银屑病与糖脂代谢相关性的研究进展
Research Progress on the Correlation between Psoriasis and Glucose and Lipid Metabolism
DOI: 10.12677/ACM.2022.123289, PDF, HTML, XML, 下载: 303  浏览: 585 
作者: 刘 梦, 杨建勋*:哈尔滨医科大学附属第二医院皮肤科,黑龙江 哈尔滨
关键词: 银屑病糖代谢脂代谢相关性Psoriasis Glucose Metabolism Lipid Metabolism Correlation
摘要: 银屑病是一种免疫介导的慢性炎症性皮肤病,影响着全球1%~3%的人口。越来越多的研究发现银屑病与多种系统性疾病有关,其中最常见的是代谢性疾病,尤以糖脂代谢紊乱最为多见。本文就银屑病的糖脂代谢及其对银屑病的影响进行论述。
Abstract: Psoriasis is an immune-mediated chronic inflammatory skin disease that affects 1%~3% of the global population. More and more studies have found that psoriasis is associated with a variety of systemic diseases, the most significant of which is metabolic disease, especially the disorder of glucose and lipid metabolism. This article discusses the glucose and lipid metabolism of psoriasis and its effect on psoriasis.
文章引用:刘梦, 杨建勋. 银屑病与糖脂代谢相关性的研究进展[J]. 临床医学进展, 2022, 12(3): 2010-2016. https://doi.org/10.12677/ACM.2022.123289

1. 引言

银屑病是一种常见的慢性、炎症性、免疫性皮肤病,全球发病率约1%~3% [1]。其发病与遗传、免疫、环境等因素密切相关,男女患病率无明显差异 [2]。该病的典型临床表现为边界清楚的鳞屑性红斑或斑块,皮损局限或广泛分布。银屑病不仅累及皮肤、指(趾)甲、关节,还可伴有其他系统性疾病 [3] [4]。目前越来越多的学者将银屑病视为一种较为复杂的临床综合征,该病可伴有多种共病,其中代谢性疾病最为常见 [5]。研究表明,糖脂代谢紊乱在此类患者中更为常见 [6] [7] [8]。本文就银屑病患者的糖脂代谢进行论述,以深入认识银屑病与两者的关系,指导银屑病患者的临床治疗及共病的预防。

2. 银屑病患者葡萄糖表达和代谢的异常

2.1. 葡萄糖表达的异常

2.1.1. 胰岛素抵抗

胰岛素抵抗(insulin resistance, IR)是胰岛素对外周组织靶器官的作用减弱,组织细胞对葡萄糖利用障碍,导致机体对胰岛素敏感性降低。近年来临床研究发现,胰岛素抵抗不仅仅在代谢性疾病、心血管疾病中常见,银屑病患者也会出现胰岛素抵抗的现象 [9] [10]。Wen等人报道了银屑病患者IR显著增高,患糖尿病的风险明显高于健康人。与单纯2型糖尿病相比,合并银屑病的患者可诱发明显的胰岛素抵抗 [10] [11]。Brazzelli等人也发现,与对照组相比,银屑病患者的胰岛素抵抗稳态模型评估值更高,银屑病面积和严重指数的降低对应着评估值也降低 [12]。

2.1.2. 葡萄糖转运蛋白

葡萄糖是所有细胞的主要能量来源,葡萄糖摄取是通过葡萄糖转运体的活动实现的,特别是葡萄糖转运蛋白(glucose transporter, GLUT)家族。葡萄糖转运体-1 (GLUT-1)是表达最广泛的葡萄糖转运蛋白,在细胞能量代谢中发挥重要作用。

