|
[1]
|
林胜楠. 磷石膏中硫资源利用的研究与应用现状[J]. 无机盐工业, 2011, 43(2): 10-13.
|
|
[2]
|
张天毅, 胡宏, 何兵兵, 等. 磷石膏制硫酸铵与副产碳酸钙工艺研究[J]. 化工矿物与加工, 2017, 46(2): 31-34.
|
|
[3]
|
包炜军, 赵红涛, 李会泉, 等. 磷石膏加压碳酸化转化过程中平衡转化率分析[J]. 化工学报, 2017, 68(3): 1155-1162.
|
|
[4]
|
刘忠华, 唐建华, 沈思, 等. 磷石膏两步法制备硫酸钾工艺研究[J]. 化学工程师, 2015, 29(2): 60-62.
|
|
[5]
|
徐威, 董兵海, 宋成杰, 等. 磷石膏的改性及其在新型建材中的应用[J]. 粉煤灰综合利用, 2016(2): 49-53.
|
|
[6]
|
Wheelock, T.D. and Boylan, D.R. (1960) Reductive Decomposition of Gypsum by Carbon Monoxide. Industrial and Engineering Chemistry, 52, 215-218. [Google Scholar] [CrossRef]
|
|
[7]
|
马林转. 循环流化床分解磷石膏及分解气体资源化研究[D]: [博士学位论文]. 昆明: 昆明理工大学, 2006.
|
|
[8]
|
周松林, 胡道和, 肖国先. 磷石膏分解反应机理及影响因素浅析[J]. 新世纪水泥导报, 1998, 4(5): 16-18.
|
|
[9]
|
Oh, J.S. and Wheelock, T.D. (1990) Reductive Decomposition of Calcium Sulfate with Carbon Monoxide: Reaction Mechanism. Industrial & Engineering Chemistry Research, 29, 544-550. [Google Scholar] [CrossRef]
|
|
[10]
|
郑绍聪, 宁平, 马丽萍, 等. 不同气氛下磷石膏热分解的反应特性[J]. 武汉理工大学学报, 2010, 34(3): 580-583.
|
|
[11]
|
侯永胜, 马林转, 张洁. 高硫煤还原分解磷石膏试验研究[J]. 昆明理工大学学报, 2010, 35(3): 100-103.
|
|
[12]
|
方祖国, 宁平, 杨月红, 等. 复合还原剂还原分解磷石膏的影响因素[J]. 无机盐工业, 2009, 41(1): 48-50.
|
|
[13]
|
Gruncharov, I., Pelovski, Y., Bechev, G., et al. (1988) Effects of Some Admixtures on the Decomposition of Calcium Sulphate. Journal of Thermal Analysis, 33, 597-602. [Google Scholar] [CrossRef]
|
|
[14]
|
Mihara, N., Kuchar, D. and Kojima, Y. (2007) Reductive Decomposition of Waste Gypsum with SiO2, Al2O3, and Fe2O3 Additives. Journal of Material Cycles and Waste Management, 9, 21-26. [Google Scholar] [CrossRef]
|
|
[15]
|
王成波, 张志业, 陈欣. 磷石膏生产硫酸联产水泥用新型还原剂的实验研究[J]. 磷肥与复肥, 2007, 22(1): 21-23.
|
|
[16]
|
陆线彩, 陆建军, 朱长见, 等. 微生物矿化成因的铁硫酸盐矿物表面特征初探[J]. 高校地质学报, 2005, 11(2): 194-198.
|
|
[17]
|
Ehrlich, H.L. (1998) Geomicrobiology: Its Significance for Geology. Earth-Science Reviews, 45, 45-60. [Google Scholar] [CrossRef]
|
|
[18]
|
Masurat, P., Eriksson, S., Pedersen, K., et al. (2010) Evi-dence of Indigenous Sulphate-Reducing Bacteria in Commercial Wyoming Bentonite MX-80. Applied Clay Science, 47, 51-57. [Google Scholar] [CrossRef]
|
|
[19]
|
Portillo, M.C. and Gonzalez, J.M. (2009) Sulfate-Reducing Bacteria Are Common Members of Bacterial Communities in Altamira Cave (Spain). Science of the Total Environment, 407, 1114-1122. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Peckmann, J., Paul, J. and Thiel, V. (1999) Bacterially Me-diated Formation of Diagenetic Aragonite and Native Sulfur in Zechstein Carbonates (Upper Permian, Central Germany). Sedimentary Geology, 126, 205-222. [Google Scholar] [CrossRef]
|
|
[21]
|
Hammes, F. and Verstraete, W. (2002) Key Roles of pH and Calcium Metabolism in Microbial Carbonate Precipitation. Reviews in Environmental Science and Biotechnology, 1, 3-7. [Google Scholar] [CrossRef]
|
|
[22]
|
Sand, W. and Gehrke, T. (2006) Extracellular Polymeric Substances Mediate Bioleaching/Biocorrosion via Interfacial Processes Involving Iron(III) Ions and Acidophilic Bacteria. Research in Microbiology, 157, 49-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Harneit, K., Göksel, A., Kock, D., et al. (2006) Adhesion to Metal Sulfide Surfaces by Cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy, 83, 245-254. [Google Scholar] [CrossRef]
|
|
[24]
|
Upadhyaya, G., Clancy, T.M., Brown, J., et al. (2012) Opti-mization of Arsenic Removal Water Treatment System through Characterization of Terminal Electron Accepting Pro-cesses. Environmental Science & Technology, 46, 11702-11709. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Venter, J.C., et al. (2004) Environmental Genome Shotgun Sequencing of the Sargasso Sea. Science, 304, 66-74. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Selkov, E., Overbeek, R., et al. (2000) Functional Analysis of Gapped Microbial Genomes: Amino Acid Metabolism of Thiobacillus ferrooxidans. Proceedings of the National Academy of Sciences of the United States of America, 97, 3509-3514. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Morgan, J.L., Darling, A.E. and Eisen, J.A. (2010) Metagenomic Se-quencing of an In Vitro-Simulated Microbial Community. PLoS ONE, 5, e10209. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Tyson, G.W., Chapman, J., Hugenholtz, P., et al. (2004) Community Structure and Metabolism through Reconstruction of Microbial Genomes from the Environment. Nature, 428, 37-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Qin, J.J., Li, R.Q., Raes, J., et al. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 464, 59-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhao, X.Q., Wang, R.C., Lu, X.C., et al. (2012) Tolerance and Biosorption of Heavy Metals by Cupriavidus metallidurans strain XXKD-1 Isolated from a Subsurface Laneway in the Qixiashan Pb-Zn Sulfide Minery in Eastern China. Geomicrobiology Journal, 29, 274-286. [Google Scholar] [CrossRef]
|