圆锥角膜的非遗传性病因研究进展
Research Progress on Non-Hereditary Etiology of Keratoconus
DOI: 10.12677/HJO.2022.111013, PDF, HTML, XML, 下载: 245  浏览: 437 
作者: 刘美婵, 何书喜*, 彭昌福:湖南师范大学附属第一医院,湖南 长沙
关键词: 圆锥角膜变态反应炎症因子紫外线照射Keratoconus Allergy Inflammatory Factor Ultraviolet Radiation
摘要: 圆锥角膜(Keratoconus)是一种表现为角膜呈圆锥状突起,突起区角膜基质变薄,导致进行性视力下降、散光增加的疾病。既往认为其发病机制主要由遗传因素决定。现代研究发现,其发病不仅与遗传有关,还可能与炎症因子水平、环境、变态反应等有着密切联系。本文就圆锥角膜的非遗传性病因研究进展(眼的机械摩擦、过敏反应、紫外线照射等)进行综述,为圆锥角膜的多元化提供相关理论依据。
Abstract: Keratoconus (Keratoconus) is a disease characterized by a cone-shaped protrusion of the cornea and thinning of the corneal stroma in the protrusion area, resulting in progressive vision loss and increased astigmatism. It was previously thought that its pathogenesis was mainly determined by genetic factors. Modern research has found that its pathogenesis is not only related to heredity, but may also be closely related to the level of inflammatory factors, the environment, and allergic reactions. This article reviews the research progress of non-hereditary causes of keratoconus (mechanical friction of the eye, allergic reactions, ultraviolet radiation, etc.), and provides relevant theoretical basis for the diversification of keratoconus.
文章引用:刘美婵, 何书喜, 彭昌福. 圆锥角膜的非遗传性病因研究进展[J]. 眼科学, 2022, 11(1): 83-88. https://doi.org/10.12677/HJO.2022.111013

1. 引言

圆锥角膜是一种双眼进行性角膜呈锥状突起,伴突起区角膜变薄的疾病,以角膜中央或旁中央锥形扩张为特征,常发病于青春期前后,发病率约为1.38/1000 [1],可导致视力进行性下降、散光增加。最新研究发现圆锥角膜的病因可能不仅与遗传有关,还与机械、环境、免疫等因素有关,如揉眼、过敏反应、紫外线照射中产生的炎症可能也参与了圆锥角膜发病过程。本文就圆锥角膜的非遗传性病因研究进行综述。

