靶向胶质母细胞瘤中的复制应激
Targeting the Replication Stress of Glioblastoma
摘要: 胶质母细胞瘤是成人常见的原发性脑肿瘤,病程短,预后差,具有极强的治疗抗性,目前临床治疗仍然以手术切除辅以放化疗为主。近期,新兴的电场疗法被加入到胶质母细胞瘤的辅助疗法中,其是否有效尚存在争议。在过去50年里,胶质母细胞瘤的药物研发停滞不前,临床急需有效的药物改善患者预后。早期研究表明,由于DDR通路的异常上调,GBM (Glioblastoma)是一种先天耐受放化疗的肿瘤。基于现有治疗GBM的方法均会造成DNA损伤的特点,抑制DDR通路激活,加剧复制应激可能是改善GBM患者预后的有效策略。因此,我们对目前GBM的治疗概况以及靶向GBM中的DDR通路,增强现有DNA损伤疗法的相关研究进展进行了综述。
Abstract: Glioblastoma is a common primary brain tumor among adults with a short course of disease, poor prognosis and elevated treatment resistance. Currently, clinical treatment of GBM is still based on surgical resection supplemented by radiotherapy and chemotherapy. Recently, the emerging tumor-treating fields (TTFs) therapy has been approved to treat GBM as adjuvant therapy, and its effectiveness is still controversial. In the past 50 years, drug development for glioblastoma has stagnated, and there is an urgent need for new drug to improve the outcomes of GBM patient. Early studies have shown that GBM is innately resistant to chemotherapy and radiotherapy due to abnormal upregulation of the DDR pathway. Therefore, based on the characteristics of existing therapies which cause DNA damage to inhibit tumor growth, we reviewed the current treatment of GBM and the related research progress of targeting the DDR pathway in GBM to enhance existing DNA damage therapies.
文章引用:陈佳敏, 吴亮. 靶向胶质母细胞瘤中的复制应激[J]. 世界肿瘤研究, 2022, 12(2): 42-51. https://doi.org/10.12677/WJCR.2022.122006

1. 胶质母细胞瘤及其治疗

1.1. 胶质母细胞瘤疾病概况

胶质瘤是成人常见的原发性脑瘤,发病率占恶性脑肿瘤的81% [1]。世界卫生组织(WHO)根据胶质瘤恶性程度将其分为I至IV级,胶质母细胞瘤(GBM)属于IV级胶质瘤,约占胶质瘤发病率的47% [2],其高度恶性,表现为治疗耐药,疾病进展迅速,患者预后差等。目前,临床上治疗胶质母细胞瘤的手段为手术切除,辅以放疗和替莫唑胺(TMZ)化疗。即便如此,患者最终还是会复发耐药,中位生存期在12~15个月左右,5年生存率低于10% [3]。

1.2. 胶质母细胞瘤的治疗

手术切除占位肿瘤是GBM治疗的首选方案,医生必须在保证患者神经功能不受损害的情况下最大安全程度地切除肿瘤。由于脑组织结构复杂,且GBM呈弥漫性和浸润性生长,手术无法将肿瘤组织切除干净,为术后复发埋下了种子 [4]。

替莫唑胺(TMZ)是目前临床上用于治疗GBM的一线化疗药,属于第二代抗肿瘤烷化剂类化疗药物,相对安全。TMZ脂溶性较好,易于透过血脑屏障。然而,替莫唑胺的加入仅能将患者的生存期提高2.5个月,患者最终将发生耐药 [5]。

胶质母细胞瘤与低级别胶质瘤的区别在于其具有微血管增殖的特点,GBM表现为高度的血管化并高表达血管内皮生长因子(VEGF) [6]。2009年,血管生成抑制剂贝伐单抗被FDA批准用于复发性胶质母细胞瘤的治疗。然而其疗效因肿瘤类型和患者疾病进展状况而异 [7] [8],影响抗血管生成治疗无进展生存期(PFS)和总体生存率OS的因素仍然不明确,贝伐单抗是否能改善不同亚型新诊断和复发性GBM患者的生存率和生活质量仍需要进一步探究 [7] [8] [9]。

近几年肿瘤治疗电场(TTFs)被美国FDA和一些国家批准作为辅助疗法与TMZ联合治疗GBM,这是一种通过中低频电场干扰肿瘤细胞有丝分裂来发挥抗肿瘤作用的治疗方法,其III期临床试验结果显示,TTFs联合TMZ可将GBM患者无进展生存期(PFS)由TMZ单用的4个月提高至6.7个月 [10] [11]。但TTFs治疗设备费用较为高昂,普通人无法承担,且患者几乎需要全天佩戴治疗设备,对于患者日常生活来说较为不便 [12],其是否能改善患者的总生存期还需要时间来验证。

总体来说,自2005年TMZ获批用于治疗GBM以来,再无新的有效改善GBM患者预后的疗法出现。

1.3. 胶质母细胞瘤药物研发面临的挑战

近年来,抗肿瘤领域取得了巨大的成就,免疫疗法的迅猛发展改变了肿瘤治疗的格局。CAR-T疗法的问世和更迭为治愈血液瘤患者带来了巨大的希望,免疫检查点PD-1/PD-L1抑制剂更是将非鳞非小细胞肺癌患者的五年生存率从5%提高至26% [13],极大地改善了患者的生存状况。而在胶质母细胞瘤临床治疗领域,类似振奋人心的新疗法和治疗策略从未出现。我们经过分析,胶质母细胞瘤治疗困难的原因有如下几点:

首先,区别于其他实体瘤,胶质母细胞瘤生长在颅内。星形胶质细胞,周细胞和血管内皮细胞之间的紧密连接形成了血脑屏障(BBB),它可保护脆弱的神经组织免受全身循环中的有害因素的影响,BBB的紧密连接和蛋白外排体系将许多潜在有效的药物拒之门外 [14]。因此,在GBM的药物筛选过程中,经体外筛选验证有效的药物还需要进行BBB渗透性评价。目前,已建立的体外BBB透过性筛选评价模型包括体外共培养BBB组成细胞和祖细胞衍生的脑类器官,但二者均不能很好地代表人脑的结构功能。而通过放射性同位素标记法和荧光基团标记法在体内示踪药物则可能造成药物作用性质的改变。因此,目前为止还没有有效的筛选体系来评价药物血脑屏障透过性 [15] [16],这也是造成GBM药物研发进展缓慢的原因。

其次,胶质母细胞瘤属于高度异质性的肿瘤,根据GBM的组织病理学和分子学特征,TCGA将GBM分为经典型(EGFR扩增),前神经型(高表达OPC相关基因PDGFRα和olig2,TP53突变或杂合缺失)和间充质型(NF1杂合缺失,表达间充质标志),并指出这几类亚型常常共同存于同一肿瘤中 [17]。2019年,一项大型的GBM单细胞RNA测序结果进一步佐证了GBM具有高度的异质性的特点,研究显示,GBM中的恶性细胞主要对应于神经前体细胞样(NPC-like),少突胶质细胞–祖细胞样(OPC-like),星形胶质细胞样(AC-like)和间充质样细胞(MES-like)状态中的一种,同时研究指出,四种状态的恶性细胞可以互相转化,并且这种转化能力与不同状态细胞对应的胶质瘤干细胞密切相关 [18]。GBM中存在着不同的干细胞亚型,或者说GBM具有多种可塑性状态,依靠单一疗法无法有效治疗GBM。

除此之外,胶质母细胞瘤是一种对放疗和化疗具有高度耐药性的肿瘤,这些特征使GBM成为一种非常难以治疗的肿瘤 [19]。GBM增强的DNA损伤修复系统活性导致诱导DNA损伤的疗法无效。尽管GBM先天抗性的分子基础尚未完全阐明,但初步研究显示,这种DNA损伤修复通路的异常上调与胶质瘤干细胞的存在有关,GBM干细胞样细胞已被证明能够更有效地修复辐射引起的DNA损伤,相比于普通GBM细胞具有更强的抗辐射能力 [20] [21]。

最后,GBM分子病理十分复杂,尽管不同阶段(形成/维持、治疗和进展)的GBM样本为我们提供了丰富的遗传学、基因表达和启动子甲基化的数据,但目前暂无明确的可有效靶向的特征性分子靶点。此外,大脑独特的发育、遗传、表观遗传和微环境特征以及脑瘤患病人数的稀少为深入研究GBM的病理机制又加上了一道难关 [22]。

2. 复制应激与胶质母细胞瘤

2.1. 复制应激

复制应激又称复制压力,广义地来讲,复制应激是指DNA复制过程中基因组所处的一种不稳定的状态 [23]。复制应激时刻伴随着哺乳动物细胞的各种生理、病理进程,可由多种因素诱导产生,包括核苷酸库的缺乏、错误掺入的核苷酸、复制转录冲突、RNA-DNA杂合体的生成、DNA交联、致癌基因诱导的复制起点增加、复制叉功能障碍以及染色质结构的改变等 [24]。

不同类型的复制压力可造成不同类型的损伤,为了防止损伤对基因组的完整性造成影响,我们的机体衍生出了一套复杂的信号通路和完备的修复体系来应对,即复制应激反应(RSR),其中占据主要地位的是DNA损伤反应(DDR),其可通过延缓细胞周期进程,阻滞DNA复制以及上调DNA修复蛋白活性等多个方面来修复DNA损伤,从而恢复DNA复制 [25] [26] [27]。若细胞未能正确克服此类损伤则会导致染色体复制无法完成,进而导致有丝分裂灾难、复杂的染色体重排和细胞死亡 [28]。

2.2. DNA损伤反应(DDR)

DNA损伤反应是一种由激酶介导的级联反应,由共济失调毛细血管扩张突变激酶(ATM),共济失调毛细血管扩张和Rad3相关激酶(ATR)和DNA依赖性蛋白激酶(DNA-PK)共同介导,这三种蛋白均属于磷酸肌醇3-激酶相关激酶(PIKK)家族,是DNA损伤反应通路的核心传导分子,作为复制应激的早期响应部分,ATM和DNA-PK主要响应双链断裂损伤(DSBs),而ATR则响应单链断裂损伤 [29] [30] [31]。它们可为复制压力的解除供充足的时空条件 [26] [32]。三者既有各自独立的信号通路,在某些情况下功能也存在冗余和重叠 [33]。

ATM被多种刺激激活,包括DSBs、缺氧和活性氧(ROS)等。当DNA的两条链都受损时,传感器复合物MRN (Mre11-Rad50-Nbs1)会在受损部位与DNA结合,进而招募ATM,ATM经自磷酸化激活,启动信号级联 [30] [34]。ATM的下游响应器为检查点蛋白CHK2和p53,其可通过激活G1/S检查点(p53/p21),S期内检查点(cdc25A/CDK2)和G2/M期检查点(cdc25c/cdk1)来调控细胞周期进程 [26] [34]。除此之外,ATM参与了同源重组修复(HR)中DNA末端切除过程。HR需要对DSB末端加工来产生单链DNA (ssDNA),生成的ssDNA与重组酶RAD51结合后插入到姐妹染色单体的双链DNA中并以其为模板进行修复,因此末端切除是DSB修复途径的关键决定因素。ATM参与末端切除中单链DNA的牵引,在同源重组修复中具有重要作用 [35]。ATM常常在癌症中缺失,研究显示ATM的缺失会导致“轻度”HR受损 [36]。

