基于FCM聚类的形势场图像分割方法研究
Research on Situation Field Image Segmentation Based on FCM Clustering
DOI: 10.12677/JISP.2022.112006, PDF, 下载: 75  浏览: 160 
作者: 胡光亮, 段 勇:沈阳工业大学,信息科学与工程学院,辽宁 沈阳
关键词: 图像分割FCM聚类高空天气图形势场Image Segmentation FCM Clustering High Altitude Weather Map Situation Field
摘要: 本文研究基于FCM聚类算法的天气形势场图像分割问题,首先通过解析将气象中心历史再分析资料中多种形势场数据可视化绘制出高空天气图像,再结合本文所研究的问题对FCM聚类算法的原理以及步骤进行描述,然后将FCM聚类算法应用于高空天气图像以及形势场数据可视化过程中可能带有噪声的高空天气图像的分割,最后通过实验结果验证FCM聚类算法能够较好地实现形势场可视化图像的分割,进而标注出高空天气图像中等值线。
Abstract: In this paper, the FCM clustering algorithm is used to solve the problem of weather situation field image segmentation. First, the high-altitude weather images are drawn by analyzing and visualizing various situation field data in the historical reanalysis data of the meteorological center. Then, the principle and steps of FCM clustering algorithm are described based on the problems studied in this paper. Then the FCM clustering algorithm is applied to the segmentation of the high-altitude weather images and the high-altitude weather images that may contain noise in the process of situation field data visualization. The experimental results show that the FCM clustering algorithm can achieve better segmentation of the situation field visualization images, and then the is olines in the high-altitude weather images can be marked.
文章引用:胡光亮, 段勇. 基于FCM聚类的形势场图像分割方法研究[J]. 图像与信号处理, 2022, 11(2): 45-53. https://doi.org/10.12677/JISP.2022.112006

参考文献

[1] 周莉莉, 姜枫. 图像分割方法综述研究[J]. 计算机应用研究, 2017, 34(7): 1921-1928.
[2] 赵祥宇, 陈沫涵. 基于聚类的图像分割方法综述[J]. 信息技术, 2018(6): 92-94+99.
[3] 陈建文, 徐冠雷. 基于K-Means的时间季节反演识别方法[J]. 图像与信号处理, 2018, 7(1): 57-64.
[4] Ngo, L.T., Mai, D.S. and Pedrycz, W. (2015) Semi-Supervising Interval Type-2 Fuzzy C-Means Clustering with Spatial Information for Multi-Spectral Satellite Image Classification and Change Detection. Computers & Geosciences, 83, 1-16.
https://doi.org/10.1016/j.cageo.2015.06.011
[5] 胡学刚, 段瑶. 基于FCM聚类的自适应彩色图像分割算法[J]. 计算机工程与设计, 2018, 39(7): 1984-1989.
[6] 胡学刚, 严思奇. 基于FCM聚类的图像分割算法[J]. 计算机工程与设计, 2018, 39(1): 159-164.
[7] 冯仁光. 基于自适应权重FCM的浮选泡沫图像分割及应用[D]: [硕士学位论文]. 大连: 大连理工大学, 2014.
[8] Feng, L., Li, H., Gao, Y., et al. (2020) A Color Image Segmentation Method Based on Region Salient Color and Fuzzy C-Means Algorithm. Circuits, Systems, and Signal Processing, 39, 586-610.
https://doi.org/10.1007/s00034-019-01126-w
[9] Wu, S., Pang, Y., Shao, S., et al. (2018) Advanced Fuzzy C-Means Algorithm Based on Local Density and Distance. Journal of Shanghai Jiaotong University (Science), 23, 636-642.
https://doi.org/10.1007/s12204-018-1993-y
[10] 沉晓. 基于模糊C均值聚类的脑部MR图像分割算法研究[D]: [硕士学位论文]. 南京: 南京邮电大学, 2019.
[11] Huang, H., Meng, F., Zhou, S., et al. (2019) Brain Image Segmentation Based on FCM Clustering Algorithm and Rough Set. IEEE Access, 7, 12386-12396.
https://doi.org/10.1109/ACCESS.2019.2893063
[12] 雷涛, 张肖, 加小红, 刘侍刚, 张艳宁. 基于模糊聚类的图像分割研究进展[J]. 电子学报, 2019, 47(8): 1776-1791.
[13] 许树成. 基于模糊聚类的图像分割算法的研究[D]: [硕士学位论文]. 北京: 北京邮电大学, 2018.
[14] 胡加亮. 基于模糊聚类算法的图像分割研究[D]: [硕士学位论文]. 上海: 华东师范大学, 2019.
[15] 刘野, 黄贤英, 刘文星, 朱小飞, 李昭平. 基于自适应噪声添加的防御对抗样本算法[J]. 计算机应用研究, 2021, 38(3): 764-769.