GLUT-1在健康皮肤中弱表达,但在紫外线照射的小鼠皮肤和银屑病患者的皮损中表达强烈。Hiebert等人的文献中指出,GLUT-1的核酸和蛋白质水平在银屑病患者的皮损表达上调。该实验设置了两种模型(GLUT-1缺陷的角质形成细胞模型和局部使用GLUT-1抑制剂的小鼠模型),实验结果显示,与对照组相比,这些模型中银屑病样表现(如表皮增生、过度增厚和皮肤鳞屑)相对减轻。在组织培养模型中,GLUT-1抑制剂治疗组显示炎症细胞因子的表达显著降低 [13]。Hodeib等人的实验也表明了银屑病患者皮损中GLUT-1的表达较非皮损处及正常皮肤均升高,且GLUT-1在银屑病病灶中的表达与银屑病面积和严重程度指数(psoriasis area and severity index, PASI)评分呈显著正相关 [14]。

2.2. 葡萄糖代谢的异常

2.2.1. 银屑病患者皮肤中的糖代谢

糖代谢与细胞增殖和分化有关,对细胞活动至关重要。在银屑病的发病机制中,糖代谢的上调被认为是促进增生、炎症和血管生成的重要因素。真皮间充质干细胞(dermal mesenchymal stem cells, DMSCs)是皮肤微环境的重要成员,在周围环境和邻近细胞中发挥重要作用。Zhao等人对银屑病患者DMSCs进行了研究,结果显示,与健康受试者相比,患者的DMSCs整体的耗氧率、基础呼吸、最大呼吸和储备能力显著升高 [15]。Li等也证实银屑病患者的DMSCs增加了角质形成细胞的糖酵解,减少了细胞连接,这提示银屑病患者的DMSCs在角质形成细胞的表皮增生、异常分化和减少角质形成细胞的转换时间中起致病作用 [16]。

2.2.2. 银屑病患者血液中的糖代谢

以往的流行病学研究已经证实银屑病与糖代谢异常有关 [10] [11] [17]。现有研究支持银屑病和2型糖尿病之间的关联,银屑病越严重,患有糖尿病的风险越高 [18]。一研究表明,非肥胖、糖耐量正常的中重度银屑病患者餐后血糖稳态紊乱。与健康对照组相比,这些患者餐后糖耐量受损且胰岛β细胞分泌增加 [19]。银屑病患者存在IR和GLUT功能异常已被证实,多种银屑病遗传易感性因子已被发现与多种代谢性疾病易感性位点相关。有研究发现银屑病患者外周血中糖代谢的代谢物如a-酮戊二酸、乳酸水平较高 [7]。这些研究提示银屑病和糖尿病之间可能存在密切联系。

3. 银屑病患者脂质表达和代谢的异常

3.1. 脂质表达的异常

3.1.1. 脂蛋白受体

脂蛋白受体是位于细胞膜上能与脂蛋白结合的蛋白质,与相应的脂蛋白配体结合,参与细胞的代谢过程。目前研究最多的是低密度脂蛋白(low density lipoprotein, LDL)受体。现已有研究发现LDL受体在银屑病皮肤中的表达水平高于正常皮肤 [1] [8]。Sorokin等人也报道了低密度脂蛋白受体相关蛋白(low density lipoprotein related protein, LRP) 1在银屑病患者中表达升高 [20]。此外,Duvetorp等人研究了LRP5和LRP6在银屑病中的表达,与健康皮肤相比,银屑病患者皮损处和外周血中LRP5和LRP6的基因表达显著降低。他们发现经窄谱中波紫外线诱导的病变皮肤中LRP5和LRP6基因表达显著增加,这提示LRP5/6可能参与了银屑病的发病 [21]。Shih等人对咪喹莫特诱导的银屑病样小鼠进行了一项研究,该研究表明高胆固醇饮食和氧化修饰低密度脂蛋白(oxidized low density lipoprotein, OX-LDL)导致皮损中白细胞介素(interleukin, IL) 23表达增加,OX-LDL通过凝集素型OX-LDL受体1诱导IL-23的表达,进而参与银屑病的发病过程。我们也发现可溶性凝集素型OX-LDL受体1在银屑病患者血清中较高,并且它与皮肤病变的严重程度相关 [22] [23]。

3.1.2. 过氧化物酶体增殖物激活受体

过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors, PPARs)是配体诱导的转录因子,参与脂质和碳水化合物的代谢。有研究表明PPARs的激活可以诱导银屑病样皮损的发生,且在银屑病患者中PPARs的基因表达显著升高,在治疗后则降低 [24] [25]。

