LncRNAs在糖尿病肾病中的功能及意义研究进展
Progress in the Function and Significance of LncRNAs in Diabetic Nephropathy
DOI: 10.12677/ACM.2022.121107, PDF, HTML, XML, 下载: 360  浏览: 590  科研立项经费支持
作者: 代丽霞*, 陈新田:西安医学院,陕西 西安;李振江, 朱燕亭#:陕西省人民医院肾病血透中心,陕西 西安
关键词: 糖尿病肾病LncRNAs生物标志物治疗靶点Diabetic Nephropathy LncRNAs Biomarkers Therapeutic Targets
摘要: 糖尿病肾病是糖尿病重要的微血管并发症,引起持续进展的慢性肾脏损害,导致肾功能衰竭。糖尿病肾病作为慢性肾病患者主要病因及死亡原因,极大地加重了全球健康及经济负担。糖尿病肾病发病机制较为复杂,现有治疗方案效果有限,亟待进一步探索发病机制,以更好地预防、治疗、管理糖尿病肾病。长链非编码RNA参与了许多生理过程,如细胞周期调节、细胞凋亡和存活、肿瘤迁移和代谢等。某些LncRNAs在糖尿病肾病发病机制中发挥重要作用。本文综述了参与糖尿病肾病发病机制、作为生物标志物或在临床应用中作为治疗靶点的LncRNAs。
Abstract: Diabetic nephropathy (DN) is a major microvascular complication of diabetes mellitus, leading to gradual progress in chronic deterioration of renal function, eventually resulting in the occurrence of kidney failure. DN is the major cause of the high morbidity and mortality of chronic kidney disease (CKD), which significantly aggravates the healthy and economic burden globally. Therefore, it is important to explore the underlying mechanism for prevention and management of DN due to the complicated pathogenesis and limited therapy. Long noncoding RNA (LncRNA), a novel target, is involved in many physiological processes, such as cell cycle regulation, apoptosis, cell survival, tumor migration and metabolism. Furthermore, evidence suggests that LncRNAs play a vital role in DN pathogenesis. This review summarizes LncRNAs, which are involved in the pathogenesis of DN, and used as biomarkers or therapeutic targets of DN in clinical practice.
文章引用:代丽霞, 陈新田, 李振江, 朱燕亭. LncRNAs在糖尿病肾病中的功能及意义研究进展[J]. 临床医学进展, 2022, 12(1): 732-740. https://doi.org/10.12677/ACM.2022.121107

1. 引言

糖尿病(diabetes mellitus, DM)是一种常见的慢性代谢性疾病,现代不健康饮食、生活方式等导致DM发病率的增加。DM带来的危害是多系统性的,其中微血管病变,以累及肾脏、视网膜损害尤为重要。2019年国际糖尿病联盟公布的流行病学调查数据显示,全球发病率达9.3%,我国是全球糖尿病患者最多的国家,糖尿病肾病(diabetic nephropathy, DN)患病率随DM患病率的显著增长亦成比例増长,DN已被列为终末期肾病的主要原因,成为全球性的瞩目的卫生健康问题,造成全球经济巨大负担 [1]。长链非编码RNA (long noncoding RNA, LncRNA)是一组长度超过200个核苷酸、不具有蛋白质编码功能的RNA。大量具有丰富生物学功能的LncRNAs被发现,LncRNAs与各种肾脏疾病的关系逐渐被阐明 [2]。糖代谢紊乱、氧化应激和肾脏血流动力学改变等因素参与DN的发病过程,具体的分子机制尚不完全清楚。多项研究证明,LncRNAs通过调控内质网应激、炎症、线粒体功能等多种生物学过程,参与DN中肾脏纤维化的发生,促进DN向慢性肾脏病及慢性肾衰进展。因此本文综述了参与DN发生发展过程的经典及新发现的LncRNAs,或可作为该疾病生物标志物,或可作为治疗靶点,未来有希望在临床中应用的重要LncRNAs。

2. 糖尿病肾病发病机制及病理

DN的病因涉及肾血流动力学的改变、缺氧、肾素–血管紧张素–醛固酮系统(renin-angiotensin-aldosterone system, RAAS)的过度激活、氧化应激、炎症、线粒体功能障碍、足细胞自噬以及遗传和表观遗传调节,各因素相互促进,进一步加重肾脏疾病和纤维化 [3]。DN早期出现肾小球病变、细胞外基质(extracelluar matrix, ECM)积聚、肾小管损害等,其典型病理特征是细胞外基质沉积、基底膜增厚,最终发展为肾小球硬化和肾间质纤维化。

