香兰素多晶型及共晶研究进展
Polymorphism and Cocrystal Research Progress of Vanillin
DOI: 10.12677/MS.2022.122012, PDF, HTML, XML, 下载: 372  浏览: 832  科研立项经费支持
作者: 唐 宏, 王 杨, 黄小容, 陈虹洁, 黄承洪*:重庆科技学院,工业发酵微生物重庆市重点实验室,重庆
关键词: 香兰素多晶型共晶制备方法Vanillin Polymorphism Cocrystals Preparation Method
摘要: 多晶型、共晶、溶剂化物和盐等多种形式是药物的固体存在形式,多晶型的存在直接导致外观、熔点、溶解度等多种理化性质差异化。药物共晶能够在不改变药物结构的情况下调整药物包括吸湿性,溶出速率、稳定性、生物利用度,以及依从性等,达到改善治疗的最终目标。香兰素作为一种天然辅助香料,具有辅助抑菌、稳定剂、共晶形成物等作用,因其与API具有较强的氢键倾向,是共晶制备的常用共晶形成体,被广泛用于药物共晶。基于近年来对香兰素多晶型及共晶的研究进展,分别阐述了香兰素单晶多晶型、制备方法、共晶机理及药物共晶,及其应用。还强调了香兰素作为药物共晶形成物的一些实例,以说明共晶结构对活性药物成分的理化性质、机械性能、生物利用度等各个方面的影响。本文旨在归纳总结香兰素多晶型及共晶的最新研究进展,为其进一步发展提供参考。
Abstract: Polymorphism, cocrystals, solvates and salt are the solid forms of drugs. The existence of polymorphism directly leads to the differentiation of physical and chemical properties such as appearance, melting point and solubility. Pharmaceutical cocrystals can adjust hygroscopicity, dissolution rate, stability, bioavailability, and compliance without changing drug structure to achieve the ultimate goal of improving treatment. Vanillin, as a natural auxiliary flavor, has the functions of auxiliary bacteriostasis, stabilizer and eutectic formation. Due to its stronger hydrogen bond tendency with API, vanillin is a common eutectic formation in eutectic preparation and is widely used in drug eutectic. Based on the research progress of vanillin polycrystalline and eutectic in recent years, the single crystal vanillin polycrystalline, preparation method, eutectic mechanism and drug eutectic application are described, and some new techniques for crystallization are introduced. Some examples of vanillin as drug eutectic were also highlighted to illustrate the influence of eutectic structure on physicochemical properties, mechanical properties and bioavailability of active drug ingredients. This paper aims to summarize the latest research progress of vanillin polycrystalline and eutectic and provide reference for its further development.
文章引用:唐宏, 王杨, 黄小容, 陈虹洁, 黄承洪. 香兰素多晶型及共晶研究进展[J]. 材料科学, 2022, 12(2): 112-122. https://doi.org/10.12677/MS.2022.122012

1. 引言

香兰素(3-羟基-4-甲氧基苯甲醛)是香草兰中的一种活性成分 [1]。因其独特的香荚兰香和奶香而广受人们关注,是目前全球需求量最多的食品赋香剂之一。因其具有抗紫外线保护作用 [2]、抗氧化作用 [3]、抗急性白血病作用 [4]、抗支原体 [5]、抗癌作用 [6],被广泛用于食品、日化、医药、农林、烟草等行业。多晶型是指同一化合物在固态中存在一种以上的晶体结构的现象。由于香兰素晶体内部结构的差异,其多晶型作为辅助物会影响药物的性质,如溶解度、稳定性、溶出度、生物利用度等 [7]。药物共晶能够在不改变药物结构的情况下调整药物包括吸湿性,溶出速率、稳定性、生物利用度,以及依从性等,达到改善治疗的最终目标。香兰素被认为是药物共晶的理想形成物,所以对改善药物的理化性质、机械性能、生物利用度等方面具有重要意义。因此,开发适当的晶型控制方法,筛选香兰素多晶型和药物共晶,对于改善不同药物的理化性质至关重要。本文从香兰素多晶型及共晶角度出发,以香兰素为研究对象,归纳总结香兰素多晶型及共晶的最新研究进展,旨在为今后香兰素作为共晶形成物的新型药物的开发和利用提供参考和借鉴。

2. 香兰素单晶

2.1. 香兰素结晶多型性

多晶型是指同一化合物在固态中存在一种以上的晶体结构的现象。由于晶体内部结构的差异,多晶型会影响药物的性质,如溶解度、稳定性、溶出度、生物利用度等,故多晶型的重要性及其在药物开发中的普遍性是公认的。早年报道 [8] 可以通过氯仿–四氯化碳溶液得到香兰素I型和II结晶,发现在常温条件下,缓慢冷却搅拌可以分离得到稳定的高纯度I型单晶;小体积溶液快速降温可以获得I型和II混合晶体;正常重重结晶条件可以获得I型,而II结晶需要特別操作。在饱和条件下香兰素从氯仿–四氯化碳获得的结晶具有棒状和针状外观,与长轴形成α平行排列,另外两种晶型III和IV型,非常稀有,只在熔融状态下可见(图1)。I型和II呈球粒生长,I型比II型生长更快,粒度更细,二者都比III稳定,由细小的缓慢生长的矩形和棒状集体生长而来。常温下生长速率I > II > III,转换率顺序III→I > II→I > III→II;熔点大小I > II > III > IV。Iso-香兰素与o-香兰素在25℃的离子化常数分別为4.02 × 10−8与1.23 × 10−8 [9]。Hussain等 [10] 研究了香兰素和乙基香兰素成核结晶和亚稳结晶的机理。Cocinero等发现,香兰素和乙基香兰素可以达到构象平衡 [11]。Walter McCrone [8] 对于香兰素的开创性工作在于提出了香兰素的多型性,而且测定了I型和II型的晶体结构,但非手性晶体结构在剑桥结构数据库中的占比不到0.008%。Kavuru等 [12] 在2021年利用聚(丙烯酸)和聚(甲基丙烯酸甲酯)微颗粒以淬火冷却法制备了稳定的I型单晶,再以缓慢蒸发法制备了亚稳II型单晶。聚合物介导的香兰素混杂成核(polymer induced heterogeneous nucleation, PIHn)的是一种用来研究成核因素(溶剂选择,超饱和与结晶方法等)的有力工具,但机理仍未阐明。

