Sortilin蛋白在脂质代谢中的研究进展
Research Progress of Sortilin Protein in Lipid Metabolism
DOI: 10.12677/ACM.2022.124368, PDF, HTML, XML, 下载: 340  浏览: 639 
作者: 初星霖, 柯大智*:重庆医科大学附属第二医院全科医学科,重庆;刘 瑞:重庆医科大学附属第二医院肿瘤科,重庆
关键词: Sortilin脂质代谢胰岛素抵抗Sortilin Lipid Metabolism Insulin Resistance
摘要: 血脂异常是导致各种心血管代谢疾病的重要危险因素,严重影响人类健康。Sortilin作为液泡分拣因子10结构域受体家族的一员,充当细胞的受体或共同受体,介导在细胞内靶向运输不同的蛋白质。它首次在人脑中发现,并广泛表达于神经元、肝细胞、脂肪细胞和巨噬细胞等。近年研究表明,sortilin与脂质代谢相关基因的表达、脂质的合成、转运、分解代谢等密切相关。Sortilin对脂质代谢的多重作用提示其有望作为心血管疾病等脂质代谢相关疾病的潜在治疗靶点。本文将对sortilin在脂质代谢中的作用作一综述。
Abstract: Dyslipidemia has been considered a key factor associated with a series of cardiovascular and metabolic diseases, which seriously affects human health. Sortilin, a member of the vacuolar protein sorting 10 protein (Vps10p) domain receptor family, acts as receptor or co-receptor, mediating the targeted transport of different proteins within cells. It was first discovered in the human brain and is widely expressed in neurons, hepatocytes, adipocytes, and macrophages. Recent studies have shown that sortilin is closely related to the expression of lipid metabolism-related genes, lipid synthesis, transport, and catabolism. The multiple effects of sortilin on lipid metabolism suggest that it may be a potential therapeutic target for lipid metabolism-related diseases such as cardiovascular disease. This article will review the role of sortilin in lipid metabolism.
文章引用:初星霖, 刘瑞, 柯大智. Sortilin蛋白在脂质代谢中的研究进展[J]. 临床医学进展, 2022, 12(4): 2552-2558. https://doi.org/10.12677/ACM.2022.124368

1. 引言

脂质在维持正常细胞生理结构及功能中发挥重要作用。血脂异常,包括血浆低密度脂蛋白胆固醇(Low-Density Lipoprotein Cholesterol, LDL-C)、极低密度脂蛋白胆固醇(Very-Low Density Lipoprotein Cholesterol, VLDL-C)和甘油三酯(Triglyceride, TG)水平升高,以及高密度脂蛋白胆固醇High-Density Lipoprotein Cholesterol, HDL-C)水平降低。近几十年来,血脂异常已对人类健康构成严重威胁,并与肥胖、动脉粥样硬化、2型糖尿病、脂肪肝等多种疾病密切相关 [1]。SORT1编码的Sortilin蛋白又称神经降压素受体-3,它最早在人脑组织中发现,在许多组织如肝脏、脂肪、心血管组织中也有表达 [2]。近年研究发现,sortilin蛋白在调节脂质代谢中起着重要作用。

2. Sortilin蛋白的结构与功能

Sortilin是一种由染色体1p13上的SORT1基因编码的I型跨膜多配体受体,属于液泡蛋白分拣10蛋白(vacuolar sorting protein 10 protein, Vps10p)结构域受体家族,分子量为95 kDa。其主要在神经元、肝细胞、脂肪细胞和包括巨噬细胞在内的白细胞中表达 [2]。Sortilin的结构由Vps10p结构域、跨膜螺旋和细胞质尾部组成,这是内质体运输所必需的。Sortilin前体在内质网中合成,并在跨高尔基体网络中切割加工成其成熟形式,其水平在细胞中最高。大部分的sortilin位于高尔基体,并作为溶酶体分拣受体发挥作用,而小部分的sortilin位于细胞膜上,通过受体介导的内吞作用控制跨膜蛋白的转运 [2]。

