会有影响 [4] [5]。医生在区分正常肠鸣音和异常肠鸣音时,大多数临床医生通过判断肠鸣音频率、持续时间、强度来判断是否异常,其结果存在人的主观意识 [6]。而且在腹部听诊过程中常常容易受到杂音的影响如:血管音、心音、呼吸音及周围环境杂音等。人耳在区分这些杂音的能力是有限的,而且在实际临床工作过程中医生对肠鸣音的描述也只是粗略的记录(存在、缺失、增加和减少) [7]。在临床工作中,院内交叉感染也是我们不得不考虑的问题之一,现有的传统听诊设备大多数都是可持续使用,在临床工作中,听诊器的反复使用难免导致交叉感染的可能。已有大量证据显示听诊器可能为传播感染的媒介之一 [8]。

3. 传统腹部听诊在临床工作中的应用

随着循证医学的开展,临床药物使用及临床检查施行都讲究其实用性。在以往的研究中有些作者认为肠鸣音对疾病诊断有用,相反有研究认为肠鸣音听诊对疾病诊断无指导作用。虽然肠鸣音听诊为临床查体中不可缺少的一部分,但是其临床价值很大程度受到主观意识的影响,限制了肠鸣音的科学研究性。一项临床研究显示肠鸣音听诊是急腹症患者一项有用的临床检查,其通过8名急性腹痛患者和4名健康志愿者的12份肠道声音记录呈现给100名医生。医生被要求将肠鸣音描述为正常或病理性的。健康志愿者的72%的答案认为声音是正常的(相等一致性),而肠梗阻的64%的答案结论是声音是病理性的 [9]。与之相同的研究,Seth Felder [10] 等人通过电子听诊设备录取了健康人及肠梗阻患者的肠鸣音,通过外科医生和内科医生进行辨别诊断,发现对正常、肠梗阻和术后肠梗阻记录的总体敏感性分别为32%、22%和22%。正常、肠梗阻和术后肠梗阻的阳性预测值分别为23%、28%和44%。对于正常、肠梗阻和术后肠梗阻,重复录音的评分者内部可靠性分别为59%、52%和53%,认为肠鸣音听诊并不是一种有用的临床检查。也有研究通过使用电子听诊器记录正常者和肠梗阻患者肠鸣音片段,通过临床医生判别发现阳性预测值72.7%,认为其在诊断肠梗阻具有意义 [11]。在以循证实践为指导的胃肠外科术后护理中,系统的评价了腹部听诊在术后护理的作用,认为术后护理人员听诊肠鸣音价值非常有限,采用其推荐指南并放弃腹部听诊也不会对术后结果产生不良影响,认为腹部听诊检查浪费护理人员时间,因将其放在更有用于病人护理活动 [12]。同样有研究认为肠鸣音听诊在指导危重病人饮食意义较弱 [13]。因为传统的肠鸣音听诊结果提供的信息量太少,人耳分析能力有限,而且在分析中存在人为的主观性及其他杂音的干扰导致听诊结果受到影响,所以肠鸣音对指导临床工作的有用性受到临床医生的怀疑。

4. 数字化肠鸣音听诊方式

数字化肠鸣音监测系统主要由数据采集系统及数据处理系统组成。其中肠鸣音采集装置由:传声器、信号处理单元、A/D处理单元、单片机及通信接口等组成。1991年开始出现监测肠鸣音设备 [14]。1997年开始有团队通过建立自适应滤波器去除心音、呼吸音等杂音来提取肠鸣音 [15]。随后逐渐采用傅立叶变换、小波变换 [16]、短时间傅立叶变换、人工神经网络分析等信号处理技术进行信号增强,识别肠音类型,提取声音特征,实现肠鸣音的自动提取 [17] [18] [19]。

腹部肠鸣音采集部位可根据“九分法及四分法”进行不同部位的肠鸣音采集,由于计算机的应用也可同时进行多个部位的数据采集。有研究通过对比腹部不同分区的肠鸣音发现,能最好提供肠鸣音信息是(胃、回盲部、下腹部) [20]。2018年首次开始了人工智能监测肠鸣音,其准确率达90% [21]。本研究小组通过使用无线可佩戴肠鸣音监测系统获取了20个持续24小时的临床监测记录,从中提取了8000个声音片段,以训练卷积神经网络模型。发现其对肠鸣音提取准确度为92% [22],表明该技术具有很高的实际应用潜力和技术成熟度。在当今大数据时代,随着计算机技术不断发展,大数据分析和人工智能学习已经在许多行业应用。肠鸣音分析在结合大数据分析和人工智能学习逐渐应用到疾病诊断,并取得较好的成果 [23]。