3. LncRNA的特点

LncRNA是一组长度超过200个核苷酸、不具有蛋白质编码功能的长链非编码RNA。 迄今已检测到大约30,000个LncRNA的转录物。LncRNA存在于组织、细胞、血液、尿液中,可在多层面上(表观遗传调控、转录调控以及转录后调控等)调控基因的表达以及为细胞提供结构完整性。LncRNA的表达具有高度的组织和细胞特异性,有可能成为各种疾病的候选生物标志物 [4]。许多LncRNA受关键转录因子的转录调控,某些LncRNA具有共同的关键转录因子和蛋白编码基因,LncRNA具有不同于蛋白质编码基因的独特表达方式,蛋白质编码基因与其位置相关的非编码基因之间经常发生不同步表达 [5]。LncRNA在人类疾病中被证明是失调的,且全基因组关联研究(genome-wide association study, GWAS)发现了LncRNA基因座上的单核苷酸多态性(single nucleotide polymorphism, SNP)与多种疾病关联,LncRNA也被映射到DM易感基因,而且可能还有其他与DM血管并发症相关的LncRNA基因位点 [6]。

4. LncRNAs与糖尿病肾病

许多研究发现,LncRNAs在DN肾小球和肾小管损伤、微血管病变、内质网应激、炎症反应、细胞自噬和凋亡以及细胞增殖中的作用等病理生理过程中发挥重要作用 [7],一些LncRNAs也被认为是DN的诊断标志物和治疗靶点 [8]。LncRNAs在DN中有上调及下调变化,上调的LncRNAs参与促进ECM过度增殖、肾小球系膜细胞(human mesangial cell, MC)增生、促进肾小球硬化和肾间质纤维化,下调的LncRNAs可减轻上述病变,预防或延缓DN发生、发展,具有一定的保护作用。

4.1. LncRNAs与糖尿病肾病发病机制

4.1.1. 上调的LncRNAs

1) PVT1

PVTI是第一个被报道与肾脏疾病有关的LncRNA。研究者发现,经高糖诱导的人肾小球系膜细胞(human mesangial cell, HMC) PVT1表达升高,ECM主要纤维连接蛋白(FN1)和IV型胶原α1 (Col4α1)以及转化生长因子β1 (TGF-β1)和1型纤溶酶原激活物抑制物-1 (PAI-1)的水平也显著升高 [9]。在小鼠DN模型和高糖诱导HMCs模型中,miR-325-3p水平升高,PVT1可以直接与miR-325-3p结合,PVT1通过miR-325-3p/Snail1轴抑制DN的细胞增殖、氧化应激、纤维化和炎症 [10]。PVT1下调通过miR-23b-3p/WT1轴介导对高糖诱导的MCs增殖和纤维化的保护作用,NF-KB通路参与高糖诱导MCs中PVT1/miR-23b-3p/WT1轴的调控网络 [11]。在DN患者血清和高糖诱导的HMCs中,PVT1和EGR1 (early growth response factor 1)的表达增加,miR-23b-3p的表达降低,敲除 PVT1可显著抑制高糖诱导的HMCs ECM增殖、上皮间质转化(epithelial-mesenchymal transition, EMT)和氧化应激,抑制miR-23b-3p可减弱这些作用,miR-23b-3p可以特异性结合PVT1,PVT1下调可通过上调miR-23b-3p和下调EGR1来部分抑制DN的进展 [12]。研究发现PVT1在高糖诱导的人肾小管上皮细胞(HK-2)中高表达,显著促进TGF-β1、FN1、Col4α1和PAI-1的表达,过度表达可促进细胞增殖和抑制凋亡 [13]。在DN小鼠足细胞和人原代足细胞中,沉默PVT1可通过上调FOXA1抑制足细胞损伤和凋亡 [14]。

2) MALAT1

MALAT1广泛表达于哺乳动物组织。MALAT1在早期DN患者中异常上调 [15]。在链脲佐菌素(streptozotocin, STZ)诱导的小鼠DN模型中,MALAT1高表达,并通过与β-catenin的相互作用,在体外参与高糖诱导的足细胞损伤,小干扰RNA (small interference RNA, siRNA)转染使MALAT1结合蛋白过表达,可纠正足细胞损伤,逆转ECM积聚,MALAT1和β-catenin之间存在相互反馈调节 [16]。在暴露于高糖的DM小鼠和患者的肾组织中,MALAT1显著上调 [17]。在缺氧的小鼠模型中,MALAT1在肾脏近端小管细胞中的表达上调,MALAT1的敲除可以减少新的小管的形成 [18]。在STZ诱导的DN大鼠中,MALAT1在HK-2中的表达也显著增加,但MALAT1的转录因子mir-23c的表达降低,在高糖处理的HK-2细胞中可重现,即MALAT1通过控制mir-23c调控ELAVL1的表达,促进炎症体NLRP3介导的HK-2凋亡 [19]。又有研究发现MALAT1还可靶向miR-30c促进NLRP3的表达,调控HK-2细胞凋亡 [20]。