Figure 1. Vanillin crystals: (a) Vanillin I from guaiacol on microscope slide; (b) Vanillin I and guaiacol mired fusion; (c) Vanillin I completely solidified, showing pseudomorphic regions; (d) Vanillin I, II, and III cryatellining from melt; (e) Unit cell of vanillin Form II; (f) Anti-parallel tape interactions formed by weak C-H∙∙∙O hydrogen bonding

图1. 香兰素晶体:(a) 显微镜载物台愈创木酚I型;(b) 愈创木酚混融I型;(c) 彻底固化的假晶体区域I型;(d) 熔融的I,II和III型;(e) II型单体;(f) C-H···O的反平行氢键的相互作用 [12]

2.2. 香兰素成核结晶机理

早在1991年Singh等 [13] 就采用溶液生长法发现香兰素纯甲醇和乙醇中呈针状生长,在氯仿中呈片状生长,而甲醇/氯仿混合液适合厘米级晶体生长(达到7 × 5 × 4 mm3)。Teknova等 [14] 采用动态光闪烁技术(DLS)测定了香兰素与经典理论析油结晶原理形成晶体,香兰素在碰撞–冷却后首先形成假定的聚集丛,然后在超饱和去形成晶体结构并逐渐长到毫米大小,数量和大小形成肉眼可见的晶体,也可能是形成不稳定的无定形相或者前晶结构。Yang等 [15] 人基于经典成核理论修改的Sangwal’s法则,采用多热法(polythermal method)测定了乙基香兰素在乙醇、正丙醇和正丁醇溶液中的成核,发现在较低T0时,高电势γ要求较大的化学驱动力来驱使成核,此时溶剂分子形成晶格表面就要付出代价,意味着成核过程取决于化学驱动力Δμ与起始饱和温度。Hussain等 [10] 测定了香兰素和乙基香香兰素在水/乙醇以及水/乙腈混合溶剂中亚稳成核区;证明亚稳成核区宽度受溶液饱和前升溫影响;不同的晶习受过热升温程度以及溶剂类型有差异,某些溶液能够出现香兰素亚稳态相,沉淀的溶解可以导致结构“记忆”储存。

Sundareswaran等 [16] 发现,溶质浓度可以介导超饱和引发时间,成核与多型性形态。成核区与亚稳区可以根据饱和范围分开,低水平超饱和容易形成I型而中等饱和I型和II型均可形成。但是,高饱和只有利于II型,I型和II型可以快速转换。在最优条件下可以获得任意I型和II。此外,Sundareswaran等 [17] 还报道了采用模板介导的提取香兰素晶体亚型方法,它是一种基于独特的混合模板(heterogeneous template)的快速冷却法实现香兰素的多晶型成核,模板表面的强烈超饱和引起香兰素多型性和成核的很大差异,因此,使用Ni-泡沫金属模板介导的异相成核,获得了稳定和亚稳定多型性;模板的接入在两个方面发挥作用,即引导稀有亚稳定多型性的成核与控制液相–液相分离;此外,使用XRD,SCXD,DSC技术也对多型性香兰素的分子结构和热动力行为进行了表征;模板介导的异相成核技术可以用于分离多型性香兰素。

2.3. 香兰素结晶方法

2.3.1. 溶剂筛选法

在不同溶剂的溶液结晶是目前生产不同晶型最广泛使用的方法之一 [18]。溶液结晶中所使用的溶剂的不同,将直接导致多晶型现象,因此研究溶剂在结晶过程中发挥的作用有助于寻找对多晶型的控制。溶剂可以通过多种方式影响最终结晶产物,如结晶形态、晶体尺寸和形貌等 [19] [20] [21]。如Kaliwanda等 [22] 将纯丙酮作为溶剂的与超声处理相结合,观察到乙基香兰素晶体的显著粒径变化,产生了较厚片状晶习,在异丙醇和水的二元溶剂中得到了棱柱状晶习。测定了不同加热方式和冷却速率对溶解和成核温度的影响。结果表明加热速率对溶解温度影响不大,而冷却速率变化对成核温度很大。此外,随着搅拌速率的增加,测得的亚稳区宽度略有减小,溶剂和超声处理对乙基香兰素晶体的形状和尺寸有影响。Mao等 [23] 在水、乙醇、正丙醇三种纯溶剂以及二元混合溶剂条件下进行了常压实验(p = 0.1 MPa),总结的邻香兰素的溶解度数据将有助于邻香兰素的纯化和重结晶。