5. 数字化肠鸣音临床研究进展

早在1955年,发表了第一篇肠鸣音与腹部胃肠道活动的相关性文章 [24]。随后人们发现当肠腔内出血时肠率增加,在危重患者中肠率逐渐降低 [25]。进一步进行小肠运动与肠鸣音的研究 [26]。1961年研究者首次通过麦克风进行肠鸣音采集并记录在磁带中,再将其转化为电脉冲记录肠鸣音,通过肠道刺激实验发现肠鸣音与血清5-羟色胺水平有关 [27]。1967年国外研究团队开发研制了第一台记录肠鸣音装置 [28]。之后该团队在《GUT》杂志发表相关文章详细介绍记录和分析肠音的仪器。对典型和有代表性的记录进行说明和解释,并提出有关肠鸣音的频率、相对强度、节奏和结构的数据 [7]。随着计算机技术的不断发展,1975年开始出现使用计算机自动分析肠鸣音,解决了人工提取的繁琐,但其不足之处在于收集肠鸣音时必须处于安静场所,而且此时在处理杂音方面仍不完善 [29]。之后研究者逐渐开始肠鸣音和临床疾病诊断研究,发现在急性肠梗阻、肾衰竭 [30]、急性阑尾炎 [31]、肠易激综合症 [32] 患者中肠鸣音有明显变化,并发现其在肠梗阻及肠易激综合症诊断中尤为突出。1990年日本科学家通过对肠梗阻患者长期的监测肠鸣音,通过计算机分析肠鸣音数据将患者的肠鸣音分为3种类型(I型、II型和III型),作者认为这种描述方法可对肠梗阻严重程度进行分类,以确定治疗方案(手术or保守) [33]。1993年一项对75例手术患者进行的肠鸣音分析发现了腹膜炎患者肠鸣音数量减少、强度减少、音调降低 [34]。随后研究者通过使用计算机辅助声音分析系统发现急腹症患者在肠鸣音数量、强度、间隔时间、持续时间从在减弱 [35]。1997年研究人员通过电脑绘制频率谱提取肠率及峰值频率来提示胃肠道活动 [36]。1999年研究者通过电子听诊器并进行电脑分析肠鸣音发现肠易激综合征患者肠鸣音时间间隔明显小于对照组,进一步通过验证发现使用肠鸣音诊断肠易激综合征敏感性为91%,特异性为100% [37]。2003年有研究者通过建立肠梗阻小鼠模型通过对比对照组,发现实验组肠鸣音持续时间和主频率较对照组显的更长和更低,并发现随着梗阻时间的增加持续时间加长及主频率更低,作者认为通过肠鸣音分析可能在肠梗阻无创、快速和诊断有一定价值 [38] [39]。之后也有研究得出相同的结果 [40]。研究者进一步发现影响肠鸣音的因素是健康状况和生活方式的改变,而不受摄入食物的差异的影响 [41],心里应激也是影响肠鸣音的因素之一 [42],而且发现肠鸣音的强度与消化周期有关 [43]。有研究者通过回顾了有关肠鸣音听诊应用于重症监护室相关文献,认为肠鸣音听诊对病人护理具有很大意义 [44] [45]。在一项应用于重症医学科的实时监测肠鸣音与脓毒血症患者的研究认为,该监测系统提供了一种,可以连续、定量和无创地评估严重脓毒症患者的胃肠动力方法。肠鸣音监测可能作为反映疾病严重程度的参数很有用,特别是在接受类固醇治疗的患者中 [46]。随着ERAS的快速发展,人们开始关注术后患者胃肠道功能的恢复状态,一项随机研究对腹部听诊对外科术后判断术后肠梗阻表示质疑,研究认为术后排气较听到肠鸣音更能提示胃肠功能恢复 [47]。也有相关文献回顾支持这一观点 [12] [48]。最新的研究提出实时监测术后肠鸣音监测有助于判断术后胃肠道恢复 [49]。一项通过监测28名腹部手术患者术后肠鸣音的研究,发现术后肠鸣音监测可超过80%的确定性排除术后肠梗阻 [50]。也有研究者通过对比麻醉前后肠鸣音变化发现术后3小时肠鸣音恢复到术前状态,进一步证明监测肠鸣音对指导术后早期进食有意义 [51]。同样本研究小组进行监测胃肠术后患者肠鸣音通过对比早期进食与对照组肠鸣音,发现早期进食患者肠鸣音恢复较早 [52]。进一步应用肠鸣音听诊设备进行胃肠道术后肠鸣音恢复评价 [53] [54]。近期研究者通过收集37名健康者肠鸣音和31例肠易激综合征患者肠鸣音进行开发的模型验证对其诊断有90%的敏感性和92%的特异性 [23]。有研究者通过收集67名受试者肠鸣音,其中包含15名对照组,并通过可调节网格的方法用于肠鸣音分析发现患有急性腹部疾病的患者组中注意到声音和二进制矩阵的数量存在差异。指出了个体腹部疾病特有的肠鸣音的某些特征 [55]。也有肠鸣音监测研究分析发现帕金森病和多发性系统萎缩这两种疾病患者中肠活动较弱,认为疾病可能累及胃肠道的重要神经系统 [56]。随着肠鸣音系统数据采集设备和分析方法的进步,肠鸣音的提取逐渐精准。通过数字化的处理肠鸣音,并结合临床研究分析研究,发现肠鸣音监测分析对疾病诊断和胃肠功能评价方面具有极大的应用前景。