越来越多的证据表明,sortilin已经成为一种与脂质代谢密切相关的因子 [3] [4]。Sortilin广泛表达于与脂质代谢密切相关的细胞中,如巨噬细胞、肝细胞、脂肪细胞 [5]。在基因层面上,SORT1在人类中的广泛测序已鉴定出几种常见的单核苷酸多态性,长期的流行病学研究表明血浆脂质水平和SORT1基因之间有很强的关联 [6]。Sortilin参与脂质代谢的多种生物学过程,并与脂质紊乱显著相关。在细胞膜上,sortilin主要参与了受体介导的内吞作用以及作为一种摄取受体,介导巨噬细胞对天然低密度脂蛋白的摄取 [7];在细胞内,sortilin作为高尔基体、内体、溶酶体和细胞膜之间的转运蛋白,并介导不同配体的转运,如脂蛋白脂酶、载脂蛋白E、载脂蛋白A5和载脂蛋白B100 [8]。

3. Sortilin的脂质代谢调控作用

3.1. Sortilin对成脂分化的影响

脂肪组织中含有大量的脂肪来源的间充质干细胞(mesenchymal stem cells, MSCs),它们经过有丝分裂克隆扩增,终末分化等阶段最终分化为成熟的脂肪细胞。成脂分化受到来自环境及细胞内外多个因子的整合调控并会发生基因表达和形态的变化,例如CCAAT/增强子结合蛋白β (CCAAT/enhancer binding proteins beta, C/EBPβ)是成脂分化早期的重要转录因子 [9],它可激活CCAAT/增强子结合蛋白α (CCAAT/enhancer binding proteins alpha, C/EBPα)和过氧化物酶体增殖物激活受体γ (peroxisome proliferators-activated receptors, PPARγ) [10]。PPARγ在脂肪细胞分化、脂肪酸吸收和脂肪生成中起重要作用。Breitling等发现SORT1基因在人前体脂肪细胞分化的过程中表达增加 [11];另一项研究发现sortilin可通过与前体脂肪细胞因子(delta like non-canonical Notch ligand 1, DLK1)的结合抑制DLK1的降解,DLK1的活性片段可进一步降低前脂肪细胞内C/EBPβ和C/EBPα的表达,显著抑制前脂肪细胞的成脂过程,提示sortilin具有抑制成脂分化的能力 [12]。脂联素是一种与脂肪生成程度负相关的脂肪因子 [13],有研究发现,高脂肪高胆固醇饮食的LDLR/SORT1双基因敲除小鼠血浆脂联素水平更高,提示sortilin还可能通过调节脂联素影响成脂分化过程 [14]。

3.2. Sortilin对脂质合成的影响

在脂肪酸合成过程中,多种代谢酶作用至关重要,其中脂肪酸合成酶(fatty acid synthase, FAS)是脂肪酸合成中的关键酶;硬脂酰辅酶A去饱和酶1 (Stearoyl-coenzyme A desatu-rase 1, SCD1)是催化饱和脂肪酸向单不饱和脂肪酸转化的关键限速酶,其催化产物单不饱和脂肪酸是甘油三酯、胆固醇酯、磷脂等形成的重要底物 [15]。Rabinowich等发现SORT1敲除小鼠的肝细胞中编码FAS和SCD1的基因显著下调,并显示出较低的肝细胞间LDL-C浓度,提示这可能是sortilin影响肝细胞中的脂肪合成及储存的机制之一 [16]。

3.3. Sortilin蛋白对脂质摄取、转运的影响

人体内胆固醇的来源主要包括肠道内吸收和肝脏及外周组织的从头合成。胆固醇经肠道吸收在机体胆固醇稳态的调节中起到了至关重要的作用。胆固醇转运体尼曼–匹克C1型样蛋白1 (Niemann-Pick type C1-Like, NPC1L1)是肠道胆固醇吸收的关键转运蛋白,也是治疗高胆固醇血症药物依折麦布的作用靶点 [17]。Hagita等人发现在LDLR基因敲除的雌性小鼠中,敲除sortilin基因可抑制小鼠NPC1L1基因的表达,抑制了小鼠肠道组织对胆固醇的吸收,从而减轻了小鼠体重和白色脂肪组织的重量。他们还发现Sort1的缺乏抑制了体外肠道组织和人结肠Caco-2细胞对胆固醇的吸收 [14]。

