|
[1]
|
Ramos, C.A. and Dotti, G. (2011) Chimeric Antigen Receptor (CAR)-Engineered Lymphocytes for Cancer Therapy. Expert Opinion on Biological Therapy, 11, 855-873. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Jackson, H.J., Rafiq, S. and Brentjens, R.J. (2016) Driving CAR T-Cells Forward. Nature Reviews Clinical Oncology, 13, 370-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Till, B.G., Jensen, M.C., Wang, J., et al. (2012) CD20-Specific Adoptive Immunotherapy for Lymphoma Using a Chimeric Antigen Receptor with both CD28 and 4-1BB Domains: Pilot Clinical Trial Results. Blood, 119, 3940-3950. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Porter, D.L., Levine, B.L., Kalos, M., et al. (2011) Chimeric Antigen Receptor-Modified T Cells in Chronic Lymphoid Leukemia. The New England Journal of Medicine, 365, 725-733. [Google Scholar] [CrossRef]
|
|
[5]
|
Jensen, M.C. and Riddell, S.R. (2015) Designing Chimeric Antigen Receptors to Effectively and Safely Target Tumors. Current Opinion in Immunology, 33, 9-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Mcadam, A.J., Greenwald, R.J., Levin, M.A., et al. (2001) ICOS Is Critical for CD40-Mediated Antibody Class Switching. Nature, 409, 102-105. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lipowska-Bhalla, G., Gilham, D.E., Hawkins, R.E., et al. (2012) Targeted Immunotherapy of Cancer with CAR T Cells: Achievements and Challenges. Cancer Immunology, Immunotherapy, 61, 953-962. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Haynes, N.M., Trapani, J.A., Teng, M.W., et al. (2002) Single-Chain Antigen Recognition Receptors That Costimulate Potent Rejection of Established Experimental Tumors. Blood, 100, 3155-3163. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wu, J., Song, Y. and Bakker, A. (1999) An Activating Immunoreceptor Complex Formed by NKG2D and DAP10. Science, 285, 730-731. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Pule, M.A., Straathof, K.C., Dotti, G., et al. (2005) A Chimeric T Cell Antigen Receptor That Augments Cytokine Release and Supports Clonal Expansion of Primary Human T Cells. Molecular Therapy, 5, 933-941. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kochenderfer, J.N. and Rosenberg, S.A. (2013) Treating B-Cell Cancer with T Cells Expressing Anti-CD19 Chimeric Antigen Receptors. Nature Reviews Clinical Oncology, 10, 267-276. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Catenacci, D.V., Ang, A., Liao, W.L., et al. (2017) MET Tyrosine Kinase Receptor Expression and Amplification as Prognostic Biomarkers of Survival in Gastroesophageal Adenocarcinoma. Cancer, 123, 1061-1070. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Fuse, N., Kuboki, Y., Kuwata, T., et al. (2016) Prognostic Impact of HER2, EGFR, and c-MET Status on Overall Survival of Advanced Gastric Cancer Patients. Gastric Cancer, 19, 183-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhi, P., Yan, Z., Wang, Q., et al. (2014) Prognostic Significance of MET Amplification and Expression in Gastric Cancer: A Systematic Review with Meta-Analysis. PLoS ONE, 9, e84502. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Catenacci, D., Tebbutt, N.C., Davidenko, I., et al. (2017) Rilotumumab plus Epirubicin, Cisplatin, and Capecitabine as First-Line Therapy in Advanced MET-Positive Gastric or Gastro-Oesophageal Junction Cancer (RILOMET-1): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet Oncology, 18, 1467-1482. [Google Scholar] [CrossRef]
|
|
[16]
|
Shah, M.A., Bang, Y.J., Lordick, F., et al. (2017) Effect of Fluorouracil, Leucovorin, and Oxaliplatin with or without Onartuzumab in HER2-Negative, MET-Positive Gastroesophageal Adenocarcinoma: The METGastric Randomized Clinical Trial. JAMA Oncology, 3, 620-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liu, X.J., et al. (2016) A Chimeric Switch-Receptor Targeting PD1 Augments the Efficacy of Second-Generation CAR T Cells in Advanced Solid Tumors. Cancer Research, 76, 1578-1590. [Google Scholar] [CrossRef]
|
|
[18]
|
Ankri, C., Shamalov, K., Horovitz-Fried, M., et al. (2013) Human T Cells Engineered to Express a Programmed Death 1/28 Costimulatory Retargeting Molecule Display Enhanced Antitumor Activity. Journal of Immunology, 191, 4121-4129. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chen, C., Gu, Y.M., Zhang, F., et al. (2021) Construction of PD1/CD28 Chimeric-Switch Receptor Enhances Anti-Tumor Ability of c-Met CAR-T in Gastric Cancer. Oncoimmunology, 10, Article ID: 1901434. [Google Scholar] [CrossRef]
|
|
[20]
|
Lin, H., Zhang, H., Wang, J., et al. (2014) A Novel Human Fab Antibody for Trop2 Inhibits Breast Cancer Growth in Vitro and in Vivo. International Journal of Cancer, 134, 1239-1249. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Shvartsur, A. and Bonavida, B. (2015) Trop2 and Its Overexpression in Cancers: Regulation and Clinical/Therapeutic Implications. Genes Cancer, 6, 84-105. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, H., Liu, Q., Tang, X., et al. (2014) Eukaryotic Expression of Human Anti-TROP2 Antibody IgG and Its Inhibitory Effect on Cell Proliferation of Pancreatic Cancer. Journal of Nanjing Medical University (Natural Sciences), 41, 269-277.
