Ni-Mn-In-Ga条带的马氏体相变和磁热效应的研究
Martensitic Transformation and Magnetocaloric Effect of Ni-Mn-In-Ga Ribbon
DOI: 10.12677/APP.2022.122006, PDF, HTML, XML, 下载: 336  浏览: 543  科研立项经费支持
作者: 杨庆林*, 时阳光, 丁贺贺:南京航空航天大学,理学院,江苏 南京
关键词: Heusler合金马氏体相变磁热效应Heusler Alloy Martensitic Transformation Magnetocaloric Effect
摘要: 采用电弧熔炼和熔体快淬工艺,制备了Ni50Mn33In10Ga7 3~5 mm宽的金属条带。采用X-射线衍射,差示扫描量热分析和磁性测量对材料的相变和磁热效应进行了系统的分析。研究结果表明,该条带在室温下属于立方奥氏体相。随着温度的降低,样品首先经历了从顺磁性奥氏体到铁磁性奥氏体的二级相变,随后是铁磁性奥氏体到弱磁性马氏体的一阶转变。并且观察到马氏体结束温度随磁场的增加逐渐向低温偏移。此外,根据Maxwell方程,计算了样品在马氏体相变及奥氏体居里温度转变的磁熵变。在5T的磁场变化下,同时观察到−4.2 Jkg∙K的负熵变化和3.8 Jkg∙K的正熵变化。
Abstract: Ni50Mn33In10Ga7 3~5 mm wide metal ribbons were prepared by arc melting and rapid quenching. The phase transitions and magnetocaloric effects in the ribbons were investigated using X-ray diffraction, differential scanning calorimetry, and magnetic measurements. The result indicates that the ribbons exhibit a cubic austenite phase at room temperature. With temperature decreasing, the sample first went through a second-order transition from paramagnetic to ferromagnetic austenite, followed by a first-order transition from ferromagnetic austenite to weak-magnetic martensite. The ending temperature of martensite transition gradually decreased with magnetic fields increasing. In addition, the magnetic entropy changes in the martensite phase transition and the Curie transition of the austenite were both calculated according to Maxwell’s equation. At a field change of 5T, a negative entropy change of −4.2 Jkg∙K and a positive entropy change of 3.8 Jkg∙K were observed simultaneously.
文章引用:杨庆林, 时阳光, 丁贺贺. Ni-Mn-In-Ga条带的马氏体相变和磁热效应的研究[J]. 应用物理, 2022, 12(2): 47-53. https://doi.org/10.12677/APP.2022.122006

1. 引言

哈斯勒合金Ni-Mn-Ga是最早被发现的铁磁性形状记忆合金,因其具有双向形状记忆效应以及较大的磁场诱导感生应变,成为了人们关注的焦点 [1] [2]。为了实现低成本和接近室温条件下的马氏体转变,研究者们不断地研制出如Ni2MnX (X= In, Sn, Sb)等三元哈斯勒合金。早些年已有研究者从晶体结构以及磁学性质对此种类型的合金进行了研究 [3] [4] [5] [6],但并没有在这些正分配比的合金中发现马氏体相变。从目前报道来看,通过改变Ni-Mn-X( X =In, Sn, Sb)合金的组分,在降温过程中可以观察到具有一级结构相变特征的马氏体相变,有趣的是该系列合金在马氏体相中表现出一种磁性不均匀的状态,与Ni-Mn-Ga合金在马氏体相时只存在铁磁交换的不同。这种性质使此类合金在马氏体相及相变过程中表现出非常丰富的物理机理,如磁热效应 [7] [8] [9] [10] 和交换偏置 [11] 现象等。这些效应将在室温磁致冷、信息存储等方面有着广泛的应用前景,并且有望成为新一代的多功能材料。本文以此为目的,利用掺杂工艺 [12] 对Ni-Mn-In合金马氏体相变温度的影响,制备了马氏体相变温度接近室温的Ni50Mn33In10Ga7合金,并将合金甩成条状,以此实现冷淬效果。紧接着对样品进行了结构和磁性测量,在分析样品相变的基础上,对它在奥氏体相和马氏体相中的磁性进行了研究,并在马氏体相变温度附近获得了较大的磁熵变。