2.3.2. 晶种法

在结晶的方法中,通过添加晶种形成晶核,加快与之对应的晶型的晶体生长。引入晶种是一种非常常见的控制晶体尺寸及其多晶型的方法,它可以抑制某些晶型的成核生长,从而获得目标晶型。外部引入晶种的方法主要分为全部播种和部分播种,二者区分在于添加晶种的量,控制初次成核和二次成核,避免添加大量晶体导致浪费 [24]。Carletta等 [25] 采用添加晶种的方法,可以批量获得目标物质多晶型物。然而,这种外部引入晶种的方法存在误差,因为它通常会带来操作困难和安全问题 [26],可以采用内部播种方法来避免,如Lenka等 [24] 采用“一锅法”向结晶器中添加不同量的抗溶剂来控制产生内部晶种。然后采用线性冷却曲线,同时添加具有恒定质量流量的抗溶剂,以促进内部产生的晶种的生长,然后进行冷却/抗溶剂组合结晶,为有效调整晶体尺寸分布提供了一种新思路。陆海东 [27] 将一定质量的乙基香兰素原料分别溶于六种不同的有机溶剂(正丁醇、乙酸乙酯、甲苯、苯、正丁醇/四氯化碳、乙酸乙酯/环己烷)中,发现正丁醇及苯溶剂结晶得到的乙基香兰素晶体形貌、粒度分布及主体尺寸均比较理想,选定正丁醇作为后续结晶工艺溶剂。最终确定了结晶工艺最佳操作条件如下:在结晶溶液初始浓度42.869% (质量分数)、搅拌速率160 rpm、降温速率0.4℃/min下,加入晶种诱导成核,出晶时即停止降温并降低搅拌速率养晶1.0 h后恢复操作至终点温度10℃,得到符合工业化要求的乙基香兰素。

2.3.3. 过饱和度控制法

从溶液中结晶是药物多晶型的纯化、分离和控制的主要过程,过饱和度是结晶成核与生长的驱动力,并将决定最终形成的多晶型晶体及尺寸分布 [28] [29]。因此,控制过饱和度对于生长出具有理想性能的晶粒也是非常重要的方法。如Sun等 [30] 证明,非光化学激光诱导成核中甘氨酸的多态性取决于过饱和度。赵海平 [31] 将香兰素、试剂A、去离子水按照一定比例加入结晶器中,45℃下机械搅拌(255转/分钟)使其完全溶解。用保鲜薄膜将烧杯口封闭,在薄膜上扎几个针孔,并将烧杯置于平稳的地方使溶剂缓慢挥发,制得I型香兰素晶体。将香兰素溶于20%的试剂B-水中,45℃下磁力搅拌(500转/分钟)使其完全溶解。冷却降温,当溶液中有晶体析出时取样观察并立即抽滤、干燥,制得亚稳晶型香兰素晶体。Ouyang等 [32] 研究了溶剂、过饱和比和二氧化硅模板对快速冷却结晶过程中香兰素形貌和多晶型演变的影响,结果表明香兰素的成核多晶型在很大程度上取决于溶剂、过饱和比和硅胶模板。低过饱和比有利于稳定I型在水中成核,高过饱和比超过7将100%产生亚稳II型。然而,如果过饱和比太高(S > 8),会发生液–液相分离,无法获得晶体。

2.3.4. 模板法

近年来,用模板诱导所需形式的小分子和大复杂分子的优先成核结晶受到广泛关注 [20] [32]。模板诱导结晶是指在结晶过程中将模板引入溶液中,溶质分子在模板表面的非均相成核,即异相成核。这些模板主要由有机或无机晶体表面 [33]、聚合物 [34]、凝胶 [35]、自组装单分子膜 [36] 等组成。模板诱导结晶可以引导稀有亚稳定多型性的成核与控制液相–液相分离,如Sundareswaran [17] 使用Ni-泡沫金属模板介导的异相成核,获得了稳定和亚稳定多型性。以此可见,模板介导的异相成核结晶是分离香兰素多晶型的有效方法。

2.3.5. 其他方法

控制香兰素结晶及多晶型的其他方法包括调控电压变量实现晶型转换的电喷雾结晶 [37]、使用特制添加剂进行结晶 [38]、熔融结晶 [39],激光诱导结晶 [40]、以及使用电场 [41]、磁场 [42] 和超声波 [43] 等外场进行结晶。

3. 香兰素共晶

3.1. 香兰素共晶机理

共晶的制备方法可分为固体法和溶液法。固体法主要是指使用很少溶剂或不使用溶剂的方法,如研磨法、热熔挤出等。固体法的共晶形成机理主要是从反应物相、中间相和产物相之间的宏观转变来考虑的。固态方法制备共晶的机理尚不明确,主要分为三种机制:分子扩散 [44]、共熔体的形成 [45] 和无定形重结晶 [46],这三种不同机制的中间相分别是气体、液体和非晶态的固体,其共同点是中间相的反应物分子相对于起始晶型具有更高的迁移率和更高的能量 [47]。

复方制剂由于配方阶段存在的稳定性差、母体原料药之间溶解度差异大和不相容等问题,优势被大大减弱。香兰素和药物共晶作为联合用药的一种新方法,不仅不会影响药物本身的活性,而且可以显著改善药物的物理化学性质,有望克服传统联合用药中存在的问题。特定情況下,晶体的分子排列決定了药物的物理化学性质,而且还会极大地影响固体药物的加工与剂型,以及某些例如溶解度和稳定性等关键质量属性。香兰素因其与API (药物活性成分)具有更强的氢键倾向,是共晶制备的常用共晶形成体 [48] [49],如Cocinero等 [11] 采用转动光谱学超音速喷气式膨胀集中研究了香兰素和乙基香兰素构象平衡现象,发现两个构象前体物分子内的羟基和羟甲基/乙氧基团形成的大量分子内O-H∙∙∙O氢键锁定了基团构象,香兰素前体物醛基的构象差别较大,甲氧基团可以顺式(cis)也可以反式(trans);乙基香兰素的乙氧基理论上可以形成额外的反式(平面内trans)或差式构象(平面外trans)。但是,检测到的两个构象均为乙氧基反式(trans)排列,推测差式构象很可能被喷气机的碰撞弛豫削弱。由于没有检测到末端甲基基团内旋的扭转效应,说明内旋能障在12.3 KJ/mol以上。香兰素分子中带有氢键弱电子供体基团,容易与受体的N-位点形成氢键,如Braga等 [50] 报道采用共熔法制备了吩嗪(图2),吖啶和香兰素的共晶体,香兰素与两分子吩嗪O-H∙∙∙O氢键和O(H)···N连接,以及基团π-π堆积作用产生分子共晶,而香兰素与两分子吖啶和一分子香兰素间通过水分子形成氢键连接而产生分子共晶。