3) Gm5524

基于对DM小鼠和正常对照组小鼠肾脏组织中异常表达的Gm5524微阵列分析,Gm5524在DM小鼠肾脏中显著上调,在小鼠足细胞中,通过siRNA降低Gm5524表达可以减弱足细胞的自噬作用 [21]。GM5524在DN组织和足细胞中显著上调,Gm5524通过抑制抗凋亡的bcl2蛋白表达,影响细胞凋亡和自噬相关因子,在Gm5524基因敲除的足细胞中,促凋亡蛋白Bax的表达增加,Gm5524还可通过激活LC3/ATG信号通路激活自噬 [22] [23]。

4) Gm4419

研究者通过生物信息学分析预测Gm4419与NF-κB相关,研究证实Gm4419可以通过调节NF-κB/NLRP3炎症体信号通路,介导MCs的炎症分子表达,与MCs的炎症、纤维化和增殖有关。敲除Gm4419基因,可明显降低高糖条件下MCs促炎因子和肾纤维化生物标志物的表达,抑制其增殖,相反在正常葡萄糖条件下,过表达Gm4419会增加MCs的炎症、细胞增殖,DN小鼠表现同上 [24]。另有研究发现DN大鼠中Gm4419的表达明显高于健康大鼠,Gm4419敲除组尿素、肌酐、炎症水平显著下降 [25]。

5) MGC

MGC可以作为40个miRNAs簇的支架,MGC由内质网应激相关的转录因子CHOP通过转化TGF-β1依赖和非TGF-β1依赖的途径调节DN发生。敲除小鼠CHOP基因,MGC以及簇内关键miRNAs表达减少,敲除MGC可以减少miRNAs的表达,减少ECM积聚,减少肾小球病变 [26]。

6) ERBB4-IR

在人类DN组织、DN小鼠ERBB4-IR升高,ERBB4-IR可直接抑制肾保护性miR-29b的转录,进而激活TGF-β1/Smad3信号转导通路,导致DN小鼠肾纤维化指标 [27]。利用非DM小鼠模型,发现ERBB4-IR/TGF-β1/Smad3-轴介导肾纤维化 [28]。

4.1.2. 下调的LncRNAs

1) TUG1

在DM小鼠足细胞中,TUG1表达显著抑制,能够调节过氧化物酶体增殖物激活受体γ (PPARγ)共激活因子α (pGC-1α),参与DN小鼠模型足细胞线粒体功能的调节 [29] [30],足细胞过表达TUG1可以通过增加pGC-1α的表达 抑制高糖诱导的巨噬细胞增殖和ECM积聚,改善DN [31]。DN大鼠TRAF5水平明显高于对照组,TUG1水平明显低于对照组,黄芪甲苷IV (Astragaloside IV, AS-IV)治疗可降低DN大鼠蛋白尿和TRAF5水平,改善TUG1水平,TUG1与TRAF5相互作用,TUG1过表达促进TRAF5蛋白降解,AS-IV通过调控TUG1调控TRAF5的表达,即AS-IV通过TUG1/TRAF5途径降低足细胞凋亡 [32]。TUG1在高糖诱导的MC中下调,TUG1过表达可通过抑制PI3K/AKT通路抑制MC增殖和ECM积累 [33]。TUG1通过抑制转录因子pu1与RTN1启动子的结合,下调RTN1的表达,从而降低内质网应激标志物和凋亡标志物水平,过表达pu1则逆转了上述结果 [34]。DN动物模型实验验证TUG1通过调控miR-29c-3p/SIRT1减轻高糖诱导的HK-2损伤 [35]。

2) MIAT

DM大鼠MIAT水平较低,其表达与肾功能指标相关 [36]。MIAT通过稳定核因子红系2相关因子2 (Nrf2)的表达来调节近曲小管细胞活性,Nrf2可以从病理和功能上保护肾脏免受糖尿病的损害 [37]。高糖诱导的HK-2中,MIAT表达降低,与较低的Nrf2水平相关,MIAT的过度表达抵消了高糖抑制的Nrf2抗氧化反应,似乎是通过调节近曲小管细胞活性而参与DN发展 [36]。沉默MIAT可通过靶向miR-147a/E2F3减轻系膜细胞增殖、纤维化 [38]。高糖刺激HK-2细胞,沉默MIAT或miR-182-5p上调加重了高糖诱导的细胞损伤,并通过miR-182-5p或GPRC5A的调控激活NF-κB通路,延缓DN的发生发展 [39]。沉默MIAT通过miR-130a-3p/TLR4轴减轻高糖刺激的足细胞炎症和凋亡 [40]。