2. 实验方法

合金制备所用的原料是纯度为99.99%的Ni,Mn,In,Ga单质金属。采用GDJ500C型真空甩带机及纽扣电弧熔炼炉,在高纯氩气保护下先制备了名义组分为Ni50Mn33In10Ga7的多晶样品,后在甩带炉中将合金样品以10 m/s速度甩成约3~5 mm宽的条带状。为使成分均匀化以及原子高度有序排列,将条带样品密封在石英管中,放入马弗炉在800℃的温度下退火1小时,然后随炉冷却到室温。在室温下利用Cu Kα辐射对粉末样品进行X射线衍射(XRD)以观察晶体结构。通过差示扫描量热法(DSC)在200 K至450 K的温度范围内,以10 K/min的冷却和加热速率检测了所研究合金的正向和逆向马氏体转变。使用物理性质测量系统(PPMS, Quantum Design)分别测量样品磁化强度(M)与温度(T)之间的关系曲线,以及降温过程中样品在零场冷(ZFC)状态下的一系列等温磁化曲线。测量中所用的磁场范围为0~5 T。

3. 实验结果与讨论

图1是Ni50Mn33In10Ga7条带样品被磨成粉末状以后在室温下测得的XRD衍射图。从图中可以看出,在室温下样品呈现出立方奥氏体结构,没有发现其他峰的存在。样品只出现(220)、(400)、(422)峰,表明在晶格中Mn和In(Ga)原子之间的占位较为混乱,并不是一个有序的HeuslerL21结构。

Figure 1. XRD diffraction pattern of Ni50Mn33In10Ga7 powder at room temperature

图1. 室温下Ni50Mn33In10Ga7粉末XRD衍射图

图2显示了Ni50Mn33In10Ga7的DSC冷却和加热曲线。在200 K至450 K的温度范围内,以10 K/min的冷却和加热速率观察到分别对应于马氏体和反向转变的大放热和吸热峰。开始和结束转变温度分别确定为264 K (Ms)、247 K (Mf)、260 K (As)和277 K (Af)。在较高温度下,分别在冷却和加热时检测到小吸热和放热峰。它们对应于奥氏体相的居里温度TC

Figure 2. Heating and cooling curves of Ni50Mn33In10Ga7 ribbons by differential scanning calorimetry (DSC)

图2. Ni50Mn33In10Ga7条带样品的DSC升降温曲线

图3为70至380 K温度范围内200 Oe磁场中磁化强度对加热和冷却的温度依赖性曲线。在加热过程中,马氏体相在200 K以下是亚铁磁性的。随着温度升高在200~280K之间磁矩突然跳跃,该现象是发生马氏体到奥氏体的转变行为。在268 K附近达到奥氏体的铁磁态,随后温度升高至室温急剧转变为顺磁态的奥氏体,在这过程中包含了奥氏体的居里温度。该观察结果与从DSC获得的观察结果相一致。此外,冷却和加热过程中,在265 K附近观察到约10 K的热滞后。MT处的滞后与某些FSMA中的值相当,例如Ni51.5Mn22.7Ga25.8和 Ni-Co-Mn-In [13]。

Figure 3. M-T curves of Ni50Mn33In10Ga7 ribbons under 200 Oe magnetic field

图3. Ni50Mn33In10Ga7条带样品在200 Oe下的M-T曲线

Figure 4. M-T curves of Ni50Mn33In10Ga7 ribbons under different magnetic fields

图4. Ni50Mn33In10Ga7条带样品不同磁场下磁矩随温度的变化曲线

Ni50Mn33In10Ga7条带样品在不同磁场下磁矩随温度的变化曲线如图4所示。很明显,随着温度降低在270 K附近,即相变温度,磁矩达到一个峰值,最大值约50 emu/g,并且该峰在所有磁场条件下对应的温度点一致。当温度降至250 K附近,即马氏体相变结束温度,磁矩随温度出现最低点,该低点随着磁场的增加向低温偏移10 K左右,趋势如橙色箭头所示。

图5给出Ni50Mn33In10Ga7条带样品在50 kOe磁场不同温度下的等温磁化曲线。为了确保样品处在完全马氏体状态,测量前,样品零场冷却到特定温度,在该温度下,马氏体相变已经完成。从图中可以看出,从奥氏体顺磁态的328 K到奥氏体铁磁态的270 K附近,磁矩随温度的降低逐渐增大,最大约50 emu/g,在此区间内发生了顺磁奥氏体到铁磁奥氏体的低滞后、宽温域等优势 [14] [15] [16] [17] 的二阶相变。当温度低于奥氏体铁磁态,磁矩随温度降低,在250 K附近达到最低点为奥氏体转变为马氏体的相变结束点,后随温度降低发生微小上升变为马氏体的亚铁磁态。该现象与MT结果以及图4趋势一致。