2. 机械摩擦在KC中的炎症机理

现代研究表明,眼的机械摩擦使泪液中炎性因子升高,包括MMP-13、TNF-α、IL-6 [2],加剧了圆锥角膜的进展 [3]。基质金属蛋白酶(matrix metalloproteinnases, MMPs)是含24种锌依赖性蛋白酶的家族,在胚胎发育、组织重塑、血管生成、炎症和伤口愈合中参与了重要的生理过程 [4]。1) MMP的过度激活与有病理性细胞外基质(extracellular matrix, ECM)降解参与的疾病有关,包括神经退行性疾病、牙周、癌症、心血管疾病和关节炎 [5]。MMPs包括MMP-1、MMP-9、MMP-13等,其中MMP-1主要在胶原组织的重塑过程中表达,其含量在正常成熟组织中表达通常很低,而在损伤愈合、修复、重塑时明显升高。MMP-3在细胞外基质更新过程中激活其他MMPs酶,特别是部分激活的MMP-1转化为完全激活态。同样,MMP-13在发展成熟的正常组织中不表达或低表达,而在损伤修复或重塑中表达增多。圆锥角膜中MMP9、MMP-1、MMP-13活性增加 [6];贾洪真 [7] 发现MMP-1含量增加提示其可能参与了圆锥角膜前突和变薄的病理过程。2) IL-6可以由单核细胞、巨噬细胞、内皮细胞、成纤维细胞、Th2细胞等合成和分泌。其主要功能是刺激B细胞和T细胞的生长和分化,诱导T淋巴细胞的细胞毒性,产生急性期反应蛋白,从而促进炎症的发生。IL-6具有多重生物学作用,除参与调节免疫反应外 [8],还作为一种促炎因子,促进局部炎症因子释放 [9]。3) TNF-α绝大多数是由巨噬细胞分泌而形成的细胞因子,具有多种生物效应。David C Pye [10] 提出长期揉眼会影响泪液中细胞因子的水平以及蛋白酶的活性,并表明揉眼后TNF-α,MMP-13,IL-6的升高促进了圆锥角膜的发展。另外研究表明在圆锥角膜成纤维细胞中,IL-6和MMP-1基因和蛋白质在其中表达水平升高;IL-6能够介导TNF-α诱导的圆锥角膜MMP-1表达 [11]。杜根来等人发现体外培养的圆锥角膜成纤维细胞能够表达IL-6,TNF-α可能促进圆锥角膜IL-6的表达,也能促进MMP-1和MMP-3的表达 [12]。KO et al.发现MMP-1在角膜成纤维细胞中的表达可以在角膜成纤维细胞与神经细胞共培养中实现,而MMP-9和MMP-2的表达则无显著影响。两者共培养仅显著增加IL-6的表达,提示炎症因子和MMPs的表达可能与创面愈合、角膜炎症和基质降解有关 [13]。然而,脂多糖(LPS)刺激巨噬细胞也能同时增加IL-6和MMP-1。LPS和IL-6的表达对巨噬细胞MMP-1的表达也有协同调节作用。提示IL-6可促进LPS诱导的MMP-1表达 [13]。此外,IL-6本身也能诱导MMPs的表达 [14]。因此,这些炎症因子的释放可能导致了角膜呈锥状突起,从而产生圆锥角膜,造成视力进行性下降、散光增加(图1)。

Figure 1. Inflammatory mechanism of mechanical friction in KC

图1. 机械摩擦在KC中的炎症机理

3. 过敏反应在KC中的炎症机理

圆锥角膜通常与变态反应或特应性反应有关 [15],以IgE引导的变态反应为主要。过敏患者中血清IgE的水平升高,释放IL-13及组胺等细胞因子,引发瘙痒反应,患者下意识的揉眼,加速圆锥角膜的产生。从而可以初步得出在眼部过敏的患者中,血清中IgE水平的升高可能与KC有关。许多综述提到眼部过敏的患者,泪液中升高的细胞因子有很多,包括IL-4,IL-5,IL-6,IL-8,IL-13,IL-17,TNF-α,MMP和趋化因子等 [16] [17] [18]。艾莉亚·赛义德·艾哈迈德(Alyaa Saeed Ahmed)等人研究了从2017年9月至2018年9月,对所有患眼部过敏性疾病的儿童进行了横断面研究。将队列分为KC组(明显或可疑KC)和非KC组(无KC),结果表明KC组的平均过敏症状持续时间为3.75年,非KC组的平均过敏症状持续时间为2.5年(p = 0.001)。KC组的平均揉搓时间为2.5年,非KC组的平均揉搓时间为0.83年(p = 0.02)。总结得出年龄、症状持续时间(特别是揉眼这一症状)、全身性特应性疾病和春季角结膜炎(vernal keratoconjunctivis, VKC)是眼睛过敏性疾病患者发生KC的危险因素 [19]。春季角结膜炎常于青春期前起病,其免疫发病机制为Ⅰ型和Ⅳ型超敏反应。研究发现在过敏性角膜炎患儿中,圆锥角膜的发病率明显增加,但VKC患儿中圆锥角膜的发病率最高,可达15% [20]。VKC患者形成圆锥角膜的作用机制可能是长期揉眼导致眼表的炎症因子(MMP-9、IL-4、IL-5等)释放增加,促进角膜细胞凋亡,导致角膜变薄和角膜曲率增加 [21] (图2)。