但目前,在溶液中关于香兰素共晶形成机理的研究主要停留在热力学以及宏观形成机理的探索,如相图、溶度积等,在分子层面关于共晶的形成机理研究较少,研究分子层面共晶的成核以及晶体的生长调控等将有助于更好地理解溶液中共晶的形成机理,为共晶的设计和开发提供更多的理论基础。

Figure 2. Molecular eutectic of vanillin and two molecules of phenazine (left): (a) Perspective view which shows the shift of the two molecules of phenazine; (b) O-H∙∙∙O hydrogen bond between two molecular centroids, and bond length; (c) O(H)···N interactions linking one phenazine and two vanillin molecules; (d) π-π stacking between phenazine molecules. Molecular eutectic of vanillin and acridine (right): (a) The water molecule acts as a link between two acridine and one vanillin molecules via hydrogen bonding; (b) View of the packing along the a-axis; (c) Layer consituted of acridine molecules, (d) Layer consituted of vanilline and water molecules

图2. 香兰素与两分子吩嗪发生分子共晶(左):(a) 两分子位错透视图;(b) 两分子质心间的O–H∙∙∙O氢键,和键长;(c) 吩嗪与两分子香兰素形成O(H)···N连接;(d) 吩嗪分子间的π-π堆积。香兰素与吖啶分子共晶(右):(a) 两分子吖啶和一分子香兰素间通过水分子形成氢键连接;(b) 沿a-轴观看分子装配;(c) 吖啶层;(d) 香兰素–水分子层

3.2. 香兰素共晶制备方法

3.2.1. 溶液法

溶液法主要是指涉及大量溶剂的制备方法,如冷却结晶、蒸发结晶等,需要分离操作将结晶产物从母液中分离出来。通过缓慢挥发溶剂,使溶液浓度逐渐增大至达到过饱和,在这个过程中过饱和作为成核结晶的推动力,从而使目标溶质析出结晶。如Jacobs等 [51] 的研究发现香兰素及其氧化物香草酸能够形成一系列的共晶物及共晶盐,香兰素跟异烟酰胺(INM)形成共晶跟可可碱(THB)形成共晶水合物,而香草酸与INM,HEXA,PHZ,以及PZO都能形成共晶物。并且香草酸,CAF和NAM甚至可以按照1:1:1的比例形成三元共晶物。2021年印度女子管理科学院Mugeshini等合成香兰素–异烟肼化合物(VIN)并采用溶剂缓慢挥发生长法制备了单晶,XRD和SCXRD和结果证实了VIN为无瑕疵单斜晶体与Cc空间群结构,在390~800 nm范围内无色透明且具有很好的稳定性,且可以作为光学材料得到广泛应用,同年合成了香兰素异烟肼肼合物(vanillin isonicotinic hydrazide, VINH) I、II、III和IV型单晶 [52]。Thipparaboina等 [53] 将拉莫三嗪(L)和香兰素(VN)利用溶液法加热在室温下缓慢蒸发,1天后获得LVN共晶,在共晶结构中观察到四种不同类型的氢键相互作用,并且通过对比拉莫三嗪和肉桂酸(CA)、水杨酸(SAC)等共晶形成物,发现香兰素是最合适的共晶形成体,并且在原来基础上改善了拉莫三嗪的溶出率。Braga等 [50] 在吩嗪和香草醛混合溶解的甲苯溶液中,通过在70℃下缓慢蒸发获得了吩嗪香兰素共晶,并且成功制备了I、II和III型共晶物。

目前,溶液法结合研磨法也被用于香兰素共晶的研究,Krishna等 [54] 将6-氯-2,4-二硝基苯胺(cda)和香兰素异构体按一定的化学计量比(1:1)提取,并使用玛瑙研钵研磨约15分钟。然后,将混合物转移到锥形烧瓶中,然后添加乙醚和几滴甲醇溶剂。将悬浮液加热并在回流温度下保持约10分钟以获得澄清溶液。将所得滤液保持在环境条件下,并让其缓慢蒸发。在2至3天内获得了适合于x射线衍射研究和定性力学性能试验的单晶。此外,在不同的有机溶剂中进行共晶筛选,当使用乙醚/几滴甲醇或己烷/乙酸乙酯(1:1)溶剂时,获得了良好的产率,可见香兰素是理想的共晶形成物。

3.2.2. 研磨法

研磨法即通过玛瑙研钵或球磨机等机械力让形成共晶的两组分之间形成分子间作用力。研磨法又分为干法研磨和湿法研磨,相比干法研磨,湿法研磨通过添加少量合适的溶剂,从而将构象自由度和分子碰撞概率提高,来改善共晶形成的动力学条件,在药物共晶的筛选及制备中普遍应用,且适用性高 [55] [56]。液体辅助研磨法(湿磨法)是借助少量的液体,利用人工或机械研磨获得共晶产品。单个组分的溶解度对于通过研磨能否形成共晶不是决定性因素,故液体辅助研磨可以有效避免共晶各组分间溶解度差异的问题,提高共晶的形成概率,提供难以从溶液中获得的共晶产品 [57]。