|
|
[23]
|
Zhao, W., Zhu, H., Zhang, S., et al. (2016) Trop2 Is Overexpressed in Gastric Cancer and Predicts Poor Prognosis. Oncotarget, 7, 6136-6144. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Weinstock, M. and Mcdermott, D. (2015) Targeting PD-1/PD-L1 in the Treatment of Metastatic Renal Cell Carcinoma. Therapeutic Advances in Urology, 7, 365-377. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Singer, M., Wang, C., Cong, L., et al. (2017) A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells. Cell, 171, 1221-1223. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ivashko, I.N. and Kolesar, J.M. (2016) Pembrolizumab and Nivolumab: PD-1 Inhibitors for Advanced Melanoma. American Journal of Health-System Pharmacy, 73, 193-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhao, W., Jia, L., Zhang, M., et al. (2019) The Killing Effect of Novel Bi-Specific Trop2/PD-L1 CAR-T Cell Targeted Gastric Cancer. The American Journal of Cancer Research, 9, 1846-1856.
|
|
[28]
|
Saeki, N., Gu, J., Yoshida, T., et al. (2010) Prostate Stem Cell Antigen: A Jekyll and Hyde Molecule? Clinical Cancer Research, 16, 3533-3538. [Google Scholar] [CrossRef]
|
|
[29]
|
Wu, D., Lv, J., Zhao, R., et al. (2020) PSCA Is a Target of Chimeric Antigen Receptor T Cells in Gastric Cancer. Biomarker Research, 8, 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ziprin, P., Ridgway, P.F., Pfistermuller, K.L., et al. (2003) ICAM-1 Mediated Tumor-Mesothelial Cell Adhesion Is Modulated by IL-6 and TNF-Alpha: A Potential Mechanism by Which Surgical Trauma Increases Peritoneal Metastases. Cell Communication & Adhesion, 10, 141-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Jung, W.C., Jang, Y.J., Kim, J.H., et al. (2012) Expression of Intercellular Adhesion Molecule-1 and e-Selectin in Gastric Cancer and Their Clinical Significance. Journal of Gastric Cancer, 12, 140-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Jung, M., Yang, Y., Mccloskey, J.E., et al. (2020) Chimeric Antigen Receptor T Cell Therapy Targeting ICAM-1 in Gastric Cancer. Molecular Therapy—Oncolytics, 18, 587-601. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Chang, K. and Pastan, I. (1996) Molecular Cloning of Mesothelin, a Differentiation Antigen Present on Mesothelium, Mesotheliomas, and Ovarian Cancers. Proceedings of the National Academy of Sciences of the United States of America, 93, 136-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ito, T., Kajino, K., Abe, M., et al. (2014) ERC/Mesothelin Is Expressed in Human Gastric Cancer Tissues and Cell Lines. Oncology Reports, 31, 27-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sotoudeh, M., Shirvani, S.I., Merat, S., et al. (2019) MSLN (Mesothelin), ANTXR1 (TEM8), and MUC3A Are the Potent Antigenic Targets for CAR T Cell Therapy of Gastric Adenocarcinoma. Journal of Cellular Biochemistry, 120, 5010-5017. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lv, J., Zhao, R., Wu, D., et al. (2019) Mesothelin Is a Target of Chimeric Antigen Receptor T Cells for Treating Gastric Cancer. Journal of Hematology & Oncology, 12, 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Niimi, T., Nagashima, K., Ward, J.M., et al. (2001) Claudin-18, a Novel Downstream Target Gene for the T/EBP/ NKX2.1 Homeodomain Transcription Factor, Encodes Lung- and Stomach-Specific Isoforms through Alternative Splicing. Molecular and Cellular Biology, 21, 7380-7390. [Google Scholar] [CrossRef]
|
|
[38]
|