3.2. 脂质代谢的异常

3.2.1. 银屑病患者皮肤中的脂质

皮肤在脂代谢中起着重要作用。磷脂、神经酰胺和鞘磷脂在角质形成细胞中发生酶促转化,后在细胞间质中被进一步加工成神经酰胺、游离脂肪酸(free fatty acid, FFA)和胆固醇。神经酰胺参与皮肤屏障的维持、表皮细胞分化和细胞凋亡等过程。银屑病患者的神经酰胺总量与正常人相似,但神经酰胺的组成比例有所降低 [1]。FFA是具有长脂肪链的羧酸,为不同的组织提供能量。有研究表明银屑病斑块中FFA含量降低 [26]。胆固醇参与细胞膜完整性的维护和流动性的变化,以响应外界因素的变化。与未受损的皮肤相比,银屑病斑块中的胆固醇浓度是正常皮肤的5倍 [27]。Varshney等的研究表明,IL-17A的信号通路可增加细胞内胆固醇含量 [28]。

3.2.2. 银屑病患者血液中的脂质

越来越多的研究证实,银屑病患者的脂质谱发生变化,其中最常见的是血清总胆固醇(total cholesterol, TC)、低密度脂蛋白胆固醇(low density lipoprotein cholesterol, LDL-C)、甘油三酯(triglyceride, TG)浓度升高,高密度脂蛋白胆固醇(high density lipoprotein cholesterol, HDL-C)、脂蛋白A和脂蛋白B浓度降低 [29] [30] [31]。此外,Pietrzak等人的文献中指出银屑病患者存在LDL功能障碍和外排紊乱,银屑病患者具有更多的致动脉粥样硬化的脂质谱 [27]。

一研究银屑病的脂质谱的文献表明银屑病患者血浆中差异表达的脂质,包括溶血磷脂酸(lysophosphatidic acid, LPA)、溶血磷脂酰胆碱(lysophosphatidylcholine, LPC)、磷脂酰肌醇(phosphatidylinositol, PI)、磷脂酰胆碱(phosphatidylcholine, PC)和磷脂酸(phosphatidic acid, PA)。其中,LPA、LPC、PA在银屑病患者中显著升高,PC、PI在银屑病患者中显著降低。LPA和LPC被认为是与多种免疫介导疾病相关的炎性脂类,两者通过不同的信号通路在炎症细胞中发挥促炎作用 [32]。Lian等人文献中指出LPA不仅参与构成细胞膜骨架结构,还作为介导下游信号通路的二级信使参与炎症反应过程 [33]。LPC在病灶和血清中均升高,可能在局部诱导炎性细胞迁移以及促炎因子的产生中起作用 [34]。

脂肪因子是脂肪组织分泌的生物活性物质,参与了多种代谢性疾病的发病过程。在银屑病患者中,瘦素、趋化素、抵抗素和内脏脂肪素的血清浓度已被证实升高 [35] [36]。Brazzelli等人的研究显示,与对照组相比,银屑病患者的脂联素水平较低 [12]。抵抗素被认为是脂联素的“拮抗剂”,能够提高胰岛素敏感性,在早期动脉粥样硬化发生过程中具有抗氧化和抗炎的血管保护作用。

4. 降糖药对银屑病的影响

有研究显示噻唑烷二酮类降糖药可缓解糖尿病患者银屑病症状,改变皮肤慢性炎症状态。此外,频繁使用噻唑烷二酮类药物可适度降低患银屑病风险。胰岛素增敏剂吡格列酮可降低血液FFA和血糖水平,对银屑病患者皮肤状况有改善 [10] [37]。目前新型降糖药胰高血糖素样肽-1受体(glucagon-like peptide-1 receptor, GLP-1R)激动剂,主要通过促进胰岛β细胞的合成和分泌来达到降糖作用。临床研究证实GLP-1R激动剂可有效改善2型糖尿病银屑病患者的皮损,且组织学分析显示治疗后皮损处的表皮厚度降低 [38] [39]。Lin等人也发现GLP-1R激动剂能改善银屑病患者皮损的病理改变及IL-17、IL-23、肿瘤坏死因子(tumor necrosis factor, TNF)-α的表达,进而减轻银屑病的相关症状 [40]。然而,迄今为止,抗糖药物对银屑病症状的缓解主要见于小型研究 [18]。