香兰素含有高活性醛基和酚基,可以通过席夫碱和酯反应连接具有形成共晶体的前体物。此外,香兰素本身含有的甲氧基–羟基基团也是卤化反应的受体 [58],Zbacnik等 [59] 以1,2-,1,3-和1,4-二碘氟苯为卤键供体与o-香兰素共晶或者碘–氧(醛基氧)键共晶 [60],首次探究具有卤素键受体(例如氰基N原子以及甲氧基、羟基和羰基O原子)的共晶,并发现了带有羟基和甲氧基的分叉卤素键供体。采用单点三组分无溶剂合成法制备了四种共晶物,证明o-香兰素的正–甲氧基–羟基基团是卤素键受体,可以形成合成子共晶体。Alhalaweh等 [7] 采用球磨机通过液体辅助研磨法(LAG),使用乙腈(ACN)和1,1,1,3,3,3-六氟-2丙醇(HF2P)的1:1混合物作为溶剂,制备了呋喃妥因(NTF)与香兰素共晶体,所制备的共晶体比NTF水合物具有更高的溶解度,且显著提高了治疗效果。可见香兰素作为辅助药物共晶体,可以改善药物的理化性质,更能改善治疗的最终目标。

4. 展望

特定情況下,晶体的分子排列决定了药物的物理化学性质,而且还会极大地影响固体药物的加工与剂型,以及某些例如溶解度和稳定性等关键质量属性。药物共晶体是多组分系统,其中至少一种组分是活性药物成分,香兰素作为理想的共晶形成物,通过于药物活性分子自组装形成共晶体,可以改善药物的性能,如溶解度、机械性能、药代动力学和稳定性。药物共晶具有新兴的前景,已有大量关于药物共晶的报道,然而,将共晶开发成商业药物产品仍然存在一些相当大的挑战。

目前,也有研究报道各种计算机辅助方法,合理设计具有预期功能和性能的共晶体,可以提高共晶体筛选过程的效率 [61] [62],可以作为一种新方法在香兰素共晶中推广应用。并且开发适当的晶型控制方法,筛选香兰素多晶型和药物共晶,对于改善不同药物的理化性质至关重要,所以香兰素作为共晶形成物的新型药物的开发和利用非常具有发展前景。

基金项目

感谢工业发酵微生物重庆市重点实验室项目(GYFJWSW-201905),重庆市教委项目(KJZD-K201906401),以及重庆科技学院科创项目CQUST (202111551006,YKJCX2020509,YKJCX2120502和YKJCX2120541)资助。