3) CYP4B1-PS1-001

CYP4B1-PS1-001在药物代谢以及胆固醇、类固醇和其他脂质的合成等许多反应中都起着重要作用。研究发现在早期DN中,CYP4B1-PS1-001在体外和体内均显著下调,CYP4B1-PS1-001过表达,通过调节核仁的泛素化和降解,抑制MC的增殖和纤维化 [41] [42]。

4) LINC01619

LINC01619能在DM大鼠体内引发氧化应激和足细胞损伤,表现为足细胞凋亡增加、足突弥漫性消退、肾功能受损,在体外高糖处理的足细胞表现相似,LINC01619的恢复可以减轻氧化应激和足细胞损伤,而LINC01619的沉默可以诱导氧化应激和足细胞损伤,弥漫性足细胞足突消失。LINC01619在DN患者肾活检组织中表达下调,通过解除miR-27A对叉头盒蛋白O1 (forkhead box protein O1, Foxo1)的抑制作用上调Foxo1的表达,减轻氧化应激和足细胞损伤,表达降低可抑制Foxo1的表达而激活内质网应激 [43]。

5) Gm15645

对DM小鼠和对照组小鼠肾脏组织中异常表达的Gm15645的微阵列分析,Gm15645显著下调,通过转染使小鼠足细胞中Gm15645过表达,可减弱足细胞的自噬作用,在高糖诱导下Gm15645在DN组织足细胞中的表达显著下调,Gm15645的作用机制与Gm5524相反 [21]。

4.2. LncRNAs与糖尿病肾病生物标志物

一项研究将20例T2DM患者和27例DN患者组与14例健康人相比,外周血MALAT1表达显著上调,Pearson相关性分析显示MALAT1水平与尿微量白蛋白/尿肌酐(ACR)、尿β2-微球蛋白(β2-MG)、尿α1-微球蛋白(α1-MG)、血肌酐(Cr)、糖化血红蛋白(HbA1c)正相关,与超氧化物歧化酶(superoxide dismutase, SOD)负相关,ACR、血Cr、尿α1-MG、血MALAT1联合检测,诊断DN的敏感性和特异性分别为1.0和0.806 [44]。另一项研究对136例2型糖尿病患者和25例健康人进行横断面分析,ACR、eGFR、足细胞损伤、近端小管功能损伤标志物肾损伤分子-1 (kidney injury molecule 1, KIM-1)和N-乙酰-β-D-氨基葡萄糖苷酶(NAG)等多变量回归分析显示,尿MALAT1与KIM-1、NAG、ACR正相关,与估计肾小球滤过率(estimated glomerular filtration rate, eGFR)负相关,尿NEAT1与KIM-1、NAG正相关,与eGFR负相关,尿MIAT与eGFR正相关,与KIM-1、NAG、ACR负相关,尿TUG1与eGFR正相关,与NAG负相关 [45]。有报道称DM合并DKD患者血清和肾组织中CASC2的低表达,低于其他DM相关并发症,对DM合并DKD有诊断价值 [46]。有研究发现NR_033515在DN患者血清中显著上调,其表达水平与DN的不同分期有关,并与KIM-1、NGAL呈正相关 [47]。LINC01619表达下调与DN患者蛋白尿和肾功能下降正相关 [43]。

4.3. LncRNAs与糖尿病肾病临床研究及治疗

虽然降糖药物和胰岛素对血糖有显著影响,但血糖的波动或其他危险因素可能会持续损害肾脏。DKD的病理生理机制是复杂的、多因素的、异质性的,很难制定有效的治疗策略。如前所示,通过敲除或者上调DN动物模型中特定LncRNA,可预防DN或减轻DN病理改变及肾损害临床指标。例如针对MGC的化学修饰可以减轻DN小鼠内质网应激、肾小球损害、ECM增厚 [26]。我国多位研究者证实某些中成药制剂可通过调节LncRNA来干预DN进程。当归补血汤可通过下调PVT1表达来抑制MC过度增殖和ECM积聚 [48]。小檗碱可通过下调LOC102549726表达,靶向EGF发挥对足细胞的保护作用 [49]。糖肾方改善DN患者肾脏纤维化可能是通过调整TGFβ/Smad通路以及Keap1/Nrf2抗氧化应激来实现的 [50]。黄芪三七合剂可通过下调Arid2-IR抑制NF-κB信号通路,改善DN小鼠相关生化、炎症指标,并改善肾脏病理变化,且有剂量依赖性 [51]。益肾颗粒可降低DN大鼠尿蛋白,减轻氮质血症,改善糖脂代谢,并减轻病理损伤,研究证实可能通过激活MALAT1/mTOR信号通路,增加自噬,减少足细胞骨架重排,减少细胞凋亡,改善DN和足细胞损伤 [52]。结合已经明确LncRNA参与的信号通路,可运用阻断其上下游手段,研发精准的安全的靶向基因敲除、补充及相关蛋白合成抑制药物。