5. 降脂药对银屑病的影响

他汀类药物是治疗血脂异常最常用的药物,是3-羟基-3-甲基-戊二酰辅酶A 的合成抑制剂,主要降低LDL浓度,促进动脉粥样硬化斑块的稳定 [41] [42]。研究表明他汀类药物除了降低血脂浓度外,还可以减轻银屑病症状 [43] [44]。从目前的研究来看,改善脂质异常也可成为银屑病患者护理的一部分。

6. 系统性抗银屑病药物对糖脂代谢的影响

在常规系统抗银屑病药物中,阿维A和环孢素可引起血糖和血脂异常 [45]。近年来生物治疗已成为中重度银屑病的一线治疗方法,这些药物选择性阻断炎症细胞因子,如TNF-α、IL-17、IL-23等 [46]。一项研究评估了抗TNF-α治疗前后银屑病患者的脂质状况,结果显示TC、LDL-C、TG浓度显著降低,HDL水平升高 [47],但也有研究认为该药对脂质参数的影响是中性的 [8]。Wu等人证实了IL-17A抑制剂治疗银屑病不仅可以改善银屑病症状,还可以将银屑病患者异常的脂质代谢恢复到正常水平。脂质代谢异常被认为是心血管疾病的关键因素,上述研究提示IL-17A抑制剂可能对心血管系统具有潜在的保护作用 [37]。目前临床对系统性抗银屑病药物对血糖影响的研究较少。

7. 总结

葡萄糖和脂类在银屑病中起着重要的作用。银屑病患者更易出现高脂血症、糖尿病、动脉粥样硬化等疾病。一方面,降糖药和降脂药不仅能调节血糖和血脂的异常,还可以改善银屑病患者的皮肤状况。另一方面,抗银屑病药物也可对血糖和血脂产生不同的影响。对于初诊的中重度银屑病患者,我们应重视筛查其血糖、血脂等指标,评估共病发生的风险。若发现异常,应及时进行干预以减缓疾病的发展,为银屑病患者的临床治疗及共病的预防提供参考依据。