Vergote, I.B., Marth, C. and Coleman, R.L. (2015) Role of the Folate Receptor in Ovarian Cancer Treatment: Evidence, Mechanism, and Clinical Implications. Cancer and Metastasis Reviews, 34, 41-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Jiang, H., Shi, Z., Wang, P., et al. (2019) Claudin18.2-Specific Chimeric Antigen Receptor Engineered T Cells for the Treatment of Gastric Cancer. Journal of the National Cancer Institute, 111, 409-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Elnakat, H. and Ratnam, M. (2006) Role of Folate Receptor Genes in Reproduction and Related Cancers. Frontiers in Bioscience, 11, 506-519. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kim, M., Pyo, S., Kang, C.H., et al. (2018) Folate Receptor 1 (FOLR1) Targeted Chimeric Antigen Receptor (CAR) T Cells for the Treatment of Gastric Cancer. PLoS ONE, 13, e198347. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Han, H., Wang, S., Hu, Y., et al. (2018) Monoclonal Antibody 3H11 Chimeric Antigen Receptors Enhance T Cell Effector Function and Exhibit Efficacy against Gastric Cancer. Oncology Letters, 15, 6887-6894. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Pang, Y., Hou, X., Yang, C., et al. (2018) Advances on Chimeric Antigen Receptor-Modified T-Cell Therapy for Oncotherapy. Molecular Cancer, 17, 91. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Lu, P., Qiu, S., Pan, Y., et al. (2021) Preclinical Chimeric Antibody Chimeric Antigen Receptor T Cell Progress in Digestive System Cancers. Cancer Biotherapy and Radiopharmaceuticals, 36, 307-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Majzner, R.G. and Mackall, C.L. (2018) Tumor Antigen Escape from CAR T-Cell Therapy. Cancer Discovery, 8, 1219-1226. [Google Scholar] [CrossRef]
|
|
[46]
|
Viapiano, M., Bhat, K., Abounader, R., et al. (2017) A Single Dose of Peripherally Infused EGFRvIII-Directed CAR T Cells Mediates Antigen Loss and Induces Adaptive Resistance in Patients with Recurrent Glioblastoma. NeuroOncology, 19, 1574-1575.
|
|
[47]
|
Li, J., Li, W., Huang, K., et al. (2018) Chimeric Antigen Receptor T Cell (CAR-T) Immunotherapy for Solid Tumors: Lessons Learned and Strategies for Moving Forward. Journal of Hematology & Oncology, 11, 22. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Inaguma, Y., Akahori, Y., Murayama, Y., et al. (2014) Construction and Molecular Characterization of a T-Cell Receptor-Like Antibody and CAR-T Cells Specific for Minor Histocompatibility Antigen HA-1H. Gene Therapy, 21, 575-584. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Ireland, L., Santos, A., Ahmed, M.S., et al. (2016) Chemoresistance in Pancreatic Cancer Is Driven by Stroma-Derived Insulin-Like Growth Factors. Cancer Research, 76, 6851-6863. [Google Scholar] [CrossRef]
|
|
[50]
|
Magee, M.S., Kraft, C.L., Abraham, T.S., et al. (2016) GUCY2C-Directed CAR-T Cells Oppose Colorectal Cancer Metastases without Autoimmunity. Oncoimmunology, 5, e1227897. [Google Scholar] [CrossRef]
|
|
[51]
|
Caruana, I., Savoldo, B., Hoyos, V., et al. (2015) Heparanase Promotes Tumor Infiltration and Antitumor Activity of CAR-Redirected T Lymphocytes. Nature Medicine, 21, 524-529. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Ma, X., Shou, P., Smith, C., et al. (2020) Interleukin-23 Engineering Improves CAR T Cell Function in Solid Tumors. Nature Biotechnology, 38, 448-459. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Rafiq, S., Yeku, O.O., Jackson, H.J., et al. (2018) Targeted Delivery of a PD-1-Blocking scFv by CAR-T Cells Enhances Anti-Tumor Efficacy in Vivo. Nature Biotechnology, 36, 847-856. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Coon, M.E., Stephan, S.B., Gupta, V., et al. (2020) Nitinol Thin Films Functionalized with CAR-T Cells for the Treatment of Solid Tumours. Nature Biomedical Engineering, 4, 195-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Cho, J.H., Collins, J.J. and Wong, W.W. (2018) Universal Chimeric Antigen Receptors for Multiplexed and Logical Control of T Cell Responses. Cell, 173, 1426-1438. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Ingram, J.R., Schmidt, F.I. and Ploegh, H.L. (2018) Exploiting Nanobodies’ Singular Traits. Annual Review of Immunology, 36, 695-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Xie, Y.J., Dougan, M., Jailkhani, N., et al. (2019) Nanobody-Based CAR T Cells That Target the Tumor Microenvironment Inhibit the Growth of Solid Tumors in Immunocompetent Mice. Proceedings of the National Academy of Sciences, 116, 7624-7631. [Google Scholar] [CrossRef] [PubMed]
|