现代三角洲动力沉积过程与沉积体系发育机制评述:以珠江三角洲为例
Reviews on Sediment Dynamics and Depositional Systems in the Modern Delta, with a Particular Emphasis on the Pearl River Delta
DOI: 10.12677/CCRL.2012.13014, PDF, HTML,  被引量 下载: 4,401  浏览: 21,574  国家自然科学基金支持
作者: 吴加学*:中山大学近岸海洋科学与技术研究中心
关键词: 泥沙输移地层层序沉积体系珠江三角洲Sediment Transport; Stratigraphic Succession; Depositional System; The Pearl River Delta
摘要: 全球变化和海平面上升背景下大型三角洲体系的响应机制与应对措施,将是关系到区域和全局性的环境与生态安全问题。现代珠江三角洲是一个受构造活动与地貌控制、河流与潮汐共同作用的内陆架浅水型三角洲,在世界大型海岸三角洲研究中具有独特的地位。过去由于水下三角洲勘探与研究不足,尤其动力沉积过程与潮汐沉积地层研究的薄弱,致使现代珠江三角洲发育演变规律长期成为学术界争论的焦点问题。本文将从三角洲类型与地层模型、三角洲动力沉积过程、珠江三角洲等三个方面进行评述,提出三角洲研究的突破口在于从三个时间尺度,即现代动力沉积过程、百年尺度的高分辨率沉积地层和千年尺度的沉积体系,探讨三角洲发育演变与动力沉积机制。
Abstract: The responses and countermeasures of coastal megadeltas to global change and intense human activities are highly involved with environmental and ecological safeties over regional and even global scales. The modern Pearl Riverdelta (approximately 6000 years B.P.) is an inner-shelf or shoal-water delta controlled by tectonics and topography, and subject to combined fluvial and tidal forcing, and thus it plays a unique role among coastal megadeltas in the world. Since there is a great lack in exploration on the submerged delta and a large gap in understanding sediment dynamics and tidal stratigraphy, the evolution of the modernPearldelta has longly been a disputing focus in the sedimentological community. This paper will focus on three themes: classification and model of deltas, sediment dynamics, and thePearl Riverdelta evolution. Then it follows that future investigations should be devoted to three different processes or systems with distinct time scales in the delta or estuary: sediment dispersal, stratigraphic succession, and depositional system, and further to understanding the evolution and mechanism of the delta.
文章引用:吴加学. 现代三角洲动力沉积过程与沉积体系发育机制评述:以珠江三角洲为例[J]. 气候变化研究快报, 2012, 1(3): 113-120. http://dx.doi.org/10.12677/CCRL.2012.13014

参考文献

[1] J. P. Ericson, C. J. Vorosmarty, S. L. Dingman, et al. Effective sea-level rise and deltas: Causes of change and human dimension implications. Global Planet Change, 2006, 50: 63-82.
[2] J. P. M. Syvitski, Kettner, et al. Sinking deltas due to human activities. Nature Geoscience, 2009, 2(10): 681-686.
[3] I. Overeem, J. P. M. Syvitski. Dynamics and vulnerability of delta systems. LOICZ Reports & Studies No. 35. Geesthacht: GKSS Research Center, 2009.
[4] R. J. Nicholls, A. Cazenave. Sea-level rise and its impact on coastal zones. Science, 2010, 328(5985): 1517-1520.
[5] S. L. Goodbred Jr., Kuehl, et al. Controls on facies distribution and stratigraphic preservation in the Ganges-Brahmaputra delta sequence. Sedimentary Geology, 2003, 155: 301-316.
[6] R. W. Dalrymple, K. Choi. Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence- stratigraphic interpretation. Earth-Science Reviews, 2007, 81(3-4): 135-174.
[7] J. Syvitski, Y. Saito. Morphodynamics of deltas under the influ- ence of humans. Global and Planetary Change, 2007, 57: 261- 282.
[8] J. P. M. Syvitski, Vorosmarty, et al. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 2005, 308(5720): 376-380.
[9] 曾昭璇, 黄少敏. 珠江三角洲历史地貌学研究[M]. 广州: 广东高等教育出版社, 1987: 201.
[10] 黄镇国, 李平日, 张仲英等. 珠江三角洲形成发育演变[M]. 广州: 科学普及出版社广州分社, 1982: 278.