ATR响应单链DNA (ssDNA)的产生,单链DNA通常在停止活动的复制叉处形成,DNA解旋酶和聚合酶解偶联暴露出一段单链DNA,除此之外,ssDNA也在修复DSB位点期间产生。复制蛋白A(RPA)覆盖ssDNA以使其稳定并避免形成破坏性二级结构 [31]。ATR与ATR相互作用蛋白(ATRIP)结合,被募集到RPA包被的ssDNA。一旦被招募到损伤部位,9-1-1 (Rad9-HUS1-Rad1)等调节复合物就会进一步募集到受损部位并激活ATR。ATR下游响应器为CHK1,CHK1通过去磷酸化cdc25家族蛋白,阻止CDK的活化,同时chk1可激活下游蛋白Wee1,负调控CDK/Cyclin复合物的活性,抑制S期和G2/M期进展 [34] [37] [38]。ATR/CHK1通路的活化促进了复制叉的稳定,同时抑制新的复制起点的活化,从而防止因RPA蛋白的耗竭而造成DNA断裂和复制叉塌陷 [39]。最终,ATR可通过磷酸化激活解旋酶SMARCAL1和染色质重塑因子SWI/SNF等蛋白 [33] [40] 以及核苷酸的供应重启复制叉 [41]。复制应激发生时,ATR/CHK1通路在恢复DNA复制的多个方面发挥了关键的作用,故ATR,CHK1以及Wee1蛋白是目前针对复制应激药物研发的重点对象。

不同于ATM和ATR,DNA-PK下游信号较少,仅作为支架募集DNA修复蛋白并磷酸化下游X线修复交叉互补基因4 (XRCC4)和γ-H2AX信号,参与非同源末端链接修复 [29] [40]。

2.3. DNA损伤修复

当DNA复制过程受到不良因素干扰时,可产生各种类型的损伤,包括碱基修饰和错配、DNA链间或链内交联、单链断裂和双链断裂,其中双链断裂损伤是最致命的损伤类型,可由其它未修复的损伤类型累积转化而来。单链损伤修复分为碱基切除修复(BER),核苷酸切除修复(NER)和错配修复(MMR),其共同特点为通过识别和切除少量受损的碱基,然后以另一条链为模板链来合成新的序列 [27] [35]。早期BER,NER和MMR系统的活化可防止少量的碱基损伤累积和进一步转化成严重的DNA断裂损伤。

双链损伤修复中涉及的两种修复系统是同源重组(HR)和非同源末端连接(NHEJ),由于涉及两条链的修复,机制更加复杂。HR需要以姐妹染色单体为模板合成修复的链,故只能发生在DNA复制后的S/G2期,这是一种高度保真的修复方式 [42]。而在缺乏可供参考的姐妹染色体单链时,NHEJ就会被调用。由于没有可复制的模板,NHEJ通过连接DSB的两端来发挥作用。虽然该系统能够修复DSB,但不能将DNA恢复到损伤前的原始状态 [43]。链间交联是一种特殊的DNA损伤修复方式,由范可尼贫血途径修复 [44]。

3. 靶向激活GBM中的复制应激

3.1. 靶向DDR通路

未能缓解和改善的复制应激常常导致肿瘤的发生,而由于肿瘤细胞DNA损伤修复通路的缺陷和癌基因的驱动,其有丝分裂旺盛,加上放化疗药物的干扰,肿瘤处于高度复制应激的状态。一方面,高水平复制应激所诱导的基因突变可能促进肿瘤细胞的突变和进化,另一方面,高水平的复制应激使得肿瘤细胞在加剧复制应激的疗法面前变得脆弱不堪。DDR通路是肿瘤细胞复制进程的守护者和“刹车”,当DDR通路被抑制时,细胞失去检查点的控制,此时细胞犹如一辆即将散架却在高速行驶的破马车,带着受损的DNA进入不可逆的有丝分裂,最终导致复制灾难的发生。因此,利用DDR通路的抑制剂与放化疗联用诱导肿瘤细胞产生复制灾难可能是目前治疗GBM有效的合成致死策略。

TMZ诱导DNA鸟嘌呤的N7和O6发生甲基化,一方面,O(6)-甲基鸟嘌呤(O(6)-MeG)的存在阻止了DNA复制,诱导DDR通路的活化,导致G2/M期停滞 [45] [46]。另一方面,MMR系统被激活,由于MMR将子链中错配的嘧啶切除留下缺口,持续的O(6)-MeG的产生和MMR系统的活化最终导致复制叉的塌陷和DNA断裂,细胞发生凋亡 [47]。

