|
[1]
|
Pourhanifeh, M.H., Abbaszadeh-Goudarzi, K., Goodarzi, M., et al. (2019) Resveratrol: A New Potential Therapeutic Agent for Melanoma? Current Medicinal Chemistry, 19, 1878-1886.
|
|
[2]
|
Czarnecki, D. (2014) The Incidence of Melanoma Is Increasing in the Susceptible Young Australian Population. Acta Dermato-Venereologica, 94, 539-541.
|
|
[3]
|
Wadt, K.A., Drzewiecki, K.T. and Gerdes, A.M. (2015) High Accuracy of Family History of Melanoma in Danish Melanoma Cases. Familial Cancer, 14, 609-613. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Xiao, Q., Ying, J., Qiao, Z., et al. (2020) Exogenous Hydrogen Sulfide Inhibits Human Melanoma Cell Development via Suppression of the PI3K/AKT/mTOR Pathway. Journal of Dermatological Science, 98, 26-34.
|
|
[5]
|
Stigall, L.E., Brodland, D.G. and Zitelli, J.A. (2016) The Use of Mohs Micrographic Surgery (MMS) for Melanoma in Situ (MIS) of the Trunk and Proximal Extremities. Journal of the American Academy of Dermatology, 75, 1015-1021.
|
|
[6]
|
Raigani, S., Cohen, S. and Boland, G.M. (2017) The Role of Surgery for Melanoma in an Era of Effective Systemic Therapy. Current Oncology Reports, 19, Article No. 17. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
中国医疗保健国际交流促进会华夏皮肤影像人工智能协作组, 中国医疗保健国际交流促进会皮肤科分会皮肤影像学组, 中国中西医结合学会皮肤性病专业委员会皮肤影像学组, 等. 中国皮肤恶性黑素瘤皮肤镜特征专家共识[J]. 中华皮肤科杂志, 2020, 53(6): 401-408. [Google Scholar] [CrossRef]
|
|
[8]
|
Koshenkov, V.P., Broucek, J. and Kaufman, H.L. (2016) Surgical Management of Melanoma. In: Kaufman, H. and Mehnert, J., Eds., Melanoma, Springer, Cham, 149-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bodenham, D.C. (1968) A Study of 650 Observed Malignant Melanomas in the South-West Region. Annals of the Royal College of Surgeons of England, 43, 218-239.
|
|
[10]
|
Ascierto, P.A. (2015) Immunotherapies and Novel Combinations: The Focus of Advances in the Treatment of Melanoma. Cancer Immunology, Immunotherapy, 64, 271-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kim, Y., Gil, J., Pla, I., et al. (2020) Protein Expression in Metastatic Melanoma and the Link to Disease Presentation in a Range of Tumor Phenotypes. Cancers, 12, 767-789. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Grahovac, J., Srdić-Rajić, T., Francisco Santibañez, J., et al. (2019) Telmisartan Induces Melanoma Cell Apoptosis and Synergizes with Vemurafenib in Vitro by Altering Cell Bioenergetics. Cancer Biology & Medicine, 16, 247-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Madorsky Rowdo, F.P., Barón, A., Gallagher, S.J., et al. (2020) Epigenetic Inhibitors Eliminate Senescent Melanoma BRAFV600E Cells that Survive Long-Term BRAF Inhibition. International Journal of Oncology, 56, 1429-1441. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ide, M., Koba, S., Sueoka-Aragane, N., et al. (2017) Mutation Profile of B-Raf Gene Analyzed by Fully Automated System and Clinical Features in Japanese Melanoma Patients. Pathology and Oncology Research, 23, 181-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Robert, C., Karaszewska, B., Schachter, J., et al. (2015) Improved Overall Survival in Melanoma with Combined Dabrafenib and Trametinib. The New England Journal of Medicine, 372, 30-39. [Google Scholar] [CrossRef]
|
|
[16]
|
孙晓冉, 孙剑经, 张林西. 肿瘤多药耐药机制的研究进展[J]. 现代肿瘤医学, 2017, 25(1): 164-166. [Google Scholar] [CrossRef]
|
|
[17]
|