[11] 李平日, 乔彭年. 珠江三角洲六千年来的发展模式[J]. 泥沙研究, 1982, 3: 33-42.
[12] Y. Zong, G. Huang, A. D. Switzer, et al. An evolutionary model for the Holocene formation of the Pearl River delta, China. The Holocene, 2009, 19(1): 129-142.
[13] 吴超羽, 包芸, 任杰等. 珠江三角洲及河网形成演变的数值模拟和地貌动力学分析: 距今6000-2500a[J]. 海洋学报, 2006, 28(4): 64-80.
[14] 吴超羽, 任杰, 包芸等.珠江河口“门”的地貌动力学初探[J]. 地理学报, 2006, 61(5): 537-548.
[15] C. Wu, X. Wei, J. Ren, et. al. Morphodynamics of the rock- bound outlets of the Pearl River Estuary, South China—A preliminary study. Journal of Marine Systems, 2010, 82(S): 17-27.
[16] 韦惺, 莫文渊, 吴超羽. 珠江三角洲地区全新世以来的沉积速率与沉积环境分析[J]. 沉积学报, 2011, 29(2): 328-335.
[17] R. W. Dalrymple, B. A. Zaitlin and R. Boyd. Estuarine facies models: Conceptual basis and stratigraphic implications. Journal of Sedimentary Research, 1992, 62(6): 1130-1146.
[18] J. P. Walsh, C. A. Nittrouer. Understanding fine-grained river- sediment dispersal on continental margins. Marine Geology, 2009, 263(1-4): 34-45.
[19] C. A. Nittrouer. STRATAFORM: Overview of its design and synthesis of its results. Marine Geology, 1999, 154(1): 3-12.
[20] L. Giosan, J. P. Bhattacharya. River deltas: concepts, models, and examples. Tulsa: SEPM Special Publication, 2005: 502.
[21] C. A. Nittrouer, J. A. Austin, M. E. Field, et al. Conti-nental mar- gin sedimentation: From sediment transport to sequence strati- graphy. Princeton: IAS (Institute for Advanced Study) Special Publication, 2009: 560.
[22] J. P. M. Syvitski, L. F. Pratson, P. L. Wiberg, et al. Prediction of Margin Stratigraphy. In: C. A. Nittrouer, J. A. Austin, M. E. Field, J. H. Kravitz, J. P. M. Syvitski and P. L. Wiberg, Eds., Continental margin sedimentation: From sediment transport to sequence stratigraphy. Princeton: IAS Special Publication, 2009: 459-529.
[23] J. M. Coleman, L. D. Wright. Modern river delta: Vari-ability of processes and sand bodies. In: M. L. Broussard, Ed., Deltas: Models for exploration. Houston: Houston Geological Society, 1975: 99-149.
[24] W. E. Galloway. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In: M. L. Broussard, Ed., Deltas: Models for exploration. Houston: Houston Geological Society, 1975: 87-98.
[25] 龙云作等. 珠江三角洲沉积地质学[M]. 北京: 地质出版社, 1997: 165.
[26] D. J. Stanley, A. K. Hait. Deltas, radiocarbon dating, and measurements of sediment storage and subsidence. Geology, 2000, 28(4): 295-298.
[27] D. J. Stanley. Dating modern deltas: Progress, problems, and prognostics. Annual Review of Earth Planetary Sciences, 2001, 29: 257-294.
[28] W. L. Fisher, L. F. Brown, A. J. Scott, et al. Delta systems in the exploration for oil and gas, a research colloquium. Bureau of Eco-nomic Geology, Austin: University of Texas, 1969: 204.
[29] W. E. Galloway, L. Xue. Fan-delta, braid delta and the classifi- cation of delta systems. Beijing: International Symposium on Sedimentology Related to Mineral Deposits, 1988.
[30] R. W. Dalrymple, D. A. Leckie and R. W. Tillman. Incised valleys in time and space. Tulsa: SEPM Special Publication, 2006: 348.
[31] S. J. Porebski, R. J. Steel. Deltas and sea-level change. Journal of Sedimentary Research, 2006, 76(3): 390-403.
[32] J. C. Van Wagoner, R. M. Mitchum, K. M. Cam-pion, et al. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops. Tulsa, Oklahoma: American Association of Petroleum Ge-ologists Methods in Exploration Series, No. 7, 1990: 55.
