|
[1]
|
中国社会科学院经济研究所课题组, 黄群慧. “十四五”时期我国所有制结构的变化趋势及优化政策研究[J]. 经济学动态, 2020(3): 3-21.
|
|
[2]
|
Abou-Elanwar, A.M., Shirke, Y.M., Yoo, C.H., et al. (2021) Water Vapor Dehumidification Using Thin-Film Nanocomposite Membranes by the in Situ Formation of Ultrasmall Size Iron-Chelated Nanoparticles. Applied Surface Science, 542, Article ID: 148562. [Google Scholar] [CrossRef]
|
|
[3]
|
包文运, 马利君, 赵晓丹, 等. 膜法除湿技术研究进展及应用现状[J]. 应用化工, 2019, 48(6): 1428-1432.
|
|
[4]
|
闫伟. 电场定向碳纳米管-PEBA杂化膜的制备及气体脱湿性能研究[D]: [硕士学位论文]. 天津: 天津工业大学, 2019.
|
|
[5]
|
李亚莎, 胡豁然, 夏宇, 等. 纳米MgO掺杂聚乙烯微观特性的分子动力学模拟研究[J]. 原子与分子物理学报, 2022, 39(2): 52-60.
|
|
[6]
|
Soto Puente, J.A., Fatyeyeva, K., Chappey, C., et al. (2017) Layered Poly(Ethylene-Co-Vinyl Acetate)/Poly (Ethylene-Co-Vinyl Alcohol) Membranes with Enhanced Water Separation Selectivity and Performance. ACS Applied Materials & Interfaces, 9, 6411-6423. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Akhtar, F.H., Kumar, M., Villalobos, L.F., et al. (2017) Polybenzimidazole-Based Mixed Membranes with Exceptional High Water Vapor Permeability and Selectivity. Journal of Materials Chemistry A, 5, 21807-21819. [Google Scholar] [CrossRef]
|
|
[8]
|
江艳, 沈怡, 武培怡. ATR-FTIR光谱技术在聚合物膜研究中的应用[J]. 化学进展, 2007, 19(1): 173-185.
|
|
[9]
|
Schult, K.A. and Paul, D.R. (2015) Water Sorption and Transport in Blends of Poly(Vinyl Pyrrolidone) and Polysulfone. Journal of Polymer Science Part B: Polymer Physics, 35, 655-674. [Google Scholar] [CrossRef]
|
|
[10]
|
Chen, G.Q., Kanehashi, S., Doherty, C.M., et al. (2015) Water Vapor Permeation through Cellulose Acetate Membranes and Its Impact upon Membrane Separation Performance for Natural Gas Purification. Journal of Membrane Science, 487, 249-255. [Google Scholar] [CrossRef]
|
|
[11]
|
王金渠, 李铮. A型沸石膜的制备及其在气体脱湿中的应用[J]. 膜科学与技术, 1998, 18(2): 56-60.
|
|
[12]
|
赵素英, 郑辉东, 王良恩. 聚砜中空纤维膜乙炔脱湿的研究[J]. 福州大学学报(自然科学版), 2006, 34(1): 141-144.
|
|
[13]
|
Suzuki, S., Shoji, N. and Tsuru, T. (2021) Performance Evaluation of Water Vapor Permeation through Perfluorosulfonic Acid Capillary Membranes. Separation and Purification Technology, 266, Article ID: 118508. [Google Scholar] [CrossRef]
|
|
[14]
|
Gugliuzza, A. and Drioli, E. (2013) New Performance of a Modified Poly(Amide-12-b-Ethyleneoxide). Polymer, 44, 2149-2157. [Google Scholar] [CrossRef]
|
|
[15]
|
Potreck, J., Nijmeijer, K., Kosinski, T., et al. (2009) Mixed Water Vapor/Gas Transport through the Rubbery Polymer PEBAX 1074. Journal of Membrane Science, 338, 11-16. [Google Scholar] [CrossRef]
|
|
[16]
|
Azher, H., Scholes, C., Kanehashi, S., et al. (2016) The Effect of Temperature on the Permeation Properties of Sulphonated Poly (Ether Ether) Ketone in Wet Flue Gas Streams. Journal of Membrane Science, 519, 55-63. [Google Scholar] [CrossRef]
|
|
[17]
|
Narducci, R., Di Vona, M.L., et al. (2018) Stabilized SPEEK Membranes with a High Degree of Sulfonation for Enthalpy Heat Exchangers. Coatings, 8, Article No. 190. [Google Scholar] [CrossRef]
|
|
[18]
|
Liu, W., Zhang, J., Canfield, N., et al. (2011) Preparation of Robust, Thin Zeolite Membrane Sheet for Molecular Separation. Industrial & Engineering Chemistry Research, 50, 11677-11689. [Google Scholar] [CrossRef]
|
|
[19]
|
Shin, Y., Liu, W., Schwenzer, B., et al. (2016) Graphene Oxide Membranes with High Permeability and Selectivity for Dehumidification of Air. Carbon, 106, 164-170. [Google Scholar] [CrossRef]
|
|
[20]
|
Lu, X., Geng, Y., Wu, G., et al. (2021) Preparation of Metal Organic Frameworks/Graphene Oxide Composite Membranes for Water Capturing from Air. Materials Today Communications, 26, Article ID: 102073. [Google Scholar] [CrossRef]
|
|
[21]
|
Ingole, P.G., Baig, M.I., et al. (2016) Synthesis and Characterization of Polyamide/Polyester Thin-Film Nanocomposite Membranes Achieved by Functionalized TiO2 Nanoparticles for Water Vapor Separation. Journal of Materials Chemistry A, 4, 5592-5604.