研究显示,O(6)-MeG触发ATM和ATR的活化,介导TMZ的耐药,ATM和ATR突变的胶质瘤细胞对替莫唑胺敏感。相比于ATM/CHK2通路,ATR/CHK1在介导TMZ耐药中占主要地位 [48]。此外,TMZ诱导的ATM/ATR激活导致p53的15和20位丝氨酸磷酸化,使细胞周期停滞在G1/S期,促进促生存基因的转录 [49]。AZD6738是基于AZ20结构进行优化的第二代ATR抑制剂,是唯一一个BBB透过性较好的小分子ATR抑制剂,遗憾的是,其无法改善GIC驱动的GBM模型小鼠的放疗敏感性 [50]。而在另一项研究中,抑制ATR可抑制GSC的生长,和PARP的双重抑制可显著抑制GSC的生长(p < 0.001),消除其辐射抗性 [51]。因此,ATR抑制是否能改善GBM患者的预后,以及ATR抑制剂是否针对某类GBM患者亚群,未来需要更多的研究来支持。KU-60019是一种新型ATM激酶抑制剂,其与放疗联用可增加GBM原位异种移植模型小鼠的生存率,并且p53突变的细胞对ATM抑制剂联合放疗更加敏感。虽然在小鼠模型中表现出优异的疗效,但是KU-60019的BBB渗透性不佳,需要局部递送 [52]。AZD1390是一种专为透过BBB而设计的ATM抑制剂,在GBM临床前模型中显示出优异的放疗增敏效果 [53]。C11放射性标记实验表明,AZD1390可透过人的完整的BBB,为AZD1390应用于GBM等脑部肿瘤提供了依据 [54]。目前,AZD1390正在一项联合放疗的临床试验中评估其在原发性和复发性GBM患者安全性和耐受性(NCT03423628)。

ATR/ATM下游的靶点Chk1也一直是靶向DDR小分子抑制剂研发领域的重点关注对象。Bao等人的研究显示,抑制Chk1可显著增强GSC对放疗的敏感性 [55],在GBM动物模型中,Chk1抑制剂可显著增强了DNA损伤疗法的作用,且p53突变的细胞更加敏感,因为p53突变的细胞缺乏G1/S期检查点,主要依赖Chk1通路解决复制压力 [56]。Chk1抑制剂如MK8776和LY2606368在临床前模型中显示出良好的BBB透过性,目前正在I/II期临床试验中进行评估,尚未涉及GBM患者。

Wee1是一种由Chk1激活的激酶,可抑制细CDK1的活性,从而阻止有丝分裂进入。迄今为止,唯一可用的Wee1抑制剂是MK1775,它具有良好的BBB渗透性,目前正在接受IR和TMZ治疗的GBM患者中进行测试(NCT02207010) [57]。

3.2. 靶向DNA损伤修复蛋白

TMZ与DNA碱基形成甲基化加合物诱导DNA单链断裂损伤积累。TMZ的耐药机制被认为与O6-DNA甲基转移酶MGMT和碱基切除修复(BER)有关 [58] [59]。不依赖于任何蛋白和辅因子,MGMT可将O6-DNA上的甲基直接至自身半胱氨酸残基上,修复TMZ造成的损伤 [58]。研究显示,MGMT甲基化发生在45%~70%的高级别胶质瘤中 [60] [61],MGMT高甲基化给接受烷化剂和放疗的患者带来了生存益处,在MGMT启动子甲基化的患者中,应用TMZ的患者生存率提高了6.7个月 [62]。Jackson CB等人的研究表明,ATR抑制剂使MGMT缺陷的细胞对TMZ更敏感,这可能为MGMT突变患者进一步带来治疗益处 [63]。O-6-苄基鸟嘌呤(O6BG)是MGMT的假底物,可透过BBB [64],但早期研究显示,O6BG与TMZ联用无法为GBM患者带来生存益处 [65],而其它MGMT假底物如Lomeguatrib,其与GBM相关的探索目前仍处于临床前研究阶段。

除了O6-MeG,TMZ可诱导DNA鸟嘌呤N7-和N3-位的甲基化,该加合物由BER介导切除。PARP是参与碱基切除修复(BER)途径的关键蛋白,响应于DNA损伤,PARP-1与单链DNA结合,形成长链ADP-核糖多聚体来为BER途径的修复蛋白XRCC1,DNA聚合酶,DNA连接酶和FEN-1等提供募集平台,形成BER复合物,促进DNA修复 [59] [66]。研究显示,抑制PARP可导致DNA断裂损伤增加,使细胞对TMZ的敏感性增加。除此之外,PARP也促进了MGMT与染色质的结合,参与MGMT对O6MeG的移除,PARP的抑制可恢复表达MGMT的GBM对TMZ敏感性 [67]。

TMZ的获得性耐药与MMR基因的突变相关,包括MSH2、MSH6、MLH1和PMS2,这些突变在原发性肿瘤中极为罕见。在MMR通路缺陷的GBM中,PARP抑制剂可恢复GBM对TMZ的敏感性,且与BER通路无关 [68]。

携带BRCA1或BRCA2突变的肿瘤存在HR缺陷,导致它们易受PARP抑制剂的影响。该合成致死策略最成功的案例是PARP抑制剂在BRCA突变的乳腺癌和卵巢癌中的应用 [69] [70] [71]。在胶质瘤的背景下,具有IDH1/2突变的肿瘤可能表现出“BRCAness”表型,这可能与肿瘤代谢物水平升高导致HR抑制有关 [72]。同时,部分IDH突变的肿瘤对传统的DNA损伤化学疗法如替莫唑胺以及PARP1抑制剂敏感也支持这一观点 [73] [74]。PARP抑制剂Niraparib和Veliparib均具有良好的BBB渗透性,一项在Veliparib联用放疗和TMZ治疗MGMT非甲基化的GBM患者的随机II期临床实验结果显示,含veliparib的方案可行且耐受性良好,但目前为止,Veliparib的加入并未给患者带来足够的临床获益 [75]。PARP抑制剂是否能为GBM患者带来临床获益还有待观察,未来还需要更多研究进一步探讨PARP在不同基因突变背景下介导修复的确切机制,帮助不同亚型的GBM患者获得最大临床收益。