[33] J. C. Van Wagoner, G. T. Bertram, Eds. Sequence stratigraphy of foreland basin deposits. Tulsa, Oklahoma, AAPG Memoir 64, 1995: 490.
[34] S. Yoshida, R. J. Steel and R. W. Dalrymple. Changes in deposi- tional processes-An ingredient in a new generation of sequence- stratigraphic models. Journal of Sedimentary Research, 2007, 77(6): 447-460.
[35] K. W. Shanley, P. J. McCabe. Perspectives on the se-quence stratigraphy of continental strata. AAPG Bulletin, 1994, 78: 544- 568.
[36] A. Cattaneo, R. J. Steel. Transgressive deposits: A review of their variability: Earth-Science Reviews, 2003, 62(3): 187-228.
[37] C. K. Wilgus, B. S. Hastings, C. G. Kendall, et al. Sea-level changes: An integrated approach. Tulsa: SEPM Special Pub-lication, 1988: 407.
[38] J. A. Thorne, D. J. Swift. Sedimentation on continental margins, VI: A regime model for depositional sequences, their component systems tracts, and bounding surfaces. In: D. J. P. Swift, G. F. Oertel, R.W. Tillman and J. A. Thorne, Eds., Shelf sand and sandstone bodies: Geometry, facies and sequence stratigraphy. Prince-ton: IAS Special Publications, 1991: 189-255.
[39] L. F. Brown, W. F. Fisher. Seismic-stratigraphic interpretation of depositional systems: Examples from Brazilian rift and pull- apart basins. In: C. E. Payton, Ed., Seismic Stratigraphy-Appli- cations to Exploration, AAPG Mem-oir 26, 1977: 213-248.
[40] W. E. Fisher, J. H. McGowen. Deposi-tional systems in the Wilcox Group of Texas and their relationship to occurrence of oil and gas. Gulf Coast Association of Geological Socie-ties Transactions, 1967, 19: 239-261.
[41] W. E. Galloway, D. K. Hobday. Terrigenous clastic depositional systems. Berlin: Springer-Verlag, 1996: 489.
[42] H. W. Posamentier, P. R. Vail. Se-quence stratigraphy: Sequences and systems tract development. In: D. P. James, and D. A. Leckie, Eds., Sequences, Stratigraphy, sedimen-tology, surface and subsurface, Calgary: Canadian society of petroleum geologists memoir, 1988: 571-572.
[43] W. E. Galloway. Genetic sequences in basin analysis I: Archi- tecture and genesis of flood-ing-surface bounded depositional sequences. AAPG Bulletin, 1989, 73(2): 125-142.
[44] P. C. Scruton. Delta building and the deltaic sequence. In: F. P. Shepard, F. B. Phleger and T. H. van Andel, Eds., Recent sediments northwest gulf of Mexico. Tulsa: American Associa-tion of Petroleum Geologists, 1960: 82-102.
[45] J. P. Bhattacharya. Deltas. In: H. W. Posamentier, R. G. Walker Eds., Facies models revis-ited. Tulsa: SEPM Special Publication, 2006: 237-292.
[46] D. A. Edmonds, J. B. Shaw and D. Mohrig. Topset-dominated deltas: A new model for river delta stratigraphy. Geology, 2011, 39(12): 1175-1178.
[47] I. Overeem, S. B. Kroonenberg, A. Veldkamp, et al. Small-scale stratigraphy in a large ramp delta: Recent and Holocene sedimentation in the Volga delta, Caspian Sea. Sedimentary Geology, 2003, 159(3): 133-157.
[48] B. Tessier. Stratigraphy of tidal-dominated estuaries. In: R. A. Davis, Jr., R. W. Dalrymple, Eds., Principles of tidal sedimen- tology. Springer Science Business Media B.V., 2012: 109-128.
[49] J. Zalasiewicz, M. Williams, R. Fortey, et al. Stratigraphy of the Anthropocene. Philosophical Transactions of the Royal Society A, 2011, 369(1938): 1036-1055.
[50] D. J. Stanley, A. G. Warne. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science, 1994, 265(5169): 228-231.
[51] L. Giosan, J. P. Donnelly and S. Constantinescu. Young Danube delta documents stable Black Sea level since the middle Holocene: Morphodynamic, paleogeographic, and archaeological implications. Geology, 2006, 34(9): 757-760.