6. 肠鸣音监测研究展望

肠鸣音听诊长期以来被认为是检查胃肠道功能的检查之一,被广泛应用于临床实践中,主要用于对疾病诊断及指导临床工作,且在临床工作中具有重要的地位。随着循证医学的发展,人们越来越注重实效性,通过初步的实验研究及系统的总结和分析,人们逐渐认为在当前医学相对发达的今天。肠鸣音听诊对于临床指导作用相对于CT、MIR等高科技检验设备较弱。有的研究者甚至建议放弃腹部听诊,将节省的时间应用到更为重要的护理工作中。本研究认为:肠鸣音作为肠道蠕动产生的信号,与心音、肺呼吸音同样重要。肠鸣音与心脏和肺呼吸音相比更为复杂、无规律性、位置不固定、人耳分析较为困难,具有主观意识,这些因素共同导致肠鸣音在临床工作中使用受限。随着科学技术的发展和计算机技术的不断发展,逐渐解决了肠鸣音数据采集及数据分析等难题。随之产生了一种新的学科计算机听觉(Computer Audition, CA),它主要包括声学、信号处理、机器学习和深度学习技术。通过计算机强大的数据处理能力为肠鸣音的研究提供强大的支持。随着时代的发展,人们对于医疗检查越来越追求无创伤性检查。肠鸣音监测具有无创伤的优势,可以通过设备和计算机系统为患者提供24小时不间断监护。未来通过不断地研究学习,不断地提升基础研究,为数据的提取和分析提供更为精确的服务。