Figure 5. Isothermal magnetization curves of Ni50Mn33In10Ga7 ribbons at 328~195K

图5. Ni50Mn33In10Ga7条带样品在328~195K的等温磁化曲线

根据MT图中反应的马氏体相变导致的磁化强度的跃变,推测该合金具有较大磁熵变,Ni50Mn33In10Ga7的磁熵变(ΔSM)作为温度和磁场的函数是使用麦克斯韦关系从等温磁化曲线计算的:

Δ S M ( T , Δ H ) = 0 H ( M ( T , H ) T ) H d H (1)

在本文中我们主要利用分离磁场下温度与磁化强度的关系曲线计算磁熵变,所以ΔSM可以近似由以下方程得到 [18]:

Δ S M = i 1 T i + 1 + T i ( M i M i + 1 ) Δ H i (2)

熵值(ΔSM)在1~5 T的不同磁场中的温度依赖性计算结果如图6所示。可以清晰看出随着磁场的增加熵值在变大,5T下最大和最小熵值分别为3.8和−4.2 J/Kg K。经过甩带冷淬工艺处理的Ni50Mn33In10Ga7合金在马氏体相变约270 K附近的5T磁场变化下显示出3.8和−4.2 J/kg K的较大正负ΔSM。相变温度可以很容易地通过改变成分 [19] 或替代其他元素 [20] 发生变化以影响不同的熵值。此外,3d杂化金属的Ni-Mn-In类合金相对便宜。所有特征表明Ni-Mn-In作为磁性制冷剂的巨大潜力。

Figure 6. Temperature-dependent curves of the entropy change for Ni50Mn33 In10Ga7 ribbons in different magnetic fields

图6. Ni50Mn33In10Ga7条带样品熵值随温度的变化曲线

4. 结论

本文利用熔体快淬技术制备了四元哈斯勒合金Ni50Mn33In10Ga7条带样品并对其结构和磁性进行表征,研究了该Heusler合金中的磁热效应(MCE)。该合金在270 K左右发生马氏体转变。在5T磁场变化下显示出3.8和−4.2 J/kg∙K的较大正负ΔSM。较大磁熵变和低廉的价格不仅使Ni-Mn-In-Ga合金成为磁性制冷剂的潜在候选者,也为Ni-Mn-In-Ga合金作为一种多功能材料的应用提供了重要的实验依据。