[52] D. J. Jerolmack. Conceptual framework for as-sessing the response of delta channel networks to Holocene sea level rise. Quarternary Science Reviews, 2009, 28(17-18): 1786-1800.
[53] G. J. Orton, H. G. Reading. Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology, 1993, 40(3): 475-512.
[54] D. A. Edmonds, R. L. Slingerland. Significant effect of sediment cohesion on delta morphology. Nature Geoscience, 2010, 3: 105- 109
[55] G. P. Allen, H. W. Posamentier. Sequence stratigraphy and facies model of an incised valley fill; the Gironde Estuary, France. Journal of Sedimentary Re-search, 1993, 63(3): 378-391.
[56] K. Hori, Y. Saito, Q. Zhao, et al. Sedimentary facies of tide- dominated paleo-Changjiang (Yangtze) estuary during the last transgression. Marine Geology, 2001, 177(3): 331-351.
[57] R. W. Dalrymple, E. K. Baker, P. T. Harris, et al. Sedi-mentology and stratigraphy of a tide-dominated, foreland-basin delta (Fly River, Papua New Guinea). In: F. H. Sidi, D. Nummedal, P. Imbert, H. Darman and H. W. Posamentier, Eds., Tropical Deltas of Southeast Asia-Sedimentology, Stratigraphy, and Petroleum Ge- ology. Tulsa: SEPM Special Publication, 2003: 147-173.
[58] C. M. Lin, H. Zhuo and S. Gao. Sedimentary facies and evolution in the Qiantang River incised valley, Eastern China. Marine Geology, 2005, 219: 253-259.
[59] R. Boyd, R. W. Dalrymple and B. A. Zaitlin. Estuarine and incised-valley facies models. In: H. W. Posamentier, R. G. Walker Eds., Facies models revisited. Tulsa: SEPM Special Publications, 2006: 171-235.
[60] I. Overeem, J. P. M. Syvitski and E. W. H. Hutton. Three-di- mensional numerical modeling of deltas. In: L. Giosan, J. P. Bhattacharya, Eds., River deltas-concepts, models, and examples. Tulsa: SEPM Special Publication, 2005: 11-30.
[61] L. Giosan, J. P. Bhattacharya. River deltas: Concepts, models, and examples. Tulsa: SEPM Special Publication, 2005: 502.
[62] M. T. Jervey. Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In: C. K. Wilgus, B. S. Hasting, C. G. St. C. Kendall, H. W. Posamentier, C. A. Ross and J. C. Van Wagoner, Eds., Sea-level changes: An integrated approach. Tulsa: SEPM Special Publication, 1988: 47-69.
[63] T. Mulder, J. P. M. Syvitski. Turbidity currents generated at river mouths during exceptional discharge to the world oceans. Journal of Geology, 1995, 103(3): 285-298.
[64] P. J. Cowell, M. J. F. Stive, A. W. Niedoroda, et al. The coastal- tract (part 1): A conceptual approach to aggregated modeling of low-order coastal change. Journal of Coastal Research, 2004, 19(4): 812-827.
[65] L. D. Wright. River deltas. In: R. A. Davis, Ed., Coastal sedi- mentary envi-ronments. New York: Springer-Verlag, 1985: 1-76.
[66] L. Giosan. Long term sediment dynamics on Danube delta coast. In: J. Dronkers, M. B. A. M. Scheffers, Eds., Physics of estuaries and coastal seas. Proceedings of the 8th International Biennial Conference on Physics of Estuaries and Coastal Seas: The Hague, Rotterdam, 9-12 September 1996: 365-376.
[67] A. B. Rodriguez, M. D. Hamilton and J. B. Anderson. Facies and evolution of the modern Brazos Delta, Texas; wave versus flood influence. Journal of Sedimentary Research, 2000, 70(2): 283- 295.
[68] J. P. Bhattacharya, L. Giosan. Wave-influenced deltas: Geomor- phologic implications for facies reconstruction. Sedi-mentology, 2003, 50(1): 187-210.
[69] C. R. Fielding, J. Trueman and J. Alexander. Sedimentology of the modern and holocene burdekin river delta of North Queensland, Australia—Controlled by river output, not by waves and tides. In: L. Giosan, J. P. Bhattacharya, Eds., River deltas-con- cepts, models, and examples. SEPM Special Publication, 2005, 83: 467-496.