4. 回顾与展望

本综述讨论了目前GBM治疗概况以及靶向DNA损伤信号通路的相关研究进展,可以看到,GBM是一种异质性极强的肿瘤,不同分子亚型的GBM对不同疗法的响应不同。目前,针对复制应激反应,已有一些列可通过BBB的小分子抑制被开发出来,接下来需要对DNA损伤信号通路之间的交互作用,以及不同治疗背景下DDR通路响应的差异进行深入研究,寻找相关标志物,为有针对性地治疗GBM患者提供理论依据。

NOTES

*通讯作者。

参考文献

[1] Morgan, L.L. (2015) The Epidemiology of Glioma in Adults: A “State of the Science” Review. Neuro-Oncology, 17, 623-624.
https://doi.org/10.1093/neuonc/nou358
[2] Ostrom, Q.T., Gittleman, H., Liao, P., et al. (2014) CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007-2011. Neuro-Oncology, 16, iv1-iv63.
https://doi.org/10.1093/neuonc/nou223
[3] Jiang, T., Nam, D.H., Ram, Z., et al. (2021) Clinical Practice Guidelines for the Management of Adult Diffuse Gliomas. Cancer Letters, 499, 60-72.
https://doi.org/10.1016/j.canlet.2020.10.050
[4] Osswald, M., Jung, E., Sahm, F., et al. (2015) Brain Tumour Cells Interconnect to a Functional and Resistant Network. Nature, 528, 93-98.
https://doi.org/10.1038/nature16071
[5] Stupp, R., Hegi, M.E., Mason, W.P., et al. (2009) Effects of Radiotherapy with Concomitant and Adjuvant Temozolomide versus Radiotherapy Alone on Survival in Glioblastoma in a Randomised Phase III Study: 5-Year Analysis of the EORTC-NCIC Trial. The Lancet Oncology, 10, 459-466.
https://doi.org/10.1016/S1470-2045(09)70025-7
[6] Brandes, A.A., Tosoni, A., Franceschi, E., Reni, M., Gatta, G. and Vecht, C. (2008) Glioblastoma in Adults. Critical Reviews in Oncology/Hematology, 67, 139-152.
https://doi.org/10.1016/j.critrevonc.2008.02.005
[7] Sandmann, T., Bourgon, R., Garcia, J., et al. (2015) Patients with Proneural Glioblastoma May Derive Overall Survival Benefit from the Addition of Bevacizumab to First-Line Radiotherapy and Temozolomide: Retrospective Analysis of the AVAglio Trial. Journal of Clinical Oncology, 33, 2735-2744.
https://doi.org/10.1200/JCO.2015.61.5005
[8] Pasqualetti, F., Gonnelli, A., Molinari, A., et al. (2018) Different Timing to Use Bevacizumab in Patients with Recurrent Glioblastoma: Early versus Delayed Administration. Anticancer Research, 38, 5877-5881.
https://doi.org/10.21873/anticanres.12930
[9] Chinot, O.L., Wick, W., Mason, W., et al. (2014) Bevacizumab plus Radiotherapy-Temozolomide for Newly Diagnosed Glioblastoma. The New England Journal of Medicine, 370, 709-722.
https://doi.org/10.1056/NEJMoa1308345
[10] Chaudhry, A., Benson, L., Varshaver, M., et al. (2015) NovoTTF™-100A System (Tumor Treating Fields) Transducer Array Layout Planning for Glioblastoma: A NovoTAL™ System User Study. World Journal of Surgical Oncology, 13, Article No. 316.
https://doi.org/10.1186/s12957-015-0722-3
[11] Stupp, R., Taillibert, S., Kanner, A., et al. (2017) Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial. Journal of the American Medical Association, 318, 2306-2316.
https://doi.org/10.1001/jama.2017.18718
[12] Rominiyi, O., Vanderlinden, A., Clenton, S.J., Bridgewater, C., Al-Tamimi, Y. and Collis, S.J. (2021) Tumour Treating Fields Therapy for Glioblastoma: Current Advances and Future Directions. British Journal of Cancer, 124, 697-709.
https://doi.org/10.1038/s41416-020-01136-5
[13] Murciano-Goroff, Y.R., Warner, A.B. and Wolchok, J.D. (2020) The Future of Cancer Immunotherapy: Microenvironment-Targeting Combinations. Cell Research, 30, 507-519.
https://doi.org/10.1038/s41422-020-0337-2
[14] Gerstner, E.R. and Fine, R.L. (2007) Increased Permeability of the Blood-Brain Barrier to Chemotherapy in Metastatic Brain Tumors: Establishing a Treatment Paradigm. Journal of Clinical Oncology, 25, 2306-2312.
https://doi.org/10.1200/JCO.2006.10.0677
[15] Bagchi, S., Chhibber, T., Lahooti, B., Verma, A., Borse, V. and Jayant, R.D. (2019) In-Vitro Blood-Brain Barrier Models for Drug Screening and Permeation Studies: An Overview. Drug Design, Development and Therapy, 13, 3591-3605.
https://doi.org/10.2147/DDDT.S218708
[16] Chowdhury, E.A., Noorani, B., Alqahtani, F., et al. Understanding the Brain Uptake and Permeability of Small Molecules through the BBB: A Technical Overview. Journal of Cerebral Blood Flow & Metabolism, 41, 1797-1820.
https://doi.org/10.1177/0271678X20985946
[17] Verhaak, R.G., Hoadley, K.A., Purdom, E., et al. (2010) Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 17, 98-110.
https://doi.org/10.1016/j.ccr.2009.12.020