在肝细胞中,甘油三酯与载脂蛋白B100 (Apolipoprotein B 100, apoB100)、胆固醇等结合,形成VLDL并释放入血,随后转变为LDL。前蛋白转化酶枯草溶菌素9 (Proprotein convertase subtilisin/kexin type 9, PCSK9)也可通过LDLR结合,触发其细胞内降解,导致LDL从循环中的清除率降低。研究发现sortilin可与肝细胞中的PCSK9结合并促进PCSK9的分泌,导致LDLR的降解和血浆中LDL-C水平的升高 [18] [19] [20]。Kjolby等人发现Sort1敲除小鼠血浆LDL-C、apoB100和TG分泌减少;利用腺病毒使肝脏过度表达SORT1会导致血浆胆固醇和apoB100质量增加。他们推测机制是sortilin在肝细胞高尔基体中与apoB100相互作用促进VLDL分泌,从而增加血浆中LDL-C的水平 [21]。然而,Musunuru等人发现SORT1的过度表达导致肝细胞对LDL-C摄取增强和血浆LDL-C浓度降低 [22]。Bi等人发现过表达sortilin会减少原代小鼠肝细胞和HepG2细胞的apoB分泌 [23]。最近一项研究发现,在非应激条件下,sortilin缺乏对肝细胞apoB分泌的影响很小,但在脂质负荷或内质网应激下,sortilin的缺乏会导致apoB分泌的增加 [24]。综上,sortilin对血脂水平和肝脏含载脂蛋白B的脂蛋白代谢的调节作用是矛盾的,这些结果的差异可能取决于不同的小鼠模型,病理生理状态和敲除SORT1的方法,未来需要更多研究探讨sortilin在肝细胞中脂质转运的真正作用。

在高脂血症中,巨噬细胞吞噬LDL-C并形成泡沫细胞,这些泡沫细胞向内皮下层转移,导致动脉粥样硬化的发生发展。Patel等在SORT1敲除小鼠中,发现缺乏SORT1的巨噬细胞对LDL-C的摄取显著减少,进而抑制泡沫细胞的形成;而巨噬细胞中sortilin的过度表达则促进了LDL-C摄取和泡沫细胞形成 [18] [25],进而加速动脉粥样硬化。此外,巨噬细胞还能通过多种转运体介导的胆固醇流出过程清除细胞内过量的LDL-C,从而抑制泡沫细胞的形成。巨噬细胞中的sortilin可促进胆固醇外排转运体的溶酶体降解,最终导致巨噬细胞产生脂质流出减少,加速泡沫细胞的形成,促进动脉粥样硬化 [26] [27]。

3.4. Sortilin对脂质分解的影响

胆固醇的分解代谢在肝脏内进行。胆固醇大部分可转变为胆汁酸,小部分经肠道内细菌作用转变为粪固醇随粪便排出体外。胆汁酸合成途径在清除体内胆固醇中起着关键作用,羧酸酯酶1 (carboxylesterase 1, CES1)已被证明通过促进胆固醇进入胆汁酸合成途径来防止肝脏脂质堆积 [28]。Li等通过体内和体外实验发现,在高脂饮食条件下,sortilin通过将CES1输送到溶酶体进行降解来降低CES1蛋白;抑制SORT1-/-小鼠的肝脏CES1的表达能够显著增加血浆VLDL-C水平,促进肝胆固醇积聚,加重肝损伤。sortilin通过减少CES1的表达来抑制胆固醇的分解代谢,从而促进肝脏胆固醇积累 [29]。此外,胆固醇7α-羟化酶(cholesterol 7α-hydroxylase, CYP7A1)也是胆汁酸合成途径的关键酶。Sortilin还可能通过抑制肝CYP7A1催化的胆汁酸合成来促进肝脏胆固醇积累 [30]。以上结果均提示sortiin可能通过影响胆汁酸合成途径,这与肝脏脂质累积和非酒精性脂肪肝发病相关。