[70] B. J. Willis. Deposits of tide-influenced river deltas. In: L. Giosan, J. P. Bhattacharya, Eds., River deltas-concepts, models, and examples. SEPM Special Publication, 2005, 83: 87-129.
[71] J. D. Milliman, J. P. M. Syvitski. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small moun- tainous rivers. Journal of Geology, 1992, 100: 525-544.
[72] 成国栋. 黄河三角洲现代沉积作用及模式[M]. 北京: 地质出版社, 1991.
[73] 成国栋, 薛春汀. 黄河三角洲沉积地质学[M]. 北京: 地质出版社, 1997.
[74] 贾永刚, 单红仙, 杨秀娟等. 黄河口沉积物动力学与地质灾害[M]. 北京: 科学出版社, 2011: 495.
[75] 严钦尚, 许世远. 长江三角洲现代沉积研究[M]. 上海: 华东师范大学出版社, 1987: 438.
[76] 陈吉余, 王宝灿, 虞志英. 中国海岸发育过程和演变规律[M]. 上海: 上海科学技术出版社, 1989.
[77] 黄慧珍, 唐宝根, 杨文达等. 长江三角洲沉积地质学[M]. 北京: 地质出版社, 1997.
[78] 李从先, 汪品先. 长江晚第四纪河口地层学研究[M]. 北京:科学出版社, 1998.
[79] 沈焕庭, 李九发. 长江河口水沙输运[M]. 北京: 海洋出版社, 2011: 222.
[80] Z. Chen, Y. Saito and S. L. Goodbred, Eds. Mega-deltas of Asia-geological evolution and human impact. Beijing: China Ocean Press, 2005.
[81] 赵焕庭. 珠江河口演变[M]. 北京: 海洋出版社, 1990: 378.
[82] 李春初. 中国南方河口过程与演变规律[M]. 北京: 科学出版社, 2004: 248.
[83] L. D. Wright, W. J. Wiseman, Z. S. Yang, et al. Processes of marine dispersal and deposition of suspended silts off the modern mouth of the Huanghe (Yellow River). Continental Shelf Research, 1990, 10(1): 1-40.
[84] Z. Chen, Z. Chen and W. Zhang. Quaternary stratigraphy and trace-element indices of the Yangtze Delta, Eastern China, with special reference to marine transgressions. Quaternary Research, 1997, 47(2): 181-191.
[85] G. X. Li, H. L. Wei, Y. C. Han, et al. Sedimentation in the Yellow River delta, part I: Flow and suspended sediment structure in the upper distributary and the estuary. Marine Geology, 1998, 149(1): 93-111.
[86] G. Li, X. Wei, S. Yue, et al. Sedimentation in the Yellow River delta, part II: Suspended sediment dispersal and deposition on the subaqueous delta. Marine Geology, 1998, 149(1-4): 113-131.
[87] X. Chen. Changjiang (Yangtze) river delta, China. Journal of Coastal Research, 1998, 14(3): 838-858.
[88] J. Y. Chen, D. J. Li, B. L. Chen, et al. The processes of dynamic sedimentation in the Changjiang Estuary. Journal of Sea Re- search, 1999, 41(1-2): 129-140.
[89] Y. Saito, Z. S. Yang and K. Hori. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: A review on their char- acteristics, evolution and sediment discharge during the Holo- cene. Geomorphology, 2001, 41: 219-231.
[90] K. Hori, Y. Saito, Q. H. Zhao, et al. Architecture and evolution of the tide-dominated Changji-ang (Yangtze) River delta, China. Sedimentary Geology, 2002, 146(3-4): 249-264.
[91] C. Li, P. Wang, H. Sun, et al. Late quaternary incised-valley fill of the Yangtze delta (China): Its stratigraphic framework and evolution. Sedimentary Geology, 2002, 152: 133-158.
[92] J. P. Liu, J. D. Milliman, S. Gao, et al. Holocene devel-opment of the Yellow River’s subaqueous delta, North Yellow Sea. Marine Geology, 2004, 209(1-4): 45-67.
[93] J. P. Liu, A. C. Li and K. H. Xu. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Continental Shelf Research, 2006, 26(17-18): 2141- 2156.
[94] S. Gao. Modeling the growth limit of the Changjiang Delta. Geomorphology, 2007, 85(3-4): 225-236.
[95] Z. S. Yang, J. P. Liu. A unique Yellow River derived distal subaqueous delta in the Yellow Sea. Marine Geology, 2007, 240 (1-4): 169-176.