NOTES

*通讯作者。

参考文献

[1] Shih, C.M., Chen, C.C., Chu, C.K., et al. (2020) The Roles of Lipoprotein in Psoriasis. International Journal of Mo-lecular Sciences, 21, Article No. 859.
https://doi.org/10.3390/ijms21030859
[2] Honma, M. and Nozaki, H. (2021) Molecular Pathogenesis of Psoriasis and Biomarkers Reflecting Disease Activity. Journal of Clinical Medicine, 10, Article No. 3199.
https://doi.org/10.3390/jcm10153199
[3] Imafuku, S., Kanai, Y., Murotani, K., et al. (2021) Utility of the Dermatology Life Quality Index at Initiation or Switching of Biologics in Real-Life Japanese Patients with Plaque Psoriasis: Results from the ProLOGUE Study. Journal of Dermatological Science, 101, 185-193.
https://doi.org/10.1016/j.jdermsci.2021.01.002
[4] Meneguin, S., de Godoy, N.A., Pollo, C.F., et al. (2020) Quality of Life of Patients Living with Psoriasis: A Qualitative Study. BMC Dermatology, 20, Article No. 22.
[5] 晋红中, 吴超. 银屑病的共病:研究现状与前景[J]. 实用皮肤病学杂志, 2020, 13(4): 193-197.
[6] Gisondi, P., Fostini, A.C., Fossà, I., Girolomoni, G. and Targher, G. (2018) Psoriasis and the Metabolic Syndrome. Clinics in Der-matology, 36, 21-28.
https://doi.org/10.1016/j.clindermatol.2017.09.005
[7] Zeng, C., Wen, B., Hou, G., Lei, L., Mei, Z., Jia, X., Chen, X., Zhu, W., Li, J., Kuang, Y., Zeng, W., Su, J., Liu, S., Peng, C. and Chen, X. (2017) Lipidomics Profiling Reveals the Role of Glycerophospholipid Metabolism in Psoriasis. Gigascience, 6, 1-11.
https://doi.org/10.1093/gigascience/gix087
[8] Nowowiejska, J., Baran, A. and Flisiak, I. (2021) Aberrations in Lipid Expression and Metabolism in Psoriasis. International Journal of Molecular Sciences, 22, Article No. 6561.
https://doi.org/10.3390/ijms22126561
[9] 李雪, 解欣然, 蒙玉娇, 等. 银屑病与胰岛素抵抗[J]. 环球中医药, 2019, 12(6): 972-978.
[10] Wen, S., Liu, C.Y., Li, Y.Y., et al. (2021) Psoriasis Exacerbates the State of Insulin Re-sistance in Patients with Type 2 Diabetes. Diabetes, Metabolic Syndrome and Obesity, 14, 2389-2397.
https://doi.org/10.2147/DMSO.S312420
[11] Polic, M.V., Miskulin, M., Smolic, M., et al. (2018) Psoriasis Se-verity—A Risk Factor of Insulin Resistance Independent of Metabolic Syndrome. International Journal of Environ-mental Research and Public Health, 15, Article No. 1486.
https://doi.org/10.3390/ijerph15071486
[12] Brazzelli, V., Maffioli, P., Bolcato, V., et al. (2021) Psoriasis and Diabetes, a Dangerous Association: Evaluation of Insulin Re-sistance, Lipid Abnormalities, and Cardiovascular Risk Biomarkers. Frontiers in Medicine, 8, Article ID: 605691.
https://doi.org/10.3389/fmed.2021.605691
[13] Hiebert, P. and Werner, S. (2018) Targeting Metabolism to Treat Psoriasis. Nature Medicine, 24, 537-539.
https://doi.org/10.1038/s41591-018-0027-5
[14] Hodeib, A.A., Neinaa, Y.M., Zakaria, S.S., et al. (2018) Glucose Transporter-1 (GLUT-1) Expression in Psoriasis: Correlation with Disease Severity. International Journal of Dermatology, 57, 943-951.
https://doi.org/10.1111/ijd.14037
[15] Zhao, X.C., Xing, J.X., Li, J.Q., et al. (2021) Dysregulated Dermal Mesenchymal Stem Cell Proliferation and Differentiation Interfered by Glucose Metabolism in Psoriasis. International Journal of Stem Cells, 14, 85-93.
https://doi.org/10.15283/ijsc20073
[16] Li, J., Xing, J., Lu, F., Chang, W., et al. (2020) Psoriatic Dermal-Derived Mesenchymal Stem Cells Reduce Keratinocyte Junctions, and Increase Glycolysis. Acta Dermato-Venereologica, 100, adv00122.