5. 展望

LncRNAs能够通过RNA-蛋白质、RNA-RNA和RNA-DNA相互作用与蛋白质、RNA和DNA结合形成功能复合物,并在多种细胞过程中发挥重要的生物学作用 [53]。LncRNA的调控是复杂的,涉及多个分子和信号通路之间的相互作用。高通量测序、生物信息学和基因编辑领域不断发展,研究LncRNA在DM、糖尿病微血管并发症、胰岛素β细胞功能中的作用机制,我们可以通过外源手段(如基因敲入、RNA干扰、基因补充等)沉默或激活LncRNA,在DM和DN模型中进行详细的功能验证,鉴定更多有望成为DM和DN新的诊断标志物和治疗靶点的LncRNA。另外即使血糖、血压控制良好,但新陈代谢记忆不可消除,肾脏持续性损害存在,期望通过基因水平干预,从多个信号通路出发,消除这种影响,保护肾脏不受损害或者减轻肾脏损害。

基金项目

陕西省自然科学基础研究计划一般项目(2021JQ-905);陕西省人民医院科技人才支持计划(2021JY-31)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Williams, R., Karuranga, S., Malanda, B., et al. (2020) Global and Regional Estimates and Projections of Diabetes-Related Health Expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 162, Article ID: 108072.
https://doi.org/10.1016/j.diabres.2020.108072
[2] 王伟达, 李昭君, 陈园园, 等. LncRNA与慢性肾脏病的研究进展[J]. 药学学报, 2019, 54(11): 1918-1925.
[3] Lin, Y.C., Chang, Y.H., Yang, S.Y., Wu, K.D. and Chu, T.S. (2018) Update of Pathophysiology and Management of Diabetic Kidney Disease. Journal of the Formosan Medical Association, 117, 662-675.
https://doi.org/10.1016/j.jfma.2018.02.007
[4] Leti, F. and DiStefano, J.K. (2017) Long Noncoding RNAs as Diagnostic and Therapeutic Targets in Type 2 Diabetes and Related Complications. Genes (Basel), 8, 207.
https://doi.org/10.3390/genes8080207
[5] Uesaka, M., Nishimura, O., Go, Y., Nakashima, K., Agata, K. and Imamura, T. (2014) Bidirectional Promoters Are the Major Source of Gene Activation-Associated Non-Coding RNAs in Mammals. BMC Genomics, 15, Article No. 35.
https://doi.org/10.1186/1471-2164-15-35
[6] Mirza, A.H., Kaur, S., Brorsson, C.A. and Pociot, F. (2014) Effects of GWAS-Associated Genetic Variants on LncRNAs within IBD and T1D Candidate Loci. PLoS ONE, 9, e105723.
https://doi.org/10.1371/journal.pone.0105723
[7] Ebadi, Z., Moradi, N., Kazemi Fard, T., et al. (2019) Captopril and Spironolactone Can Attenuate Diabetic Nephropathy in Wistar Rats by Targeting microRNA-192 and microRNA-29a/b/c. DNA and Cell Biology, 38, 1134-1142.
https://doi.org/10.1089/dna.2019.4732
[8] Yang, Y., Lv, X., Fan, Q., et al. (2019) Analysis of Circulating LncRNA Expression Profiles in Patients with Diabetes Mellitus and Diabetic Nephropathy: Differential Expression Profile of Circulating LncRNA. Clinical Nephrology, 92, 25-35.
https://doi.org/10.5414/CN109525
[9] Alvarez, M.L. and DiStefano, J.K. (2011) Functional Characterization of the Plasmacytoma Variant Translocation 1 Gene (PVT1) in Diabetic Nephropathy. PLoS ONE, 6, e18671.
https://doi.org/10.1371/journal.pone.0018671
[10] Qin, B. and Cao, X. (2021) LncRNA PVT1 Regulates High Glucose-Induced Viability, Oxidative Stress, Fibrosis, and Inflammation in Diabetic Nephropathy via miR-325-3p/Snail1 Axis. Diabetes, Metabolic Syndrome and Obesity, 14, 1741-1750.
https://doi.org/10.2147/DMSO.S303151
[11] Zhong, W., Zeng, J., Xue, J., Du, A. and Xu, Y. (2020) Knockdown of LncRNA PVT1 Alleviates High Glucose-Induced Proliferation and Fibrosis in Human Mesangial Cells by miR-23b-3p/WT1 Axis. Diabetology & Metabolic Syndrome, 12, 33.
https://doi.org/10.1186/s13098-020-00539-x
[12] Yu, D., Yang, X., Zhu, Y., Xu, F., Zhang, H. and Qiu, Z. (2021) Knockdown of Plasmacytoma Variant Translocation 1 (PVT1) Inhibits High Glucose-Induced Proliferation and Renal Fibrosis in HRMCs by Regulating miR-23b-3p/Early Growth Response Factor 1 (EGR1). Endocrine Journal, 68, 519-529.