参考文献

[1] Baid, H. (2009) A Critical Review of Auscultating Bowel Sounds. British Journal of Nursing, 18, 1125-1129.
https://doi.org/10.12968/bjon.2009.18.18.44555
[2] Cannon, W.B. (1905) Auscultation of the Rhythmic Sounds Produced by the Stomach and Intestines. American Journal of Physiology, 14, 339-353.
https://doi.org/10.1152/ajplegacy.1905.14.4.339
[3] Felder, S., Margel, D., Murrell, Z., et al. (2014) Usefulness of Bowel Sound Auscultation: A Prospective Evaluation. Journal of Surgical Education, 71, 768-773.
https://doi.org/10.1016/j.jsurg.2014.02.003
[4] Vizioli, L.H., Winckler, F.D., da Luz, L.C., et al. (2020) Abdominal Palpation Does Not Modify the Number of Bowel Sounds in Healthy Volunteers and Gastrointestinal Outpatients. The American Journal of the Medical Sciences, 360, 378-382.
https://doi.org/10.1016/j.amjms.2020.05.041
[5] Çalış, A.S., Kaya, E., Mehmetaj, L., et al. (2019) Abdominal Palpation and Percussion Maneuvers Do Not Affect Bowel Sounds. Turkish Journal of Surgery, 35, 309-313.
https://doi.org/10.5578/turkjsurg.4291
[6] West, M. and Klein, M.D. (1982) Is Abdominal Auscultation Important? The Lancet, 2, 1279.
https://doi.org/10.1016/S0140-6736(82)90134-9
[7] Watson, W.C. and Knox, E.C. (1967) Phonoenterography: The Recording and Analysis of Bowel Sounds. Gut, 8, 88-94.
https://doi.org/10.1136/gut.8.1.88
[8] Russell, A., Secrest, J. and Schreeder, C. (2012) Stethoscopes as a Source of Hospital-Acquired Methicillin-Resistant Staphylococcus aureus. Journal of PeriAnesthesia Nursing, 27, 82-87.
https://doi.org/10.1016/j.jopan.2012.01.004
[9] Gade, J., Kruse, P., Andersen, O.T., et al. (1998) Physicians’ Abdominal Auscultation. A Multi-Rater Agreement Study. Scandinavian Journal of Gastroenterology, 33, 773-777.
https://doi.org/10.1080/00365529850171756
[10] Felder, S., Margel, D., Murrell, Z., et al. (2014) Usefulness of Bowel Sound Auscultation: A Prospective Evaluation. Journal of Surgical Education, 71, 768-773.
https://doi.org/10.1016/j.jsurg.2014.02.003
[11] Gu, Y., Lim, H.J. and Moser, M.A.J. (2010) How Useful Are Bowel Sounds in Assessing the Abdomen? Digestive Surgery, 27, 422-426.
https://doi.org/10.1159/000319372
[12] Madsen, D., Sebolt, T., Cullen, L., et al. (2005) Listening to Bowel Sounds: An Evidence-Based Practice Project: Nurses Find That a Traditional Practice Isn’t the Best Indicator of Returning Gastrointestinal Motility in Patients Who’ve Undergone Abdominal Surgery. The American Journal of Nursing, 105, 40-49.
https://doi.org/10.1097/00000446-200512000-00029
[13] Shimemeri, A., Sakkijha, M., Haddad, S., et al. (2011) The Value of Bowel Sound Assessment in Predicting Feeding Intolerance in Critically Ill Patient. Critical Care and Shock, 14, 65-69.
[14] Petrowicz, O., Muller, K., Hansen, W., et al. (1991) Critical Review and New Aspects of Noise Analysis for Gastrointestinal Motility Determination. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Volume 13, 492-493.
[15] Mansy, H.A. and Sandler, R.H. (1997) Bowel-Sound Signal Enhancement Using Adaptive Filtering. IEEE Engineering in Medicine and Biology Magazine, 16, 105-117.
https://doi.org/10.1109/51.637124
[16] Dimoulas, C., Kalliris, G., Papanikolaou, G., et al. (2008) Bowel-Sound Pattern Analysis Using Wavelets and Neural Networks with Application to Long-Term, Unsupervised, Gastrointestinal Motility Monitoring. Expert Systems with Applications, 34, 26-41.
https://doi.org/10.1016/j.eswa.2006.08.014
[17] Ulusar, U.D. (2014) Recovery of Gastrointestinal Tract Motility Detection Using Naive Bayesian and Minimum Statistics. Computers in Biology and Medicine, 51, 223-228.
https://doi.org/10.1016/j.compbiomed.2014.05.013
[18] Allwood, G., Xuhao, D., Webberley, K.M., et al. (2019) Advances in Acoustic Signal Processing Techniques for Enhanced Bowel Sound Analysis. IEEE Reviews in Biomedical Engineering, 12, 240-253.
https://doi.org/10.1109/RBME.2018.2874037