|
|
[22]
|
Akhtar, F.H., Kumar, M., Peinemann, K.V., et al. (2017) Pebax®1657/Graphene Oxide Composite Membranes for Improved Water Vapor Separation. Journal of Membrane Science, 525, 187-194. [Google Scholar] [CrossRef]
|
|
[23]
|
Friess, K., Jansen, J.C., Bazzarelli, F., et al. (2012) High Ionic Liquid Content Polymeric Gel Membranes: Correlation of Membrane Structure with Gas and Vapour Transport Properties. Journal of Membrane Science, 415-416, 801-809. [Google Scholar] [CrossRef]
|
|
[24]
|
Kudasheva, A., Kamiya, T., Hirota, Y., et al. (2016) Dehumidi-fication of Air Using Liquid Membranes with Ionic Liquids. Journal of Membrane Science, 499, 379-385. [Google Scholar] [CrossRef]
|
|
[25]
|
Scovazzo, P. (2010) Testing and Evaluation of Room Temperature Ionic Liquid (RTIL) Membranes for Gas Dehumidification. Journal of Membrane Science, 355, 7-17. [Google Scholar] [CrossRef]
|
|
[26]
|
Bui, D.T., Vivekh, P., Islam, M.R., et al. (2022) Studying the Characteristics and Energy Performance of a Composite Hollow Membrane for Air Dehumidification. Applied Energy, 306, Article ID: 118161. [Google Scholar] [CrossRef]
|
|
[27]
|
任春波, 沈兆欣, 吴庆元, 等. 全氟磺酸树脂中空纤维膜压缩空气除湿性能研究[J]. 宇航计测技术, 2018, 38(6): 68-72.
|
|
[28]
|
李国民, 冯春生, 李俊凤, 等. 共混改性聚酰亚胺中空纤维膜的压缩空气除湿性能研究[J]. 功能高分子学报, 2005, 18(2): 194-197.
|
|
[29]
|
Zaw, K., Safizadeh, M.R., Luther, J., et al. (2013) Analysis of a Membrane Based Air-Dehumidification Unit for Air Conditioning in Tropi-cal Climates. Applied Thermal Engineering, 59, 370-379. [Google Scholar] [CrossRef]
|
|
[30]
|
Bui, T.D., Chen, F., Nida, A., et al. (2015) Experimental and Modeling Analysis of Membrane-Based Air Dehumidification. Separation & Purification Technology, 144, 114-122. [Google Scholar] [CrossRef]
|
|
[31]
|
Zhang, L.Z. (2012) Progress on Heat and Moisture Recovery with Membranes: From Fundamentals to Engineering Applications. Energy Conversion & Management, 63, 173-195. [Google Scholar] [CrossRef]
|
|
[32]
|
许晶翠, 张传禹, 葛天舒, 等. 海藻酸钠-醋酸纤维素复合薄膜的制备及除湿性能测试[J]. 化工学报, 2017, 68(1): 256-263.
|
|
[33]
|
Shirazian, S. and Ashrafizadeh, S.N. (2015) LTA and Ion-Exchanged LTA Zeolite Membranes for Dehydration of Natural Gas. Journal of Industrial & Engi-neering Chemistry, 22, 132-137. [Google Scholar] [CrossRef]
|
|
[34]
|
Du, J.R., Li, L., Chakma, A., et al. (2010) Using Poly(N,N-Dimethylaminoethyl Methacrylate)/Polyacrylonitrile Composite Membranes for Gas Dehydration and Humidification. Chemical Engineering Science, 65, 4672-4681. [Google Scholar] [CrossRef]
|
|
[35]
|
Wang, R., Zhang, Y., Xie, X., et al. (2021) Hydrogen-Bonded Pol-yamide 6/Zr-MOF Mixed Matrix Membranes for Efficient Natural Gas Dehydration. Fuel, 285, Article ID: 119161. [Google Scholar] [CrossRef]
|
|
[36]
|
Poormohammadian, S.J., Da Rvishi, P. and Dezfuli, A. (2019) Enhancing Natural Gas Dehydration Performance Using Electrospunnanofibrous Sol-Gel Coated Mixed Matrix Membranes. Korean Journal of Chemical Engineering, 36, 914-928. [Google Scholar] [CrossRef]
|
|
[37]
|
Sijbesma, H., Nymeijer, K., Marwijk, R.V., et al. (2008) Flue Gas Dehydration Using Polymer Membranes. Journal of Membrane Science, 313, 263-276. [Google Scholar] [CrossRef]
|
|
[38]
|
谷小兵, 向凤龄, 岳朴杰, 等. 平板陶瓷膜回收烟气水热的实验研究[J/OL]. 化工环保, 2021.
|
|
[39]
|
曹钦丰, 孟庆莹, 季超, 等. 多孔陶瓷外膜孔径对烟气水热回收性能的影响[J]. 膜科学与技术, 2021, 41(4): 102-109.
|
|
[40]
|
张言格. 中空纤维膜法回收烟气中水蒸气的性能研究[D]: [硕士学位论文]. 北京: 北京林业大学, 2020.
|