3.5. Sortilin与胰岛素抵抗

研究表明胰岛素抵抗引起肝脏SORT1表达降低,这提示sortilin可能在胰岛素信号通路以及胰岛素抵抗的脂代谢紊乱中发挥作用 [31]。在胰岛素敏感的条件下,肝脏sortilin蛋白通过溶酶体途径减少和降解,从而降低了apoB100的产生,从而使肝脏apoB100、VLDL和血浆脂质的水平保持在正常范围内。但在胰岛素抵抗的情况下,肝sortilin蛋白通过蛋白酶体依赖性途径直接降解,从而干扰sortiin介导的肝脏apoB100合成和VLDL分泌到血浆。但胰岛素抵抗条件下血浆脂质不能被外周细胞长期吸收,这会盖过sortilin减少对血脂产生的影响,从而引起D2M的高脂血症 [32]。

在脂肪细胞中,sortilin与葡萄糖转运蛋白4 (Glucose Transporter 4, GLUT4)共定位,是GLUT4储存囊中的主要蛋白质之一。Sortilin负责在脂肪细胞和心肌细胞中形成胰岛素反应性GLUT4储存囊,刺激胰岛素调节的葡萄糖摄取。因此,sortilin水平的降低可能会阻止GLUT4的运输和分泌,进而与胰岛素抵抗和2型糖尿病发病相关 [33] [34]。另一项研究表明肥胖中的慢性低级别炎症可能通过调节控制sortilin而导致胰岛素抵抗 [35]。

4. 总结与展望

综上所述,sortilin对脂质代谢具有调控作用,sortilin可影响成脂分化;影响肝细胞中的脂肪合成及储存;影响胆固醇在肠道的吸收,调节胆固醇在肝细胞、巨噬细胞的转运;影响肝脏胆汁酸合成和胆固醇排泄抑制肝脏胆固醇分解代谢,促进肝脏脂质积聚。研究发现通过调控sortilin可以降低肥胖、代谢紊乱和肝脏脂肪变性的发生几率 [36];sortilin可以保护肝窦内皮细胞免受氧化修饰的LDL-C诱导的损伤 [37];另有研究发现microRNA-378a-3p可通过调节SORT1-apoB100轴来控制循环甘油三酯和胆固醇的水平,提示其可作为血脂异常的治疗靶点 [38];以上均提示以sortilin为靶点在脂质代谢相关疾病的治疗中具有良好应用前景。然而,sortilin作为一种分拣受体,对脂质复杂的运输行为可能导致了其在脂质代谢中的矛盾作用,未来需要进一步研究sortilin在各组织器官生理及病理条件下的作用及机制,完善机体脂质代谢相关理论体系,为脂代谢紊乱疾病的防治提供新思路。