4. 紫外线照射在KC中的炎症机理

紫外线照射在圆锥角膜的形成中是一个非常重要的危险因素。在细胞水平上,长时间的紫外线照射会引起角膜光毒性,导致角膜抗氧化剂(高分子量、抗氧化酶以及低分子量、主要是抗坏血酸)的大量减少,从而出现氧化剂/抗氧化剂失衡的现象,导致细胞应激 [22]。此外,紫外线的照射会导致DNA的损失,加速角膜上皮细胞的凋亡 [23]。Korhonen, Eveliina等人提出UV-B可能和人类角膜上皮细胞的炎性分子有因果关系,选取了脂多糖或TNF-α对HCE-2细胞株和原代HCE细胞进行诱导。在添加顺式-UCA或caspase-1抑制剂之前或之后,将细胞暴露于UV-B。通过酶促测定从细胞裂解物中测量Caspase-1活性。使用ELISA法从细胞培养基中检测IL-1β,IL-18,IL-6,IL-8和NLRP3水平。另外,通过蛋白质印迹技术确定细胞内NLRP3水平,并通过LDH测定法测量细胞毒性。UV-B暴露可显着增加TNF-α引发的HCE细胞中的caspase-1活性。该结果与同时诱导的IL-1β分泌一致。结果发现UV-B激活了人角膜上皮细胞的炎性分子 [24]。角膜是透明的无血管组织,长期暴露在紫外线下,容易导致自由基和活性氧的破坏,引起氧化应激水平的升高 [25],Toprak et al.发现,与正常受试者相比,圆锥角膜患者血清总氧化水平和氧化应激指标显著升高(p = 0.036和p = 0.037) [26],另外研究表明,氧化应激可促进炎症因子释放,参与肺损伤及动脉粥样等疾病的发生与发展 [9]。但特定波长的紫外线也可以通过诱导角膜胶原蛋白的交联而产生有利的作用,Wollensak等发现使用紫外线和光敏剂核黄素可以对胶原纤维进行光聚合,避免角膜不断扩张,从而有效阻止圆锥角膜的进一步发展,即目前用于治疗圆锥角膜的角膜胶原交联技术 [27] (图3)。

Figure 2. Inflammatory mechanisms of allergic reactions in KC

图2. 过敏反应在KC中的炎症机理

Figure 3. Inflammatory mechanisms of UV exposure in KC

图3. 紫外线照射在KC中的炎症机理

5. 总结

圆锥角膜的病因错综复杂,它通常被认为是一种非炎症性角膜病变,但现在越来越多研究说明圆锥角膜不仅与遗传因素有关,并且可能与炎症因子的水平、环境与变态反应等有密切联系,为圆锥角膜治疗和预防提供了新思路。