[18] Neftel, C., Laffy, J., Filbin, M.G., et al. (2019) An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma. Cell, 178, 835-849.E21.
https://doi.org/10.1016/j.cell.2019.06.024
[19] Helleday, T., Petermann, E., Lundin, C., Hodgson, B. and Sharma, R.A. (2008) DNA Repair Pathways as Targets for Cancer Therapy. Nature Reviews Cancer, 8, 193-204.
https://doi.org/10.1038/nrc2342
[20] Huang, Z., Cheng, L., Guryanova, O.A., Wu, Q. and Bao, S. (2010) Cancer Stem Cells in Glioblastoma-Molecular Signaling and Therapeutic Targeting. Protein & Cell, 1, 638-655.
https://doi.org/10.1007/s13238-010-0078-y
[21] Morgan, M.A. and Canman, C.E. (2018) Replication Stress: An Achilles’ Heel of Glioma Cancer Stem-Like Cells. Cancer Research, 78, 6713-6716.
https://doi.org/10.1158/0008-5472.CAN-18-2439
[22] Aldape, K., Brindle, K.M., Chesler, L., et al. (2019) Challenges to Curing Primary Brain Tumours. Nature Reviews Clinical Oncology, 16, 509-520.
https://doi.org/10.1038/s41571-019-0177-5
[23] Ngoi, N.Y.L., Pham, M.M., Tan, D.S.P. and Yap, T.A. (2021) Targeting the Replication Stress Response through Synthetic Lethal Strategies in Cancer Medicine. Trends in Cancer, 7, 930-957.
https://doi.org/10.1016/j.trecan.2021.06.002
[24] Zeman, M.K. and Cimprich, K.A. (2014) Causes and Consequences of Replication Stress. Nature Cell Biology, 16, 2-9.
https://doi.org/10.1038/ncb2897
[25] Harper, J.W. and Elledge, S.J. (2007) The DNA Damage Response: Ten Years after. Molecular Cell, 28, 739-745.
https://doi.org/10.1016/j.molcel.2007.11.015
[26] Blackford, A.N. and Jackson, S.P. (2017) ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Molecular Cell, 66, 801-817.
https://doi.org/10.1016/j.molcel.2017.05.015
[27] Jackson, S.P. and Bartek, J. (2009) The DNA-Damage Response in Human Biology and Disease. Nature, 461, 1071- 1078.
https://doi.org/10.1038/nature08467
[28] Toledo, L., Neelsen, K.J. and Lukas, J. (2017) Replication Catastrophe: When a Checkpoint Fails Because of Exhaustion. Molecular Cell, 66, 735-749.
https://doi.org/10.1016/j.molcel.2017.05.001
[29] Damia, G. (2020) Targeting DNA-PK in Cancer. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 821, Article ID: 111692.
https://doi.org/10.1016/j.mrfmmm.2020.111692
[30] Stagni, V., Oropallo, V., Fianco, G., Antonelli, M., Cinà, I. and Barilà, D. (2014) Tug of War between Survival and Death: Exploring ATM Function in Cancer. International Journal of Molecular Sciences, 15, 5388-5409.
https://doi.org/10.3390/ijms15045388
[31] Armstrong, S.A., Schultz, C.W., Azimi-Sadjadi, A., Brody, J.R. and Pishvaian, M.J. (2019) ATM Dysfunction in Pancreatic Adenocarcinoma and Associated Therapeutic Implications. Molecular Cancer Therapeutics, 18, 1899-1908.
https://doi.org/10.1158/1535-7163.MCT-19-0208
[32] Curtin, N.J. (2012) DNA Repair Dysregulation from Cancer Driver to Therapeutic Target. Nature Reviews Cancer, 12, 801-817.
https://doi.org/10.1038/nrc3399
[33] Maréchal, A. and Zou, L. (2013) DNA Damage Sensing by the ATM and ATR Kinases. Cold Spring Harbor Perspectives in Biology, 5, a012716.
https://doi.org/10.1101/cshperspect.a012716
[34] Shiloh, Y. and Ziv, Y. (2013) The ATM Protein Kinase: Regulating the Cellular Response to Genotoxic Stress, and More. Nature Reviews Molecular Cell Biology, 14, 197-210.
https://doi.org/10.1038/nrm3546
[35] Ferri, A., Stagni, V. and Barilà, D. (2020) Targeting the DNA Damage Response to Overcome Cancer Drug Resistance in Glioblastoma. International Journal of Molecular Sciences, 21, Article No. 4910.
https://doi.org/10.3390/ijms21144910
[36] Bakr, A., Oing, C., Köcher, S., et al. (2015) Involvement of ATM in Homologous Recombination after End Resection and RAD51 Nucleofilament Formation. Nucleic Acids Research, 43, 3154-3166.
https://doi.org/10.1093/nar/gkv160
[37] Ciccia, A. and Elledge, S.J. (2010) The DNA Damage Response: Making It Safe to Play with Knives. Molecular Cell, 40, 179-204.
https://doi.org/10.1016/j.molcel.2010.09.019
[38] Mailand, N., Falck, J., Lukas, C., et al. (2000) Rapid Destruction of Human Cdc25A in Response to DNA Damage. Science, 288, 1425-1429.
https://doi.org/10.1126/science.288.5470.1425
[39] Toledo, L.I., Altmeyer, M., Rask, M.B., et al. (2013) ATR Prohibits Replication Catastrophe by Preventing Global Exhaustion of RPA. Cell, 155, 1088-1103.