https://doi.org/10.1507/endocrj.EJ20-0642
[13] Guan, Y., Kuo, W.L., Stilwell, J.L., et al. (2007) Amplification of PVT1 Contributes to the Pathophysiology of Ovarian and Breast Cancer. Clinical Cancer Research, 13, 5745-5755.
https://doi.org/10.1158/1078-0432.CCR-06-2882
[14] Liu, D.W., Zhang, J.H., Liu, F.X., et al. (2019) Silencing of Long Noncoding RNA PVT1 Inhibits Podocyte Damage and Apoptosis in Diabetic Nephropathy by Upregulating FOXA1. Experimental & Molecular Medicine, 51, 88.
https://doi.org/10.1038/s12276-019-0259-6
[15] Yan, B., Tao, Z.F., Li, X.M., Zhang, H., Yao, J. and Jiang, Q. (2014) Aberrant Expression of Long Noncoding RNAs in Early Diabetic Retinopathy. Investigative Ophthalmology & Visual Science, 55, 941-951.
https://doi.org/10.1167/iovs.13-13221
[16] Hu, M., Wang, R., Li, X., et al. (2017) LncRNA MALAT1 Is Dysregulated in Diabetic Nephropathy and Involved in High Glucose-Induced Podocyte Injury via Its Interplay with β-Catenin. Journal of Cellular and Molecular Medicine, 21, 2732-2747.
https://doi.org/10.1111/jcmm.13189
[17] Gong, Q. and Su, G. (2017) Roles of miRNAs and Long Noncoding RNAs in the Progression of Diabetic Retinopathy. Bioscience Reports, 37, BSR20171157.
https://doi.org/10.1042/BSR20171157
[18] Lelli, A., Nolan, K.A., Santambrogio, S., et al. (2015) Induction of Long Noncoding RNA MALAT1 in Hypoxic Mice. Hypoxia (Auckl.), 3, 45-52.
https://doi.org/10.2147/HP.S90555
[19] Li, X., Zeng, L., Cao, C., et al. (2017) Long Noncoding RNA MALAT1 Regulates Renal Tubular Epithelial Pyroptosis by Modulated miR-23c Targeting of ELAVL1 in Diabetic Nephropathy. Experimental Cell Research, 350, 327-335.
https://doi.org/10.1016/j.yexcr.2016.12.006
[20] Liu, C., Zhuo, H., Ye, M.Y., Huang, G.X., Fan, M. and Huang, X.Z. (2020) LncRNA MALAT1 Promoted High Glucose-Induced Pyroptosis of Renal Tubular Epithelial Cell by Sponging miR-30c Targeting for NLRP3. The Kaohsiung Journal of Medical Sciences, 36, 682-691.
https://doi.org/10.1002/kjm2.12226
[21] Feng, Y., Chen, S., Xu, J., et al. (2018) Dysregulation of LncRNAs GM5524 and GM15645 Involved in High-Glucose-Induced Podocyte Apoptosis and Autophagy in Diabetic Nephropathy. Molecular Medicine Reports, 18, 3657-3664.
https://doi.org/10.3892/mmr.2018.9412
[22] Qian, X., Tan, J., Liu, L., et al. (2018) MicroRNA-134-5p Promotes High Glucose-Induced Podocyte Apoptosis by Targeting bcl-2. The American Journal of Translational Research, 10, 989-997.
[23] Zhang, X., Song, S. and Luo, H. (2016) Regulation of Podocyte Lesions in Diabetic Nephropathy via miR-34a in the Notch Signaling Pathway. Medicine (Baltimore), 95, e5050.
https://doi.org/10.1097/MD.0000000000005050
[24] Yi, H., Peng, R., Zhang, L.Y., et al. (2017) LincRNA-Gm4419 Knockdown Ameliorates NF-κB/NLRP3 Inflammasome-Mediated Inflammation in Diabetic Nephropathy. Cell Death & Disease, 8, e2583.
https://doi.org/10.1038/cddis.2016.451
[25] Li, H., Wu, P., Sun, D., et al. (2020) LncRNA-Gm4419 Alleviates Renal Damage in Rats with Diabetic Nephropathy through NF-κB Pathway. Panminerva Medica.
https://doi.org/10.23736/S0031-0808.19.03844-8