NOTES

*通讯作者。

参考文献

[1] Hashemi, H., Heydarian, S., Hooshmand, E., Saatchi, M., Yekta, A., Aghamirsalim, M., Valadkhan, M., Mortazavi, M., Hashemi, A. and Khabazkhoob, M. (2020) The Prevalence and Risk Factors for Keratoconus: A Systematic Review and Meta-Analysis. Cornea, 39, 263-270.
https://doi.org/10.1097/ICO.0000000000002150
[2] Balasubramanian, S.A., Mohan, S., Pye, D.C. and Willcox, M.D. (2012) Proteases, Proteolysis and Inflammatory Molecules in the Tears of People with Keratoconus. Acta Ophthalmologica, 90, e303-e309.
https://doi.org/10.1111/j.1755-3768.2011.02369.x
[3] 苏渲迪, 汪阿美, 张文芳. 炎症因子在圆锥角膜发病机制中的研究进展[J]. 国际眼科杂志, 2019, 19(2): 244-247.
[4] Page-McCaw, A., Ewald, A.J. and Werb, Z. (2007) Matrix Metalloproteinases and the Regulation of Tissue Remodelling. Nature Reviews Molecular Cell Biology, 8, 221-233.
https://doi.org/10.1038/nrm2125
[5] Amar, S., Smith, L. and Fields, G.B. (2017) Matrix Metalloproteinase Collagenolysis in Health and Disease. Biochimica et Biophysica Acta—Molecular Cell Research, 1864, 1940-1951.
https://doi.org/10.1016/j.bbamcr.2017.04.015
[6] Zhang, Y., Mao, X., Schwend, T., Littlechild, S. and Conrad, G.W. (2013) Resistance of Corneal RFUVA-Cross- Linked Collagens and Small Leucine-Rich Proteoglycans to Degradation by Matrix Metalloproteinases. Investigative Ophthalmology & Visual Science, 54, 1014-1025.
https://doi.org/10.1167/iovs.12-11277
[7] 贾洪真, 彭秀军. 基质金属蛋白酶对圆锥角膜的影响[J]. 国际眼科杂志, 2016, 16(9): 1644-1647.
[8] Bischoff, M., Stachon, T., Seitz, B., Huber, M., Zawada, M., Langenbucher, A. and Szentmáry, N. (2017) Growth Factor and Interleukin Concentrations in Amniotic Membrane-Conditioned Medium. Current Eye Research, 42, 174-180.
https://doi.org/10.3109/02713683.2016.1164189
[9] Ghasemi, H. (2018) Roles of IL-6 in Ocular Inflammation: A Review. Ocular Immunology and Inflammation, 26, 37-50.
https://doi.org/10.1080/09273948.2016.1277247
[10] Balasubramanian, S.A., Pye, D.C. and Willcox, M.D. (2013) Effects of Eye Rubbing on the Levels of Protease, Protease Activity and Cytokines in Tears: Relevance in Keratoconus. Clinical and Experimental Optometry, 96, 214-218.
https://doi.org/10.1111/cxo.12038
[11] Ahuja, P., Dadachanji, Z., Shetty, R., Nagarajan, S.A., Khamar, P., Sethu, S. and D’Souza, S. (2020) Relevance of IgE, Allergy and Eye Rubbing in the Pathogenesis and Management of Keratoconus. Indian Journal of Ophthalmology, 68, 2067-2074.
https://doi.org/10.4103/ijo.IJO_1191_19
[12] 杜根来, 李晓娜, 陈维毅, 刘成星, 王晓君, 贺瑞. TNF-α和机械牵拉对圆锥角膜成纤维细胞MMP/TIMP及IL-6表达的影响[J]. 太原理工大学学报, 2017, 48(6): 1007-1013.
[13] Ko, J.A., Chikama, T., Sonoda, K.H. and Kiuchi, Y. (2012) Up-Regulation of Matrix Metalloproteinase-1 and Interleukin-6 Expression in Cocultures of Corneal Fibroblasts and Neural Cells. Biochemical and Biophysical Research Communications, 419, 537-542.
https://doi.org/10.1016/j.bbrc.2012.02.055
[14] Du, G., Liu, C., Li, X., Chen, W., He, R., Wang, X., Feng, P. and Lan, W. (2016) Induction of Matrix Metalloproteinase-1 by Tumor Necrosis Factor-α Is Mediated by Interleukin-6 in Cultured Fibroblasts of Keratoconus. Experimental Biology and Medicine (Maywood), 241, 2033-2041.
https://doi.org/10.1177/1535370216650940