https://doi.org/10.1016/j.cell.2013.10.043
[40] Damia, G. (2020) Targeting DNA-PK in Cancer. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 821, Article ID: 111692.
https://doi.org/10.1016/j.mrfmmm.2020.111692
[41] Zhang, Y.W., Jones, T.L., Martin, S.E., Caplen, N.J. and Pommier, Y. (2009) Implication of Checkpoint Kinase- Dependent Up-Regulation of Ribonucleotide Reductase R2 in DNA Damage Response. Journal of Biological Chemistry, 284, 18085-18095.
https://doi.org/10.1074/jbc.M109.003020
[42] Li, X. and Heyer, W.D. (2008) Homologous Recombination in DNA Repair and DNA Damage Tolerance. Cell Research, 18, 99-113.
https://doi.org/10.1038/cr.2008.1
[43] Chang, H.H.Y., Pannunzio, N.R., Adachi, N. and Lieber, M.R. (2017) Non-Homologous DNA End Joining and Alternative Pathways to Double-Strand Break Repair. Nature Reviews Molecular Cell Biology, 18, 495-506.
https://doi.org/10.1038/nrm.2017.48
[44] Degan, P., Cappelli, E., Regis, S. and Ravera, S. (2019) New Insights and Perspectives in Fanconi Anemia Research. Trends in Molecular Medicine, 25, 167-170.
https://doi.org/10.1016/j.molmed.2019.01.003
[45] Denny, B.J., Wheelhouse, R.T., Stevens, M.F., Tsang, L.L. and Slack, J.A. (1994) NMR and Molecular Modeling Investigation of the Mechanism of Activation of the Antitumor Drug Temozolomide and Its Interaction with DNA. Biochemistry, 33, 9045-9051.
https://doi.org/10.1021/bi00197a003
[46] Tisdale, M.J. (1987) Antitumor Imidazotetrazines—XV. Role of Guanine O6 Alkylation in the Mechanism of Cytotoxicity of Imidazotetrazinones. Biochemical Pharmacology, 36, 457-462.
https://doi.org/10.1016/0006-2952(87)90351-0
[47] Mojas, N., Lopes, M. and Jiricny, J. (2007) Mismatch Repair-Dependent Processing of Methylation Damage Gives Rise to Persistent Single-Stranded Gaps in Newly Replicated DNA. Genes & Development, 21, 3342-3355.
https://doi.org/10.1101/gad.455407
[48] Eich, M., Roos, W.P., Nikolova, T. and Kaina, B. (2013) Contribution of ATM and ATR to the Resistance of Glioblastoma and Malignant Melanoma Cells to the Methylating Anticancer Drug Temozolomide. Molecular Cancer Therapeutics, 12, 2529-2540.
https://doi.org/10.1158/1535-7163.MCT-13-0136
[49] Matt, S. and Hofmann, T.G. (2016) The DNA Damage-Induced Cell Death Response: A Roadmap to Kill Cancer Cells. Cellular and Molecular Life Sciences, 73, 2829-2850.
https://doi.org/10.1007/s00018-016-2130-4
[50] Fròsina, G., Profumo, A., Marubbi, D., Marcello, D., Ravetti, J.L. and Daga, A. (2018) ATR Kinase Inhibitors NVP- BEZ235 and AZD6738 Effectively Penetrate the Brain after Systemic Administration. Radiation Oncology, 13, Article No. 76.
https://doi.org/10.1186/s13014-018-1020-3
[51] Carruthers, R.D., Ahmed, S.U., Ramachandran, S., et al. (2018) Replication Stress Drives Constitutive Activation of the DNA Damage Response and Radioresistance in Glioblastoma Stem-Like Cells. Cancer Research, 78, 5060-5071.
https://doi.org/10.1158/0008-5472.CAN-18-0569
[52] Biddlestone-Thorpe, L., Sajjad, M., Rosenberg, E., et al. (2013) ATM Kinase Inhibition Preferentially Sensitizes p53- Mutant Glioma to Ionizing Radiation. Clinical Cancer Research, 19, 3189-3200.
https://doi.org/10.1158/1078-0432.CCR-12-3408
[53] Durant, S.T., Zheng, L., Wang, Y., et al. (2018) The Brain-Penetrant Clinical ATM Inhibitor AZD1390 Radiosensitizes and Improves Survival of Preclinical Brain Tumor Models. Science Advances, 4, eaat1719.
https://doi.org/10.1126/sciadv.aat1719
[54] Jucaite, A., Stenkrona, P., Cselényi, Z., et al. (2021) Brain Exposure of the ATM Inhibitor AZD1390 in Humans—A Positron Emission Tomography Study. Neuro-Oncology, 23, 687-696.
https://doi.org/10.1093/neuonc/noaa238
[55] Bao, S., Wu, Q., McLendon, R.E., et al. (2006) Glioma Stem Cells Promote Radioresistance by Preferential Activation of the DNA Damage Response. Nature, 444, 756-760.
https://doi.org/10.1038/nature05236
[56] Patties, I., Kallendrusch, S., Böhme, L., et al. (2019) The Chk1 Inhibitor SAR-020106 Sensitizes Human Glioblastoma Cells to Irradiation, to Temozolomide, and to Decitabine Treatment. Journal of Experimental & Clinical Cancer Research, 38, Article No. 420.
https://doi.org/10.1186/s13046-019-1434-2