[26] Kato, M., Wang, M., Chen, Z., et al. (2016) An Endoplasmic Reticulum Stress-Regulated LncRNA Hosting a microRNA Megacluster Induces Early Features of Diabetic Nephropathy. Nature Communications, 7, Article No. 12864.
https://doi.org/10.1038/ncomms12864
[27] Sun, S.F., Tang, P.M.K., Feng, M., et al. (2018) Novel LncRNA Erbb4-IR Promotes Diabetic Kidney Injury in db/db Mice by Targeting miR-29b. Diabetes, 67, 731-744.
https://doi.org/10.2337/db17-0816
[28] Feng, M., Tang, P.M., Huang, X.R., et al. (2018) TGF-β Mediates Renal Fibrosis via the Smad3-Erbb4-IR Long Noncoding RNA Axis. Molecular Therapy, 26, 148-161.
https://doi.org/10.1016/j.ymthe.2017.09.024
[29] Li, S.Y. and Susztak, K. (2016) The Long Noncoding RNA Tug1 Connects Metabolic Changes with Kidney Disease in Podocytes. Journal of Clinical Investigation, 126, 4072-4075.
https://doi.org/10.1172/JCI90828
[30] Long, J., Badal, S.S., Ye, Z., et al. (2016) Long Noncoding RNA Tug1 Regulates Mitochondrial Bioenergetics in Diabetic Nephropathy. Journal of Clinical Investigation, 126, 4205-4218.
https://doi.org/10.1172/JCI87927
[31] Duan, L.J., Ding, M., Hou, L.J., Cui, Y.T., Li, C.J. and Yu, D.M. (2017) Long Noncoding RNA TUG1 Alleviates Extracellular Matrix Accumulation via Mediating microRNA-377 Targeting of PPARγ in Diabetic Nephropathy. Biochemical and Biophysical Research Communications, 484, 598-604.
https://doi.org/10.1016/j.bbrc.2017.01.145
[32] Lei, X., Zhang, L., Li, Z. and Ren, J. (2018) Astragaloside IV/LncRNA-TUG1/TRAF5 Signaling Pathway Participates in Podocyte Apoptosis of Diabetic Nephropathy Rats. Drug Design, Development and Therapy, 12, 2785-2793.
https://doi.org/10.2147/DDDT.S166525
[33] Zang, X.J., Li, L., Du, X., Yang, B. and Mei, C.L. (2019) LncRNA TUG1 Inhibits the Proliferation and Fibrosis of Mesangial Cells in Diabetic Nephropathy via Inhibiting the PI3K/AKT Pathway. European Review for Medical and Pharmacological Sciences, 23, 7519-7525.
[34] Meng, D., Wu, L., Li, Z., et al. (2021) LncRNA TUG1 Ameliorates Diabetic Nephropathy via Inhibition of PU.1/RTN1 Signaling Pathway. Journal of Leukocyte Biology.
https://doi.org/10.1002/JLB.6A1020-699RRR
[35] Wang, S., Yi, P., Wang, N., Song, M., Li, W. and Zheng, Y. (2021) LncRNA TUG1/miR-29c-3p/SIRT1 Axis Regulates Endoplasmic Reticulum Stress-Mediated Renal Epithelial Cells Injury in Diabetic Nephropathy Model in Vitro. PLoS ONE, 16, e0252761.
https://doi.org/10.1371/journal.pone.0252761
[36] Zhou, L., Xu, D.Y., Sha, W.G., Shen, L., Lu, G.Y. and Yin, X. (2015) Long Non-Coding MIAT Mediates High Glucose-Induced Renal Tubular Epithelial Injury. Biochemical and Biophysical Research Communications, 468, 726-732.
https://doi.org/10.1016/j.bbrc.2015.11.023
[37] Xiao, L., Xu, X., Zhang, F., et al. (2017) The Mitochondria-Targeted Antioxidant MitoQ Ameliorated Tubular Injury Mediated by Mitophagy in Diabetic Kidney Disease via Nrf2/PINK1. Redox Biology, 11, 297-311.
https://doi.org/10.1016/j.redox.2016.12.022
[38] Ji, T.T., Qi, Y.H., Li, X.Y., et al. (2020) Loss of LncRNA MIAT Ameliorates Proliferation and Fibrosis of Diabetic nephropathy through Reducing E2F3 Expression. Journal of Cellular and Molecular Medicine, 24, 13314-13323.
https://doi.org/10.1111/jcmm.15949