[15] Naderan, M., Rajabi, M.T., Zarrinbakhsh, P. and Bakhshi, A. (2017) Effect of Allergic Diseases on Keratoconus Severity. Ocular Immunology and Inflammation, 25, 418-423.
https://doi.org/10.3109/09273948.2016.1145697
[16] Shetty, R., Deshmukh, R., Ghosh, A., Sethu, S. and Jayadev, C. (2017) Altered Tear Inflammatory Profile in Indian Keratoconus Patients—The 2015 Col Rangachari Award Paper. Indian Journal of Ophthalmology, 65, 1105-1108.
https://doi.org/10.4103/ijo.IJO_233_17
[17] Sorkhabi, R., Ghorbanihaghjo, A., Taheri, N. and Ahoor, M.H. (2015) Tear Film Inflammatory Mediators in Patients with Keratoconus. International Ophthalmology, 35, 467-472.
https://doi.org/10.1007/s10792-014-9971-3
[18] Ionescu, I.C., Corbu, C.G., Tanase, C., Ionita, G., Nicula, C., Coviltir, V., Potop, V., Constantin, M., Codrici, E., Mihai, S., Popescu, I.D., Enciu, A.M., Dascalescu, D., Burcel, M., Ciuluvica, R. and Voinea, L.M. (2018) Overexpression of Tear Inflammatory Cytokines as Additional Finding in Keratoconus Patients and Their First Degree Family Members. Mediators of Inflammation, 2018, Article ID: 4285268.
https://doi.org/10.1155/2018/4285268
[19] Ahmed, A.S., El-Agha, M.H., Khaled, M.O. and Shousha, S.M. (2021) The Prevalence of Keratoconus in Children with Allergic Eye Disease in an Egyptian Population. European Journal of Ophthalmology, 31, 1571-1576.
https://doi.org/10.1177/1120672120942691
[20] Solomon, A. (2015) Corneal Complications of Vernal Keratoconjunctivitis. Current Opinion in Allergy and Clinical Immunology, 15, 489-494.
https://doi.org/10.1097/ACI.0000000000000202
[21] Kling, S. and Hafezi, F. (2017) Corneal Biomechanics—A Review. Ophthalmic and Physiological Optics, 37, 240-252.
https://doi.org/10.1111/opo.12345
[22] Cejková, J., Stípek, S., Crkovská, J., Ardan, T., Pláteník, J., Cejka, C. and Midelfart, A. (2004) UV Rays, the Prooxidant/ Antioxidant Imbalance in the Cornea and Oxidative Eye Damage. Physiological Research, 53, 1-10.
[23] Ubels, J.L., Schotanus, M.P., Bardolph, S.L., Haarsma, L.D., Koetje, L.R. and Louters, J.R. (2010) Inhibition of UV-B Induced Apoptosis in Corneal Epithelial Cells by Potassium Channel Modulators. Experimental Eye Research, 90, 216-222.
https://doi.org/10.1016/j.exer.2009.10.005
[24] Korhonen, E., Bisevac, J., Hyttinen, J.M.T., Piippo, N., Hytti, M., Kaarniranta, K., Petrovski, G. and Kauppinen, A. (2020) UV-B-Induced Inflammasome Activation Can Be Prevented by Cis-Urocanic Acid in Human Corneal Epithelial Cells. Investigative Ophthalmology & Visual Science, 61, 7.
https://doi.org/10.1167/iovs.61.4.7
[25] Ivanov, I.V., Mappes, T., Schaupp, P., Lappe, C. and Wahl, S. (2018) Ultraviolet Radiation Oxidative Stress Affects Eye Health. Journal of Biophotonics, 11, e201700377.
https://doi.org/10.1002/jbio.201700377
[26] Toprak, I., Kucukatay, V., Yildirim, C., Kilic-Toprak, E. and Kilic-Erkek, O. (2014) Increased Systemic Oxidative Stress in Patients with Keratoconus. Eye (London), 28, 285-289.
https://doi.org/10.1038/eye.2013.262
[27] Wollensak, G., Spoerl, E. and Seiler, T. (2003) Riboflavin/Ultraviolet-a-Induced Collagen Crosslinking for the Treatment of Keratoconus. American Journal of Ophthalmology, 135, 620-627.
https://doi.org/10.1016/S0002-9394(02)02220-1