Martin, S., Dudek-Perić, A.M., Maes, H., et al. (2015) Concurrent MEK and Autophagy Inhibition Is Required to Restore Cell Death Associated Danger-Signalling in Vemurafenib-Resistant Melanoma Cells. Biochemical Pharmacology, 93, 290-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Adhikari, M., Adhikari, B., Ghimire, B., et al. (2020) Cold Atmospheric Plasma and Silymarin Nanoemulsion Activate Autophagy in Human Melanoma Cells. International Journal of Molecular Sciences, 21, 1939-1955. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Shang, Y.Y., Yu, N., Xia, L., et al. (2020) Augmentation of Danusertib’s Anticancer Activity against Melanoma by Blockage of Autophagy. Drug Delivery and Translational Research, 10, 136-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wang, L., Guo, W., Ma, J., et al. (2018) Aberrant SIRT6 Expression Contributes to Melanoma Growth: Role of the Autophagy Paradox and IGF-AKT Signaling. Autophagy, 14, 518-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Barceló, C., Sisó, P., Maiques, O., et al. (2020) T-Type Calcium Channels as Potential Therapeutic Targets in Vemurafenib-Resistant BRAFV600E Melanoma. Journal of Investigative Dermatology, 140, 1253-1265. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
崔丹蕊, 刘波, 刘伟. 细胞自噬与肿瘤发生关系的研究进展[J]. 中国科学(生命科学), 2015, 45(6): 593-603. [Google Scholar] [CrossRef]
|
|
[23]
|
Perera, R.M., Di Malta, C. and Ballabio, A. (2019) MiT/TFE Family of Transcription Factors, Lysosomes, and Cancer. Annual Review of Cancer Biology, 3, 203-222. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
许莲, 唐芬, 李玄, 等. mTOR信号通路与自噬在肿瘤中的研究进展[J]. 现代生物医学进展, 2016, 16(7): 1372-1374. [Google Scholar] [CrossRef]
|
|
[25]
|
Han, W., Pan, H., Chen, Y., et al. (2010) EGFR Tyrosine Kinase Inhibitors Activate Autophagy as a Cytoprotecteve Response in Human Lung Cancer Cells. Cancer Cells, 6, e18691. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yang, S., Xiao, X., Meng, X., et al. (2011) A Mechanism for Synergy with Combined mTOR and PI3 Kinase Inhibitors. PLoS ONE, 6, e26343. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Herman-Antosiewicz, A., Johnson, D.E. and Singh, S.V. (2006) Sulforaphane Causes Autophagy to Inhibit Release of Cytochrome C and Apoptosis in Human Prostate Cancer Cells. Cancer Research, 66, 5828-5835. [Google Scholar] [CrossRef]
|
|
[28]
|
Valli, F., García Vior, M.C., Roguin, L.P., et al. (2020) Crosstalk between Oxidative Stress-Induced Apoptotic and Autophagic Signaling Pathways in Zn(II) Phthalocyanine Photodynamic Therapy of Melanoma. Free Radical Biology and Medicine, 152, 743-754. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bao, Y., Ding, Z., Zhao, P., et al. (2020) Autophagy Inhibition Potentiates the Anti-EMT Effects of Alteronol through TGF-β/Smad3 Signaling in Melanoma Cells. Cell Death & Disease, 11, 223-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Antunes, F., Pereira, G.J.S., Saito, R.F., et al. (2020) Effective Synergy of Sorafenib and Nutrient Shortage in Inducing Melanoma Cell Death through Energy Stress. Cells, 9, 640-657. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yu, Y., Xiang, N., Lin, M., et al. (2019) miR-26a Sensitizes Melanoma Cells to Dabrafenib via Targeting HMGB1-Dependent Autophagy Pathways. Drug Design, Development and Therapy, 13, 3717-3726. [Google Scholar] [CrossRef]
|
|
[32]
|
Nakamura, Y. and Fujisawa, Y. (2018) Diagnosis and Management of Acral Lentiginous Melanoma. Current Treatment Options in Oncology, 19, Article No. 42. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Guo, B., Zhang, Q., Wang, H., Chang, P. and Tao, K. (2018) KCNQ1OT1 Promotes Melanoma Growth and Metastasis. Aging, 10, 632-644. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Lugović-Mihić, L., Ćesić, D., Vuković, P., Novak Bilić, G., Šitum, M. and Špoljar, S. (2019) Melanoma Development: Current Knowledge on Melanoma Pathogenesis. Acta Dermatovenerologica Croatica, 27, 163-168.
|