NOTES

*通讯作者。

参考文献

[1] Martău, G.A., Călinoiu, L.-F. and Vodnar, D.C. (2021) Bio-Vanillin: Towards a Sustainable Industrial Production. Trends in Food Science & Technology, 109, 579-592.
https://doi.org/10.1016/j.tifs.2021.01.059
[2] Hsueh, S.S., Lu, J.H., Wu, J.W., Lin, T.H. and Wang, S.S. (2021) Protection of Human γD-Crystallin Protein from Ultraviolet C-Induced Aggregation by Ortho-Vanillin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 261, Article ID: 120023.
https://doi.org/10.1016/j.saa.2021.120023
[3] Shakeel, F., Haq, N., Raish, M., Siddiqui, N.A., Alanazi, F.K. and Alsarra, I.A. (2016) Antioxidant and Cytotoxic Effects of Vanillin via Eucalyptus Oil Containing Self-Nanoemulsifying Drug Delivery System. Journal of Molecular Liquids, 218, 233-239.
https://doi.org/10.1016/j.molliq.2016.02.077
[4] Sarkar, M.K., Kar, A., Jayaraman, A., Kar Mahapatra, S. and Vadivel, V. (2021) Pharmacokinetic Properties and Anti-Proliferative Mechanisms of Vanillin against Acute Lympho-blastic Leukemia (Jurkat) Cells. South African Journal of Botany, 142, 82-87.
https://doi.org/10.1016/j.sajb.2021.06.016
[5] González-Baró, A.C., Pis-Diez, R., Parajón-Costa, B.S. and Rey, N.A. (2012) Spectroscopic and Theoretical Study of the O-Vanillin Hydrazone of the Mycobactericidal Drug Isoniazid. Journal of Molecular Structure, 1007, 95-101.
https://doi.org/10.1016/j.molstruc.2011.10.026
[6] Ma, W., Zhang, Q., Li, X., Ma, Y., Liu, Y., Hu, S., et al. (2020) IPM712, a Vanillin Derivative as Potential Antitumor Agents, Displays Better Antitumor Activity in Colorectal Cancers Cell Lines. European Journal of Pharmaceutical Sciences, 152, Article ID: 105464.
https://doi.org/10.1016/j.ejps.2020.105464
[7] Alhalaweh, A., George, S., Basavoju, S., Childs, S.L., Rizvi, S.A.A. and Velaga, S.P. (2012) Pharmaceutical Cocrystals of Nitrofurantoin: Screening, Characterization and Crystal Structure Analysis. CrystEngComm, 14, 5078-5088.
https://doi.org/10.1039/c2ce06602e
[8] Mccrone, W.C. (1950) Crystallographic Data 28. Vanillin I (3-Methoxy-4-Hydroxybenzaldehyde). Analytical Chemistry, 22, 500.
https://doi.org/10.1021/ac60039a044
[9] Robinson, R.A. and Kiang, A.K. (1955) The Ionization Constants of Vanillin and Two of Its Isomers. Transactions of the Faraday Society, 51, 1398-1402.
https://doi.org/10.1039/tf9555101398
[10] Hussain, K., Thorsen, G. and Malthe-Srenssen, D. (2001) Nucleation and Metastability in Crystallization of Vanillin and Ethyl Vanillin. Chemical Engineering Science, 56, 2295-2304.
https://doi.org/10.1016/S0009-2509(00)00438-3
[11] Cocinero, E.J., Lesarri, A., Ecija, P., Grabow, J.U., Fernán-dez, J.A. and Castaño, F. (2010) Conformational Equilibria in Vanillin and Ethylvanillin. Physical Chemistry Chemical Physics, 12, 12486-12493.
https://doi.org/10.1039/c0cp00585a
[12] Kavuru, P., Grebinoski, S.J., Patel, M.A., Wojtas, L. and Chadwick, K. (2016) Polymorphism of Vanillin revisited: The Discovery and Selective Crystallization of a Rare Crystal Structure. CrystEngComm, 18, 1118-1122.
https://doi.org/10.1039/C5CE00568J
[13] Singh, N.B., Henningsen, T., Metz, E.P.A., Hamacher, R., Cum-berledge, E., Hopkins, R.H. and Mazelsky, R. (1991) Solution Growth of Vanillin Single Crystals. Materials Letters, 12, 270-275.
https://doi.org/10.1016/0167-577X(91)90012-U
[14] Sorensen, T.J. (2014) Oiling-Out and Crystallization of Vanillin from Aqueous Solutions. Chemical Engineering Technology, 37, 1959-1963.
https://doi.org/10.1002/ceat.201400201
[15] Yang, J., Xu, S., Wang, J. and Gong, J. (2020) Nucleation Behavior of Ethyl Vanillin: Balance between Chemical Potential Difference and Saturation Temperature. Journal of Molecular Liq-uids, 303, Article ID: 112609.
https://doi.org/10.1016/j.molliq.2020.112609
[16] Sundareswaran, S. and Karuppannan, S. (2021) Nucleation Control and Separation of Vanillin Polymorphs I and II through the Swift Cooling Crystallization Process. CrystEngComm, 23, 1634-1642.
https://doi.org/10.1039/D0CE01557A
[17] Sundareswaran, S. and Karuppannan S. (2020) Supersaturation De-pendent Separation of Vanillin Polymorphs from Aqueous Solution in the Presence of Ni-Foam as Template. Crystal Research and Technology, 55, 2000020.
https://doi.org/10.1002/crat.202000020
[18] Kupka, A., Vasylyeva, V., Hofmann, D.W.M., Yusenko, K.V. and Merz, K. (2012) Solvent and Isotopic Effects on Acridine and Deuterated Acridine Polymorphism. Crystal Growth & Design, 12, 5966-5971.
https://doi.org/10.1021/cg300959w
[19] Shibata, F., Yokota, M. and Doki, N. (2021) Thermodynamic Character-istics of L-Histidine Polymorphs and Effect of Ethanol on the Crystallization. Journal of Crystal Growth, 564, Article ID: 126086.
https://doi.org/10.1016/j.jcrysgro.2021.126086
[20] Parambil, J.V., Poornachary, S.K., Tan, R.B.H. and Heng, J.Y.Y. (2017) Influence of Solvent Polarity and Supersaturation on Template-Induced Nucleation of Carbamazepine Crystal Polymorphs. Journal of Crystal Growth, 469, 84-90.