[19] Liu, J., Yin, Y., Jiang, H., et al. (2018) Bowel Sound Detection Based on MFCC Feature and LSTM Neural Network. Proceedings of the 2018 IEEE Biomedical Circuits and Systems Conference, Cleveland, 17-19 October 2018, 1-4.
https://doi.org/10.1109/BIOCAS.2018.8584723
[20] Ranta, R., Louis-Dorr, V., Heinrich, C., et al. (2010) Digestive Activity Evaluation by Multichannel Abdominal Sounds Analysis. IEEE Transactions on Biomedical Engineering, 57, 1507-1519.
https://doi.org/10.1109/TBME.2010.2040081
[21] Sato, R., Emoto, T., Gojima, Y., et al. (2018) Automatic Bowel Motility Evaluation Technique for Noncontact Sound Recordings. Applied Sciences-Basel, 8, 999.
https://doi.org/10.3390/app8060999
[22] Zhao, K., Jiang, H., Wang, Z., et al. (2020) Long-Term Bowel Sound Monitoring and Segmentation by Wearable Devices and Convolutional Neural Networks. IEEE Transactions on Biomedical Circuits and Systems, 14, 985-996.
https://doi.org/10.1109/TBCAS.2020.3018711
[23] Du, X., Allwood, G., Webberley, K.M., et al. (2019) Noninvasive Diagnosis of Irritable Bowel Syndrome via Bowel Sound Features: Proof of Concept. Clinical and Translational Gastroenterology, 10, e00017.
https://doi.org/10.14309/ctg.0000000000000017
[24] Farrar, J.T. and Ingelfinger, F.J. (1955) Gastrointestinal Motility as Revealed by Study of Abdominal Sounds. Gastroenterology, 29, 789-802.
https://doi.org/10.1016/S0016-5085(19)35951-7
[25] Milton, G.W. and Clunie, G.J.A. (1958) The Bowel Sounds in Cases of Haematemesis and Melaena. Australian and New Zealand Journal of Surgery, 28, 42-44.
https://doi.org/10.1111/j.1445-2197.1958.tb03795.x
[26] Sprung, H.B. and Roisch, R. (1960) On Registration of Small Intestine Motility with the Intestinal Sound. Gastroenterologia, 93, 145-157.
https://doi.org/10.1159/000202814
[27] Adams, B. (1961) The Measurement of Intestinal Sounds in Man and Their Relationship to Serum 5-Hydroxytryptamine. Gut, 2, 246-251.
https://doi.org/10.1136/gut.2.3.246
[28] Garclay, G.A., Solman, A.J. and Wade, M.J. (1967) Apparatus to Record Bowel Sounds and Intestinal Pressures. The Journal of Physiology, 188, 5p-6p.
[29] Dalle, D., Devroede, G., Thibault, R., et al. (1975) Computer Analysis of Bowel Sounds. Computers in Biology and Medicine, 4, 247-256.
https://doi.org/10.1016/0010-4825(75)90036-0
[30] Serniak, P.S., Denisov, V.K., Shirokov, V.S., et al. (1982) Importance of Phonoenterography for the Diagnosis of Acute Kidney Failure. Vrachebnoe Delo, 5, 23-25.
[31] Arnbjörnsson, E. and Bengmark, S. (1983) Auscultation of Bowel Sounds in Patients with Suspected Acute Appendicitis—An Aid in the Diagnosis? European Surgical Research, 15, 24-27.
https://doi.org/10.1159/000128329
[32] Radnitz, C.L. and Blanchard, E.B. (1988) Bowel Sound Biofeedback as a Treatment for Irritable Bowel Syndrome. Biofeedback and Self-Regulation, 13, 169-179.
https://doi.org/10.1007/BF01001499
[33] Yoshino, H., Abe, Y., Yoshino, T., et al. (1990) Clinical Application of Spectral Analysis of Bowel Sounds in Intestinal Obstruction. Diseases of the Colon & Rectum, 33, 753-757.
https://doi.org/10.1007/BF02052320
[34] Santamaría, J.I., Vega, J.M., Valverde, J.M., et al. (1993) Study of Intestinal Motility in the Child with Acute Appendicitis Using Phonoenterography. Cirugia Pediatrica: Organo oficial de la Sociedad Espanola de Cirugia Pediatrica, 6, 117-119.
[35] Sugrue, M. and Redfern, M. (1994) Computerized Phonoenterography: The Clinical Investigation of a New System. Journal of Clinical Gastroenterology, 18, 139-144.
https://doi.org/10.1097/00004836-199403000-00013
[36] Bray, D., Reilly, R., Haskin, L., et al. (1997) Assessing Motility through Abdominal Sound Monitoring. Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society’ Magnificent Milestones and Emerging Opportunities in Medical Engineering, Chicago, 30 October-2 November 1997, 2398-2400.
[37] Craine, B.L., Silpa, M. and O’Toole, C.J. (1999) Computerized Auscultation Applied to Irritable Bowel Syndrome. Digestive Diseases and Sciences, 44, 1887-1892.