[17] Sitter, B., Johnsson, M.K., Halgunset, J., et al. (2013) Metabolic Changes in Psoriatic Skin under Topical Corticosteroid Treatment. BMC Dermatology, 13, Article No. 8.
https://doi.org/10.1186/1471-5945-13-8
[18] Friis, N.U., Hoffmann, N., Gyldenløve, M., et al. (2019) Glucose Metabolism in Patients with Psoriasis. British Journal of Dermatology, 180, 264-271.
https://doi.org/10.1111/bjd.17349
[19] Gyldenløve, M., Vilsbøll, T., Holst, J.J., et al. (2016) Disturbed Post-prandial Glucose Metabolism and Gut Hormone Responses in Non-Diabetic Patients with Psoriasis. British Journal of Dermatology, 175, 1085-1088.
https://doi.org/10.1111/bjd.13789
[20] Sorokin, A.V., Domenichiello, A.F., Dey, A.K., et al. (2018) Bioactive Lipid Mediator Profiles in Human Psoriasis Skin and Blood. Journal of Investigative Dermatology, 138, 1518-1528.
https://doi.org/10.1016/j.jid.2018.02.003
[21] Duvetorp, A., Olsen, R.S., Nyström, H., et al. (2017) Expression of Low-Density Lipoprotein-Related Receptors 5 and 6 (LRP5/6) in Psoriasis Skin. Experimental Dermatology, 26, 1033-1038.
https://doi.org/10.1111/exd.13362
[22] Shih, C.M., Huang, C.Y., Wang, K.H., et al. (2018) Oxidized Low-Density Lipoprotein-Deteriorated Psoriasis Is Associated with the Upregulation of Lox-1 Receptor and Il-23 Ex-pression in Vivo and in Vitro. International Journal of Molecular Sciences, 19, Article No. 2610.
https://doi.org/10.3390/ijms19092610
[23] Dey, A.K., Gaddipati, R., Elnabawi, Y.A., et al. (2020) Association between Soluble Lectinlike Oxidized Low-Density Lipoprotein Receptor-1 and Coronary Artery Disease in Psoriasis. JAMA Dermatology, 156, 151-157.
https://doi.org/10.1001/jamadermatol.2019.3595
[24] Sertznig, P., Seifert, M., Tilgen, W. and Reichrath, J. (2008) Peroxisome Proliferator-Activated Receptors (PPARs) and the Human Skin: Importance of PPARs in Skin Physiology and Dermatologic Diseases. American Journal of Clinical Dermatology, 9, 15-31.
https://doi.org/10.2165/00128071-200809010-00002
[25] Gao, Y.L., Yi, X.M. and Ding, Y.F. (2017) Combined Transcriptomic Analysis Revealed AKR1B10 Played an Important Role in Psoriasis through the Dysregulated Lipid Pathway and Overproliferation of Keratinocyte. BioMed Research International, 2017, Article ID: 8717369.
https://doi.org/10.1155/2017/8717369
[26] Baran, A., Kiluk, P., Myśliwiec, H., et al. (2017) The Role of Lipids in Psoriasis. Dermatology Review, 104, 619-635.
https://doi.org/10.5114/dr.2017.71834
[27] Pietrzak, A., Chabros, P., Grywalska, E., et al. (2019) Serum Lipid Metabolism in Psoriasis and Psoriatic Arthritis—An Update. Archives of Medical Science, 15, 369-375.
[28] Varshney, P., Narasimhan, A., Mittal, S., et al. (2016) Transcriptome Profiling Unveils the Role of Cholesterol in IL-17A Signaling in Psoriasis. Scientific Reports, 6, Article No. 19295.
https://doi.org/10.1038/srep19295
[29] 田蔚蔚, 刘伟军, 赵静, 等. 银屑病患者脂肪因子水平及其与代谢性疾病的相关性研究[J]. 江西医药, 2021, 56(2): 173-177.
[30] Blumenberg, M. (2013) Skinomics: Past, Present and Future for Diagnostic Microarray Studies in Dermatology. Expert Review of Molecular Diagnostics, 13, 885-894.
https://doi.org/10.1586/14737159.2013.846827
[31] Lundberg, K.C., Fritz, Y., Johnston, A., et al. (2015) Pro-teomics of Skin Proteins in Psoriasis: From Discovery and Verification in a Mouse Model to Confirmation in Humans. Molecular & Cellular Proteomics, 14, 109-119.
https://doi.org/10.1074/mcp.M114.042242
[32] Bansal, P., Gaur, S.N. and Arora, N. (2016) Lysophosphatidylcholine Plays Critical Role in Allergic Airway Disease Manifestation. Scientific Reports, 6, Article No. 27430.