https://doi.org/10.1016/j.jcrysgro.2016.09.058
[21] Garg, R.K. and Sarkar, D. (2016) Polymorphism Control of p-Aminobenzoic Acid by Isothermal Anti-Solvent Crystallization. Journal of Crystal Growth, 454, 180-185.
https://doi.org/10.1016/j.jcrysgro.2016.09.023
[22] Kaliwanda, M. 乙基香兰素结晶过程设计[D]: [硕士学位论文]. 天津: 天津大学, 2018.
[23] Mao, H., Chen, H., Jin, M., Wang, C., Xiao, Z. and Niu, Y. (2020) Measurement and Correlation of Solubility of O-Vanillin in Different Pure and Binary Solvents at Temperatures from 273.15 K to 303.15 K. The Journal of Chemical Thermodynamics, 150, Article ID: 106199.
https://doi.org/10.1016/j.jct.2020.106199
[24] Lenka, M. and Sarkar, D. (2018) Improving Crystal Size Distribu-tion by Internal Seeding Combined Cooling/Antisolvent Crystallization with a Cooling/Heating Cycle. Journal of Crystal Growth, 486, 130-136.
https://doi.org/10.1016/j.jcrysgro.2018.01.029
[25] Carletta, A., Dubois, J., Tilborg, A. and Wouters, J. (2015) Solid-State Investigation on a New Dimorphic Substituted N-Salicylidene Compound: Insights into Its Thermochromic Behaviour. CrystEngComm, 17, 3509-3518.
https://doi.org/10.1039/C5CE00283D
[26] Digarse, H. and Sarkar, D. (2019) Production of the Metastable δ-Polymorphic form of Pyrazinamide by Isothermal Internal Seeding Anti-Solvent Crystallization. Journal of Crystal Growth, 526, Article ID: 125245.
https://doi.org/10.1016/j.jcrysgro.2019.125245
[27] 陆海东. 乙基香兰素结晶过程研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2015.
[28] Sudha, C. and Srinivasan, K. (2013) Supersaturation Dependent Nucleation Control and Separation of Mono, Ortho and Unstable Polymorphs of Paracetamol by Swift Cooling Crystallization Technique. CrystEngComm, 15, 1914-1921.
https://doi.org/10.1039/c2ce26681d
[29] Brandel, C. and ter Horst, J.H. (2015) Measuring Induction Times and Crystal Nucleation Rates. Faraday Discussions, 179, 199-214.
https://doi.org/10.1039/C4FD00230J
[30] Sun, X., Garetz, B.A. and Myerson, A.S. (2006) Supersaturation and Polarization Dependence of Polymorph Control in the Nonphotochemical Laser-Induced Nucleation (NPLIN) of Aqueous Glycine Solutions. Crystal Growth & Design, 6, 684-689.
https://doi.org/10.1021/cg050460+
[31] 赵海平. 香兰素结晶过程研究[D]: [硕士学位论文]. 天津: 天津大学, 2013.
[32] Ouyang, J., Xing, X., Chen, J., Zhou, L., Zhou, L. and Heng, J.Y.Y. (2021) Effects of Solvent, Supersaturation Ratio and Silica Template on Morphology and Polymorph Evolution of Vanillin during Swift Cooling Crystallization. Particuology, 65, 93-104.
https://doi.org/10.1016/j.partic.2021.09.003
[33] Nanev, C.N., Saridakis, E., Govada, L., Kassen, S.C., Solomon, H.V. and Chayen, N.E. (2019) Hydrophobic Interface-Assisted Protein Crystal-lization: Theory and Experiment. ACS Applied Materials & Interfaces, 11, 12931-12940.
https://doi.org/10.1021/acsami.8b20995
[34] De Poel, W., Elemans, J., Van Enckevort, W.J.P., Rowan, A.E. and Vlieg, E. (2019) Epitaxial Crystallization of Insulin on an Ordered 2D Polymer Template. Chemistry, 25, 3756-3760.
https://doi.org/10.1002/chem.201805276
[35] Banerjee, M., Saraswatula, S., Willows, L.G., Woods, H. and Brettmann, B. (2018) Pharmaceutical Crystallization in Surface-Modified Nanocellulose Organogels. Journal of Materi-als Chemistry B, 6, 7317-7328.
https://doi.org/10.1039/C8TB01554F
[36] Harding, J.H., Freeman, C.L. and Duffy, D.M. (2014) Oriented Crystal Growth on Organic Monolayers. CrystEngComm, 16, 1430-1438.
https://doi.org/10.1039/C3CE41677A
[37] Al-Ani, A.J., Herdes, C., Wilson, C.C. and Castro-Dominguez, B. (2020) Engineering a New Access Route to Metastable Polymorphs with Electrical Confinement. Crystal Growth & De-sign, 20, 1451-1457.
https://doi.org/10.1021/acs.cgd.9b01100
[38] Yao, C., Li, Y., Wang, L., Song, S., Liu, Y. and Tao, X. (2018) Tuning the Solution-Mediated Concomitant Phase Transformation Outcome of the Piroxicam Monohydrate by Two Hy-droxylcontaining Additives: Hydroxypropyl Cellulose and H2O. Crystal Growth & Design, 19, 583-590.
https://doi.org/10.1021/acs.cgd.8b00936
[39] Yan, Y., Chen, J.-M. and Lu, T.-B. (2015) Thermodynamics and Preliminary Pharmaceutical Characterization of Melatonin-Pimelic Acid Cocrystal Prepared by a Melt Crystallization Method. CrystEngComm, 17, 612-620.
https://doi.org/10.1039/C4CE01921K
[40] Lotarev, S.V., Lipatiev, A.S., Lipateva, T.O., et al. (2021) Ultrafast Laser-Induced Crystallization of Lead Germanate Glass. Crystals, 11, Article No. 193.
https://doi.org/10.3390/cryst11020193
[41] Adrjanowicz, K., Paluch, M. and Richert, R. (2018) Formation of New Polymorphs and Control of Crystallization in Molecular Glass-Formers by Electric Field. Physical Chemistry Chemical Physics, 20, 925-931.
https://doi.org/10.1039/C7CP07352F
[42] Karabanov, S.M., Suvorov, D.V., Tarabrin, D.Y., Slivkin, E.V. and Karabanov, A.S. (2021) Control of Direct Crystallization by a Running Magnetic Field. MRS Advances, 6, 619-624.
https://doi.org/10.1557/s43580-021-00083-4