https://doi.org/10.1023/A:1018859110022
[38] Sandler, R., Mansy, H., Uhing, M., et al. (2003) Computerized Analysis of Bowel Sounds in Normal and Small Bowel Obstructed Rats. The Journal of the Acoustical Society of America, 113, 2239.
https://doi.org/10.1121/1.1560292
[39] Mansy, H. and Sandler, R. (2000) Detection and Analysis of Gastrointestinal Sounds in Normal and Small Bowel Obstructed Rats. Medical and Biological Engineering and Computing, 38, 42-48.
https://doi.org/10.1007/BF02344687
[40] Ching, S.S. and Tan, Y.K. (2012) Spectral Analysis of Bowel Sounds in Intestinal Obstruction Using an Electronic Stethoscope. World Journal of Gastroenterology, 18, 4585-4592.
https://doi.org/10.3748/wjg.v18.i33.4585
[41] Sakata, O., Matsuda, K., Suzuki, Y., et al. (2011) Basic Study of Occurrence Frequency of Bowel Sounds after Food Ingestion. Proceedings of the TENCON 2011-2011 IEEE Region 10 Conference, Bali, 21-24 November 2011, 1203-1206.
https://doi.org/10.1109/TENCON.2011.6129303
[42] Sakata, O. and Satake, T. (2010) Integration of Different Types of Biological Signals-Bowel Sound and Salivary Amylase. Proceedings of American Society of Agricultural and Biological Engineers, Pittsburgh, 20-23 June 2010, 1.
[43] Sakata, O., Suzuki, Y., Matsuda, K., et al. (2013) Temporal Changes in Occurrence Frequency of Bowel Sounds both in Fasting State and after Eating. Journal of Artificial Organs, 16, 83-90.
https://doi.org/10.1007/s10047-012-0666-0
[44] Li, B., Tang, S., Ma, Y.-L., et al. (2014) Analysis of Bowel Sounds Application Status for Gastrointestinal Function Monitoring in the Intensive Care Unit. Critical Care Nursing Quarterly, 37, 199-206.
https://doi.org/10.1097/CNQ.0000000000000019
[45] Li, B., Wang, J.-R. and Ma, Y.-L. (2012) Bowel Sounds and Monitoring Gastrointestinal Motility in Critically Ill Patients. Clinical Nurse Specialist, 26, 29-34.
https://doi.org/10.1097/NUR.0b013e31823bfab8
[46] Goto, J., Matsuda, K., Harii, N., et al. (2015) Usefulness of a Real-Time Bowel Sound Analysis System in Patients with Severe Sepsis (Pilot Study). Journal of Artificial Organs, 18, 86-91.
https://doi.org/10.1007/s10047-014-0799-4
[47] Massey, R.L. (2012) Return of Bowel Sounds Indicating an End of Postoperative Ileus: Is It Time to Cease This Long-Standing Nursing Tradition? MEDSURG Nursing, 21, 146-150.
[48] Read, T.E., Brozovich, M. andujar, J.E., et al. (2017) Bowel Sounds Are Not Associated with Flatus, Bowel Movement, or Tolerance of Oral Intake in Patients after Major Abdominal Surgery. Diseases of the Colon & Rectum, 60, 608-613.
https://doi.org/10.1097/DCR.0000000000000829
[49] Ulusar, U.D., Canpolat, M., Yaprak, M., et al. (2013) Real-Time Monitoring for Recovery of Gastrointestinal Tract Motility Detection after Abdominal Surgery. 2013 7th International Conference on Application of Information and Communication Technologies, Azerbaijan, 23-25 October 2013, 448-451.
[50] Kaneshiro, M., Kaiser, W., Pourmorady, J., et al. (2016) Postoperative Gastrointestinal Telemetry with an Acoustic Biosensor Predicts Ileus vs. Uneventful GI Recovery. Journal of Gastrointestinal Surgery, 20, 132-139.
https://doi.org/10.1007/s11605-015-2956-3
[51] Wang, G., Wang, M., Liu, H., et al. (2020) Changes in Bowel Sounds of Inpatients Undergoing General Anesthesia. BioMedical Engineering OnLine, 19, 60.
https://doi.org/10.1186/s12938-020-00805-z
[52] 王朋园. 胃肠道手术后进食时间对肠功能影响的临床研究[D]: [硕士学位论文]. 西安: 西安医学院, 2019.
[53] 侯峰. 数字化肠鸣音监测系统评价胃肠道手术后肠功能的研究[D]: [硕士学位论文]. 西安: 西安医学院, 2019.
[54] 魏堃. 智能听诊系统评价胃肠道肿瘤术后胃肠动力的研究[D]: [硕士学位论文]. 延安: 延安大学, 2020.
[55] Zaborski, D., Halczak, M., Grzesiak, W., et al. (2015) Recording and Analysis of Bowel Sounds. Euroasian Journal of Hepato-Gastroenterology, 5, 67-73.
https://doi.org/10.5005/jp-journals-10018-1137
[56] Ozawa, T., Saji, E., Yajima, R., et al. (2011) Reduced Bowel Sounds in Parkinson’s Disease and Multiple System Atrophy Patients. Clinical Autonomic Research, 21, 181-184.
https://doi.org/10.1007/s10286-010-0102-6