基金项目

本项目受到了南京航空航天大学本科教学建设项目(20210849A)资助。

参考文献

参考文献

[1] Webster, P.J., Ziebeck, K.R.A., Town, S.L. and Peak, M.S. (1984) Magnetic Order and Phase Transformation in Ni2MnGa. Philosophical Magazine B, 49, 295-310.
https://doi.org/10.1080/13642817408246515
[2] Ullakko, K., Huang, J.K., Kantner, C., O’Handley, R.C. and Kokorin, V.V. (1996) Large Magnetic-Field-Induced Strains in Ni2MnGa Single Crystals. Applied Physics Letters, 69, 1966-1968.
[3] Campbell, C.C.M. (1975) Hyperfine Field Systematics in Heusler Alloys. Journal of Physics F: Metal Physics, 5, Article No. 1931.
https://doi.org/10.1088/0305-4608/5/10/016
[4] Murakami, Y., Watanabe, Y., Kanaizuka, T. and Kachi, S. (1981) Magnetic Properties and Phase Change of Ni3-yMnySn Alloy. Transactions of the Japan Institute of Metals, 22, 551-557.
[5] Buschow, K.H.J., Van Engen, P.G. and Jongebreur, R. (1983) Magneto-Optical Properties of Metallic Ferromagnetic Materials. Journal of Magnetism and Magnetic Materials, 38, 1-22.
https://doi.org/10.1016/0304-8853(83)90097-5
[6] Kanomata, T., Shiralawa, K. and Kaneko, T. (1987) Effect of Hydrostatic Pressure on the Curie Temperature of the Heusler Alloys Ni2MnZ(Z=Al, Ga, In, Sn and Sb). Journal of Magnetism and Magnetic Materials, 65, 76-82.
https://doi.org/10.1016/0304-8853(87)90312-X
[7] Recarte, V., Pérez-Landazábal, J.I., Sánchez-Alarcos, V., Zablotskii, V., Cesari, E. and Kustov, S. (2012) Entropy Change Linked to the Martensitic Transformation in Metamagnetic Shape Memory Alloys. Acta Materialia, 60, 3168-3175.
https://doi.org/10.1016/j.actamat.2012.02.022
[8] Huang, Y.J., Hu, Q.D., Bruno, N.M., Chen, J.H., Karaman, I., Ross, J.H. and Lia, J.G. (2015) Giant Elastocaloric Effect in Directionally Solidified Ni-Mn-In Magnetic Shape Memory Alloy. Acta Materialia, 105, 42-45.
[9] Barandiaran, J.M., Chernenko, V.A., Cesari, E., Salas, D., Lazpita, P., Gutierrez, J. and Orue, I. (2013) Magnetic Influence on the Martensitic Transformation Entropy in Ni-Mn-In Metamagnetic Alloy. Applied Physics Letters, 102, Article ID: 071904.
https://doi.org/10.1063/1.4793412
[10] Han, Z.D., Wang, D.H., Zhang, C.L., Tang, S.L., Gu, B.X. and Du, Y.W. (2006) Large Magnetic Entropy Changes in the Ni45.4 Mn41.5 In13.1 Ferromagnetic Shape Memory Alloy. Applied Physics Letters, 89, Article ID: 182507.
[11] Zhe, L., Jing, C., Chen, J.P., Yuan, S.J., Cao, S.X. and Zhang, J.C. (2007) Observation of Exchange Bias in the Martensitic State of Ni50Mn36Sn14 Heusler Alloy. Applied Physics Letters, 91, Article ID: 112505.
https://doi.org/10.1063/1.2784958
[12] Yu, S.Y., Gu, A.J., Kang, S.S., Hu, S.J., Li, Z.C., Ye, S.T., Li, H.H., Sun, J.J. and Hao, R.R. (2016) Large Reversible Magnetostrain in Polycrystalline Ni50Mn33In17-xGax. Journal of Alloys and Compounds, 681, 1-5.
https://doi.org/10.1016/j.jallcom.2016.04.249
[13] Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Okamoto, S., Kitakami, O., Oikawa, K., Fujita, A., Kanomota, T. and Ishida, K. (2006) Magnetic-Field-Induced Shape Recovery by Reverse Phase Transformation. Nature, 439, 957-960.
https://doi.org/10.1038/nature04493
[14] 刘懿德, 时阳光. 亚铁磁 Er(Co1−xFex)2的宽温域磁热效应[J]. 应用物理, 2019, 9(12): 511-517.
[15] Zheng, T.F., Shi, Y.G., Hu, C.C., Fan, J.Y., Shi, D.N., Tang, S.L. and Du, Y.W. (2012) Magnetocaloric Effect and Transition Order of Mn5Ge3 Ribbons. Journal of Magnetism and Magnetic Materials, 324, 4102-4105.
https://doi.org/10.1016/j.jmmm.2012.07.031
[16] Zheng, W.G., Cui, Y., Chen, F.H., Shi, Y.G. and Shi, D.N. (2018) Magnetocaloric Effect in Nd(Co0.8Fe0.2)2 Laves Compound with Wide Operating Temperature. Journal of Magnetism and Magnetic Materials, 460, 137-140.
https://doi.org/10.1016/j.jmmm.2018.03.059
[17] 邱俊婷, 戴键, 时阳光. Dy(Co0.5Ni0.5)2合金磁熵变的研究[J]. 应用物理, 2021, 11(3): 166-171.
[18] Gschneidner, K.A. and Pecharsky, V.K. (2000) Magnetocaloric Materials. Annual Review of Materials Science, 30, 387-429.
https://doi.org/10.1146/annurev.matsci.30.1.387
[19] Oikawa, K., Ito, W., Imano, Y., Sutou, Y., Kainuma, R., Ishida, K., Okamoto, S., Kitakami, O. and Kanomata, T. (2006) Effect of Magnetic Field on Martensitic Transition of Ni46Mn41In13 Heusler Alloy. Applied Physics Letters, 88, Article ID: 122507.
https://doi.org/10.1063/1.2187414
[20] Kainuma, R., Imano, Y., Ito, W., Morito, H., Sutou, Y., Oikawa, K., Fujita, A., Ishida, K., Okamoto, S., Kitakami, O. and Kanomata, T. (2006) Metamagnetic Shape Memory Effect in a Heusler-Type Ni43Co7Mn39Sn11 Polycrystalline Alloy. Applied Physics Letters, 88, Article ID: 192513.
https://doi.org/10.1063/1.2203211