[43] Sergeev, A., Shilkina, N., Motyakin M., Barashkova, I., Zabo-rova, V., Kanina, K., et al. (2021) Anhydrous Fat Crystallization of Ultrasonic Treated Goat Milk: DSC and NMR Re-laxation Studies. Ultrasonics Sonochemistry, 78, Article ID: 105751.
https://doi.org/10.1016/j.ultsonch.2021.105751
[44] Durant, S. and Karran, P. (2003) Vanillins—A Novel Family of DNA-PK Inhibitors. Nucleic Acids Research, 31, 5501-5512.
https://doi.org/10.1093/nar/gkg753
[45] Karakurt, I., Ozaltin, K., Vargun, E., Kucerova, L., Suly, P., Harea, E., et al. (2021) Controlled Release of Enrofloxacin by Vanil-lin-Crosslinked Chitosan-Polyvinyl Alcohol Blends. Materials Science and Engineering: C, 126, Article ID: 112125.
https://doi.org/10.1016/j.msec.2021.112125
[46] Raschip, I.E., Hitruc, E.G., Oprea, A.M., Popescu, M.-C. and Vasile, C. (2011) In Vitro Evaluation of the Mixed Xanthan/Lignin Hydrogels as Vanillin Carriers. Journal of Molecular Structure, 1003, 67-74.
https://doi.org/10.1016/j.molstruc.2011.07.023
[47] Vasile, C., Dumitriu, R.P., Cheaburu, C.N. and Oprea, A.M. (2009) Architecture and Composition Influence on the Properties of Some Smart Polymeric Materials Designed as Ma-trices in Drug Delivery Systems. A Comparative Study. Applied Surface Science, 256, S65-S71.
https://doi.org/10.1016/j.apsusc.2009.04.120
[48] Kale, D.P., Zode, S.S. and Bansal, A.K. (2017) Challenges in Translational Development of Pharmaceutical Cocrystals. Journal of Pharmaceutical Sciences, 106, 457-470.
https://doi.org/10.1016/j.xphs.2016.10.021
[49] Yousef, M. and Vangala, V.R. (2019) Pharmaceutical Cocrystals: Molecules, Crystals, Formulations, Medicines. Crystal Growth & Design, 19, 7420-7438.
https://doi.org/10.1021/acs.cgd.8b01898
[50] Braga, D., Grepioni, F., Maini, L., Mazzeo, P.P. and Rubini, K. (2010) Solvent-Free Preparation of Co-Crystals of Phenazine and Acridine with Vanillin. Thermochimica Acta, 507-508, 1-8.
https://doi.org/10.1016/j.tca.2010.04.021
[51] Jacobs, A. and Amombo Noa, F.M. (2015) Co-Crystals and Co-Crystal Hydrates of Vanillic Acid. CrystEngComm, 17, 98-106.
https://doi.org/10.1039/C4CE01795A
[52] Buvaneswari, M., Santhakumari, R., Usha, C., Jayasree, R. and Sagadevan, S. (2021) Synthesis, Growth, Structural, Spectroscopic, Optical, Thermal, DFT, HOMO-LUMO, MEP, NBO Analysis and Thermodynamic Properties of Vanillin Isonicotinic Hydrazide Single Crystal. Journal of Molecular Structure, 1243, Article ID: 130856.
https://doi.org/10.1016/j.molstruc.2021.130856
[53] Rajesh Thipparaboina, D.K., Mittapalli, S., Sridhar, B., Nan-gia, A. and Shastri, N. (2015) Ionic, Neutral and Hybrid Acid-Base Crystalline Adducts of Lamotrigine with Improved Pharmaceutical Performance. Crystal Growth & Design, 15, 5816-5826.
https://doi.org/10.1021/acs.cgd.5b01187
[54] Krishna, G.R., Shi, L., Bag, P.P., Sun, C.C. and Malla Reddy, C. (2015) Correlation among Crystal Structure, Mechanical Behavior, and Tabletability in the Co-Crystals of Vanillin Iso-mers. Crystal Growth & Design, 15, 1827-1832.
https://doi.org/10.1021/cg5018642
[55] Sanphui, P., Goud, N.R., Khandavilli, U.B.R. and Nangia, A. (2011) Fast Dissolving Curcumin Cocrystals. Crystal Growth & Design, 11, 4135-4145.
https://doi.org/10.1021/cg200704s
[56] Braga, D. and Grepioni, F. (2005) Making Crystals from Crystals: A Green Route to Crystal Engineering and Polymorphism. Chemical Communications, No. 29, 3635-3645.
https://doi.org/10.1039/b504668h
[57] Tomadoni, B., Ponce, A., Pereda, M. and Ansorena, M.R. (2019) Vanillin as a Natural Cross-Linking Agent in Chitosan-Based Films: Optimizing Formulation by Response Surface Methodology. Polymer Testing, 78, Article ID: 105935.
https://doi.org/10.1016/j.polymertesting.2019.105935
[58] Zbačnik, M., Vitković, M., Vulić, V., Nogalo, I. and Cinčić, D. (2016) Competition between Halogen Bonds in Cocrystals of Imines Derived from o-Vanillin. Crystal Growth & Design, 16, 6381-6389.
https://doi.org/10.1021/acs.cgd.6b01037
[59] Marija Zbačnik, M.P., Stilinović, V., Vitković, M. and Cinčić, D. (2017) The Halogen Bonding Proclivity of the Ortho Methoxy-Hydroxy Group in Cocrystals of O-Vanillin Imines and Diiodotetrafluoro-Benzenes. CrystEngComm, 19, 5576-5582.
https://doi.org/10.1039/C7CE01332A
[60] Vinko Nemec, L.F., Vitasović, T. and Cinčić, D. (2019) Halogen Bonding of the Aldehyde Oxygen Atom in Cocrystals of Ar-omatic Aldehydes and 1,4-Diiodotetrafluorobenzene. CrystEngComm, 21, 3251-3255.
https://doi.org/10.1021/acs.jpclett.0c02371
[61] Sun, G., Jin, Y., Li, S., Yang, Z., Shi, B., Chang, C., et al. (2020) Virtual Coformer Screening by Crystal Structure Predictions: Crucial Role of Crystallinity in Pharmaceutical Cocrystalli-zation. The Journal of Physical Chemistry Letters, 11, 8832-8838.
https://doi.org/10.1021/acs.jpclett.0c02371
[62] Zheng, L., Zhu, B., Wu, Z., Fang, X., Hong, M., Liu, G., et al. (2020) Strategy for Efficient Discovery of Cocrystals via a Network-Based Recommendation Model. Crystal Growth & Design, 20, 6820-6830.
https://doi.org/10.1021/acs.cgd.0c00911