[57] Alexander, B., Supko, J., Agar, N., Ahluwalia, M., Desai, A., Dietrich, J., Kaley, T., Peereboom, D., Takebe, N., Desideri, S., et al. (2018) ACTR-14. Phase I Study of AZD1775 with Radiation Therapy (RT) and Temozolomide (TMZ) in Patients with Newly Diagnosed Glioblastoma (GBM) and Evaluation of Intratumoral Drug Distribution in Patients with Recurrent GBM. Neuro-Oncology, 20, vi13-vi14.
https://doi.org/10.1093/neuonc/noy148.048
[58] Wick, W., Weller, M., van den Bent, M., et al. (2014) MGMT Testing—The Challenges for Biomarker-Based Glioma Treatment. Nature Reviews Neurology, 10, 372-385.
https://doi.org/10.1038/nrneurol.2014.100
[59] Wood, R.D., Mitchell, M., Sgouros, J. and Lindahl, T. (2001) Human DNA Repair Genes. Science, 291, 1284-1289.
https://doi.org/10.1126/science.1056154
[60] Hegi, M.E., Diserens, A.C., Gorlia, T., et al. (2005) MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. The New England Journal of Medicine, 352, 997-1003.
https://doi.org/10.1056/NEJMoa043331
[61] Mellai, M., Monzeglio, O., Piazzi, A., et al. (2012) MGMT Promoter Hypermethylation and Its Associations with Genetic Alterations in a Series of 350 Brain Tumors. Journal of Neuro-Oncology, 107, 617-631.
https://doi.org/10.1007/s11060-011-0787-y
[62] Fan, C.H., Liu, W.L., Cao, H., Wen, C., Chen, L. and Jiang, G. (2013) O6-Methylguanine DNA Methyltransferase as a Promising Target for the Treatment of Temozolomide-Resistant Gliomas. Cell Death & Disease, 4, e876.
https://doi.org/10.1038/cddis.2013.388
[63] Jackson, C.B., Noorbakhsh, S.I., Sundaram, R.K., et al. (2019) Temozolomide Sensitizes MGMT-Deficient Tumor Cells to ATR Inhibitors. Cancer Research, 79, 4331-4338.
https://doi.org/10.1158/0008-5472.CAN-18-3394
[64] Middleton, M.R. and Margison, G.P. (2003) Improvement of Chemotherapy Efficacy by Inactivation of a DNA-Repair Pathway. The Lancet Oncology, 4, 37-44.
https://doi.org/10.1016/S1470-2045(03)00959-8
[65] Quinn, J.A., Jiang, S.X., Reardon, D.A., et al. (2009) Phase II Trial of Temozolomide plus O6-Benzylguanine in Adults with Recurrent, Temozolomide-Resistant Malignant Glioma. Journal of Clinical Oncology, 27, 1262-1267.
https://doi.org/10.1200/JCO.2008.18.8417
[66] Hickson, I.D. (1997) Base Excision Repair of DNA Damage. Landes Bioscience and Chapman & Hall, Austin.
[67] Wu, S., Li, X., Gao, F., de Groot, J.F., Koul, D. and Yung, W.K.A. (2021) PARP-Mediated PARylation of MGMT Is Critical to Promote Repair of Temozolomide-Induced O6-Methylguanine DNA Damage in Glioblastoma. Neuro-Oncology, 23, 920-931.
https://doi.org/10.1093/neuonc/noab003
[68] Higuchi, F., Nagashima, H., Ning, J., Koerner, M.V.A., Wakimoto, H. and Cahill, D.P. (2020) Restoration of Temozolomide Sensitivity by PARP Inhibitors in Mismatch Repair Deficient Glioblastoma Is Independent of Base Excision Repair. Clinical Cancer Research, 26, 1690-1699.
https://doi.org/10.1158/1078-0432.CCR-19-2000
[69] Farmer, H., McCabe, N., Lord, C.J., et al. (2005) Targeting the DNA Repair Defect in BRCA Mutant Cells as a Therapeutic Strategy. Nature, 434, 917-921.
https://doi.org/10.1038/nature03445
[70] Bryant, H.E., Schultz, N., Thomas, H.D., et al. (2005) Specific Killing of BRCA2-Deficient Tumours with Inhibitors of Poly(ADP-Ribose) Polymerase. Nature, 434, 913-917.
https://doi.org/10.1038/nature03443
[71] Mateo, J., Lord, C.J., Serra, V., et al. (2019) A Decade of Clinical Development of PARP Inhibitors in Perspective. Annals of Oncology, 30, 1437-1447.
https://doi.org/10.1093/annonc/mdz192
[72] Ning, J. and Wakimoto, H. (2020) Therapeutic Application of PARP Inhibitors in Neuro-Oncology. Trends in Cancer, 6, 147-159.
https://doi.org/10.1016/j.trecan.2019.12.004
[73] Sulkowski, P.L., Oeck, S., Dow, J., et al. (2020) Oncometabolites Suppress DNA Repair by Disrupting Local Chromatin Signalling. Nature, 582, 586-591.
https://doi.org/10.1038/s41586-020-2363-0
[74] Wang, Y., Wild, A.T., Turcan, S., et al. (2020) Targeting Therapeutic Vulnerabilities with PARP Inhibition and Radiation in IDH-Mutant Gliomas and Cholangiocarcinomas. Science Advances, 6, eaaz3221.
https://doi.org/10.1126/sciadv.aaz3221
[75] Sim, H.W., McDonald, K.L., Lwin, Z., et al. (2021) A Randomized Phase II Trial of Veliparib, Radiotherapy, and Temozolomide in Patients with Unmethylated MGMT Glioblastoma: The VERTU Study. Neuro-Oncology, 23, 1736- 1749.
https://doi.org/10.1093/neuonc/noab111