https://doi.org/10.1038/srep27430
[33] Lian, N., Shi, L.Q., Hao, Z.M., et al. (2020) Research Progress and Perspective in Metabolism and Metabolomics of Psoriasis. Chinese Medical Journal, 133, 2976-2986.
https://doi.org/10.1097/CM9.0000000000001242
[34] Awada, R., Saulnier-Blache, J.S., Grès, S., et al. (2014) Autotaxin Downregulates LPS-Induced Microglia Activation and Pro-Inflammatory Cytokines Production. Journal of Cellular Biochemistry, 115, 2123-2132.
https://doi.org/10.1002/jcb.24889
[35] Kovács, D., Fazekas, F., Oláh, A., et al. (2020) Adipokines in the Skin and in Dermatological Diseases. International Journal of Molecular Sciences, 21, Article No. 9048.
https://doi.org/10.3390/ijms21239048
[36] Kong, Y., Zhang, S., Wu, R., Su, X., et al. (2019) New Insights into Different Adipokines in Linking the Pathophysiology of Obesity and Psoriasis. Lipids in Health and Disease, 18, Article No. 171.
https://doi.org/10.1186/s12944-019-1115-3
[37] Wu, C.Y., Shieh, J.J., Shen, J.L., et al. (2015) Association be-tween Antidiabetic Drugs and Psoriasis Risk in Diabetic Patients: Results from a Nationwide Nested Case-Control Study in Taiwan. Journal of the American Academy of Dermatology, 72, 123-130.
https://doi.org/10.1016/j.jaad.2014.08.042
[38] Chang, G., Chen, B. and Zhang, L. (2021) Efficacy of GLP-1rA, Liraglutide, in Plaque Psoriasis Treatment with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Prospective Cohort and Before-After Studies. Journal of Dermatological Treatment, 3, 1-10.
https://doi.org/10.1080/09546634.2021.1882658
[39] Xu, X., Lin, L., Chen, P., et al. (2019) Treatment with Liraglutide, a Glucagon-Like Peptide-1 Analogue, Improves Effectively the Skin Lesions of Psoriasis Patients with Type 2 Diabetes: A Prospective Cohort Study. Diabetes Research and Clinical Practice, 150, 167-173.
https://doi.org/10.1016/j.diabres.2019.03.002
[40] Lin, L., Xu, X., Yu, Y., et al. (2020) Glucagon-Like Peptide-1 Receptor Agonist Liraglutide Therapy for Psoriasis Patients with Type 2 Diabetes: A Randomized-Controlled Trial. Journal of Dermatological Treatment, 1-7.
https://doi.org/10.1080/09546634.2020.1826392
[41] Almeida, S.O. and Budoff, M. (2019) Effect of Statins on Atherosclerotic Plaque. Trends in Cardiovascular Medicine, 29, 451-455.
https://doi.org/10.1016/j.tcm.2019.01.001
[42] Oesterle, A., Laufs, U. and Liao, J.K. (2017) Pleiotropic Effects of Statins on the Cardiovascular System. Circulation Research, 120, 229-243.
[43] Trong, H.N., Tat, T.N., Anh, T.T.N., et al. (2019) Efficacy of Adding Oral Simvastatin to Topical Therapy for Treatment of Psoriasis: The Vietnamese Experience. Open Access Macedonian Journal of Medical Sciences, 7, 237-242.
[44] 宋青蔓. 联合应用辛伐他汀在局部药物治疗寻常型银屑病中的效果[J]. 实用中西医结合临床, 2020, 20(15): 96-97.
[45] Nowowiejska, J., Baran, A. and Flisiak, I. (2020) Psoriasis and Cardiometabolic Disorders. Dermatology Review, 107, 508-520.
[46] Amoruso, G.F., Nisticò, S.P., Iannone, L., et al. (2021) Ixekizumab May Improve Renal Function in Psoriasis. Healthcare, 9, Article No. 543.
https://doi.org/10.3390/healthcare9050543
[47] Botelho, K.P., Pontes, M.A.A., Rodrigues, C.E.M., et al. (2020) Prevalence of Metabolic Syndrome among Patients with Psoriasis Treated with TNF Inhibitors and the Effects of Anti-TNF Therapy on Their Lipid Profile: A Prospective Cohort Study. Metabolic Syndrome and Related Disorders, 18, 154-160.
https://doi.org/10.1089/met.2019.0092