[39] Dong, Q., Wang, Q., Yan, X., Wang, X., Li, Z. and Zhang, L. (2021) Long Noncoding RNA MIAT Inhibits the Progression of Diabetic Nephropathy and the Activation of NF-κB Pathway in High Glucose-Treated Renal Tubular Epithelial Cells by the miR-182-5p/GPRC5A Axis. Open Medicine (Wars), 16, 1336-1349.
https://doi.org/10.1515/med-2021-0328
[40] Zhang, M., Zhao, S., Xu, C., et al. (2020) Ablation of LncRNA MIAT Mitigates High Glucose-Stimulated Inflammation and Apoptosis of Podocyte via miR-130a-3p/TLR4 Signaling Axis. Biochemical and Biophysical Research Communications, 533, 429-436.
https://doi.org/10.1016/j.bbrc.2020.09.034
[41] Wang, M., Wang, S., Yao, D., Yan, Q. and Lu, W. (2016) A Novel Long Non-Coding RNA CYP4B1-PS1-001 Regulates Proliferation and Fibrosis in Diabetic Nephropathy. Molecular and Cellular Endocrinology, 426, 136-145.
https://doi.org/10.1016/j.mce.2016.02.020
[42] Wang, S., Chen, X., Wang, M., et al. (2018) Long Non-Coding RNA CYP4B1-PS1-001 Inhibits Proliferation and Fibrosis in Diabetic Nephropathy by Interacting with Nucleolin. Cellular Physiology and Biochemistry, 49, 2174-2187.
https://doi.org/10.1159/000493821
[43] Bai, X., Geng, J., Li, X., et al. (2018) Long Noncoding RNA LINC01619 Regulates MicroRNA-27a/Forkhead Box Protein O1 and Endoplasmic Reticulum Stress-Mediated Podocyte Injury in Diabetic Nephropathy. Antioxidants & Redox Signaling, 29, 355-376.
https://doi.org/10.1089/ars.2017.7278
[44] Zhou, L.J., Yang, D.W., Ou, L.N., Guo, X.R. and Wu, B.L. (2020) Circulating Expression Level of LncRNA Malat1 in Diabetic Kidney Disease Patients and Its Clinical Significance. Journal of Diabetes Research, 2020, Article ID: 4729019.
https://doi.org/10.1155/2020/4729019
[45] Petrica, L., Hogea, E., Gadalean, F., et al. (2021) Long Noncoding RNAs May Impact Podocytes and Proximal Tubule Function through Modulating miRNAs Expression in Early Diabetic Kidney Disease of Type 2 Diabetes Mellitus Patients. International Journal of Medical Sciences, 18, 2093-2101.
https://doi.org/10.7150/ijms.56551
[46] Wang, L., Su, N., Zhang, Y. and Wang, G. (2018) Clinical Significance of Serum LncRNA Cancer Susceptibility Candidate 2 (CASC2) for Chronic Renal Failure in Patients with Type 2 Diabetes. Medical Science Monitor, 24, 6079-6084.
https://doi.org/10.12659/MSM.909510
[47] Gao, J., Wang, W., Wang, F. and Guo, C. (2018) LncRNA-NR_033515 Promotes Proliferation, Fibrogenesis and Epithelial-to-Mesenchymal Transition by Targeting miR-743b-5p in Diabetic Nephropathy. Biomedicine & Pharmacotherapy, 106, 543-552.
https://doi.org/10.1016/j.biopha.2018.06.104
[48] Zhang, R., Li, J., Huang, T. and Wang, X. (2017) Danggui Buxue Tang Suppresses High Glucose-Induced Proliferation and Extracellular Matrix Accumulation of Mesangial Cells via Inhibiting LncRNA PVT1. American Journal of Translational Research, 9, 3732-3740.
[49] 汪佳佳. 小檗碱对糖尿病肾病足细胞保护作用及对长链非编码RNA的初步调节作用研究[D]: [硕士学位论文]. 合肥: 安徽医科大学, 2021.
[50] 周学锋. 糖肾方改善糖尿病肾脏纤维化和氧化应激损伤的机制研究[D]: [博士学位论文]. 北京: 北京中医药大学, 2021.
[51] 林晓, 李健春, 谭睿陟, 文丹, 谢席胜, 王丽. 黄芪三七合剂通过调控Arid2-IR/NF-κB信号轴改善糖尿病肾病小鼠肾炎症反应[J]. 中国实验动物学报, 2020, 28(3): 382-389.
[52] 杜华. 益肾颗粒调控LncRNA MALAT1/mTOR诱导足细胞自噬改善糖尿病肾病的机制研究[D]: [博士学位论文]. 北京: 中国中医科学院, 2020.
[53] Yi, Y., Zhao, Y., Huang, Y. and Wang, D. (2017) A Brief Review of RNA-Protein Interaction Database Resources. Noncoding RNA, 3, 6.
https://doi.org/10.3390/ncrna3010006