[96] H. Wang, Y. Saito and Y. Zhang. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia. Earth-Science Reviews, 2011, 108(1-2): 80-100.
[97] G. D. Hubbard. The Pearl River delta. Lingnan Science Journal, 1929, 7: 23-34.
[98] A. Heim. Fragmentary observations in the region of Hong Kong, compared with Canton. Annual Report of Geological Survey, 1929, 2: 1-32.
[99] 陈国达. 广州三角洲问题[J]. 科学, 1934, 18: 356-364.
[100] 吴尚时, 曾昭暶. 珠江三角洲[J]. 岭南学报, 1947, 8(1): 105- 122.
[101] 叶汇. 再论科氏力对河汊以育的影响——以珠江三角洲河网区为例[A]. 中国地理学会1977年地貌学术讨论会文集[C]. 北京: 科学出版社, 1981: 362-371.
[102] 李春初, 杨干然. 珠江三角洲的网河特征及演变[A]. 中国地理学会地貌专业委员会编, 中国地理学会一九七七年地貌学术讨论会论文集[C]. 北京: 科学出版社, 1981: 67-75.
[103] 李春初, 杨干然. 珠江三角洲河网特征及演变, 华南地理文献选集[M]. 广州: 科学普及出版社广州分社, 1985.
[104] 李平日, 乔彭年, 郑洪汉等. 珠江三角洲一万年来环境演变[M]. 北京: 海洋出版社, 1991: 184.
[105] 徐君亮, 李永兴, 蔡福祥等. 珠江口伶仃洋滩槽发育演变[M]. 北京: 海洋出版社, 1985: 182.
[106] 赵焕庭. 珠江河口演变[M]. 北京: 海洋出版社, 1990: 378.
[107] 张虎南. 断块型三角洲[J]. 地理学报, 1980, 1: 58-67.
[108] 黄玉昆, 夏法, 陈国能. 断裂构造对珠江三角洲形成和演化的控制作用[J]. 海洋学报, 1983, 5(3): 316-327.
[109] 赵焕庭. 珠江三角洲的形成和发展[J]. 海洋学报, 1982, 4(5): 595-607.
[110] 龙云作, 霍春兰, 司桂贤等. 对珠江三角洲沉积特征和沉积模式的一些认识[J]. 海洋地质与第四纪地质, 1985, 5(4): 49- 57.
[111] 李春初, 杨干然. 珠江三角洲的形成、发育和演变[R]. 中山大学地理系河口研究组, 1976.
[112] 龙云作, 霍春兰, 司桂贤等. 对珠江三角洲沉积特征和沉积模式的一些认识[J]. 海洋地质与第四纪地质, 1985, 5(4): 49- 57.
[113] 龙云作, 霍春兰, 司桂贤等. 对珠江三角洲沉积特征和沉积模式的一些认识[J]. 海洋地质与第四纪地质, 1985, 5(4): 49-57.
[114] 罗章仁, 罗宪林, 杨干然. 人类活动对珠江三角洲水道河床演变的影响[J]. 热带地貌, 1999, 20(2): l-15.
[115] 戴仕宝, 杨世伦, 蔡爱民. 51年来珠江流域输沙量的变化[J]. 地理学报, 2007, 62(5): 545-554.
[116] S. B. Dai, S. L. Yang and A. M. Cai. Impacts of dams on the sediment flux of the Pearl River, southern China. Catena, 2008, 76(1): 36-43.
[117] Y. Zong, F. Yu, G. Huang, et al. Sedimentary evidence of Late Holocene human activity in the Pearl River delta, China. Earth Surf. Process. Landforms, 2010, 35: 1095-1102.
[118] J. Harff, T. Leipe and D. Zhou. Pearl River Estuary related sediments as response to Holocene climate change and anthro- pogenic impact. Journal of Marine Systems, 2010, 82: S1-S2.
[119] J. P. Liu, Z. Xue, K. Ross, et al. Fate of sediments delivered to the sea by Asia large rivers: Long-distance transport and formation of remote alongshore clino-thems. The Sedimentary Record, 2009, 7(4): 4-9.
[120] C. Tang, D. Zhou, R. Endler, et al. Sedimentary development of the Pearl River Estuary based on seismic stratigraphy. Journal of Marine System, 2010, 82(S): 3-16.