NOTES

*通讯作者。

参考文献

[1] Demignot, S., Beilstein, F. and Morel, E. (2014) Triglyceride-Rich Lipoproteins and Cytosolic Lipid Droplets in En-terocytes: Key Players in Intestinal Physiology and Metabolic Disorders. Biochimie, 96, 48-55.
https://doi.org/10.1016/j.biochi.2013.07.009
[2] Al-Yozbaki, M., Acha-Sagredo, A., George, A., Liloglou, T. and Wilson, C.M. (2020) Balancing Neurotrophin Pathway and Sortilin Function: Its Role in Human Disease. Biochimica et Biophysica Acta—Reviews on Cancer, 1874, Article ID: 188429.
https://doi.org/10.1016/j.bbcan.2020.188429
[3] Conlon, D.M. (2019) Role of Sortilin in Lipid Metabolism. Current Opinion in Lipidology, 30, 198-204.
https://doi.org/10.1097/MOL.0000000000000598
[4] Su, X., Chen, L., Chen, X., Dai, C. and Wang, B. (2021) Emerging Roles of Sortilin in Affecting the Metabolism of Glucose and Lipid Profiles. Bosnian Journal of Basic Medical Sciences, 1-13.
https://doi.org/10.17305/bjbms.2021.6601
[5] Kjolby, M., Nielsen, M.S. and Petersen, C.M. (2015) Sortilin, Encoded by the Cardiovascular Risk Gene SORT1, and Its Suggested Functions in Cardiovascular Disease. Current Atherosclerosis Reports, 17, 496.
https://doi.org/10.1007/s11883-015-0496-7
[6] Willer, C.J., Schmidt, E.M., Sengupta, S., Peloso, G.M., Gustafsson, S., Kanoni, S., Ganna, A., Chen, J., Buchkovich, M.L., Mora, S., et al. (2013) Discovery and Refinement of Loci Associated with Lipid Levels. Nature Genetics, 45, 1274-1283.
https://doi.org/10.1038/ng.2797
[7] Wong, I., Liao, H., Bai, X., Zaknic, A., Zhong, J., Guan, Y., Li, H.Y., Wang, Y.J. and Zhou, X.F. (2010) ProBDNF Inhibits Infiltration of ED1+ Macrophages after Spinal Cord Injury. Brain, Behavior, and Immunity, 24, 585-597.
https://doi.org/10.1016/j.bbi.2010.01.001
[8] Zollo, A., Allen, Z., Rasmussen, H.F., Iannuzzi, F., Shi, Y., Larsen, A., Maier, T.J. and Matrone, C. (2017) Sortilin-Related Receptor Expression in Human Neural Stem Cells Derived from Alzheimer’s Disease Patients Carrying the APOE Epsilon 4 Allele. Neural Plasticity, 2017, Article ID: 1892612.
https://doi.org/10.1155/2017/1892612
[9] Payne, V.A., Au, W.S., Lowe, C.E., Rahman, S.M., Friedman, J.E., O’Rahilly, S. and Rochford, J.J. (2009) C/EBP Transcription Factors Regulate SREBP1c Gene Expression during Adipogenesis. Biochemical Journal, 425, 215-223.
https://doi.org/10.1042/BJ20091112
[10] Zheng, X.Y., Zhao, S.P. and Yan, H. (2013) The Role of Apolipoprotein A5 in Obesity and the Metabolic Syndrome. Biological Reviews of the Cambridge Philosophical Society, 88, 490-498.
https://doi.org/10.1111/brv.12005
[11] Breitling, C., Gross, A., Buttner, P., Weise, S., Schleinitz, D., Kiess, W., Scholz, M., Kovacs, P. and Korner, A. (2015) Genetic Contribution of Variants near SORT1 and APOE on LDL Cholesterol Independent of Obesity in Children. PLoS ONE, 10, e0138064.
https://doi.org/10.1371/journal.pone.0138064
[12] Baltes, J., Larsen, J.V., Radhakrishnan, K., Geumann, C., Kratzke, M., Petersen, C.M. and Schu, P. (2014) sigma1B Adaptin Regulates Adipogenesis by Mediating the Sorting of Sortilin in Adipose Tissue. Journal of Cell Science, 127, 3477-3487.
https://doi.org/10.1242/dev.116244
[13] Packer, M. (2018) Leptin-Aldosterone-Neprilysin Axis Identification of Its Distinctive Role in the Pathogenesis of the Three Phenotypes of Heart Failure in People with Obesity. Circulation, 137, 1614-1631.
https://doi.org/10.1161/CIRCULATIONAHA.117.032474
[14] Hagita, S., Rogers, M., Pham, T., Wen, J., Mlynarchik, A., Aikawa, M. and Aikawa, E. (2018) Transcriptional Control of Intestinal Cholesterol Absorption, Adi-pose Energy Expenditure and Lipid Handling by Sortilin. Scientific Reports, 8, Article No. 9006.
https://doi.org/10.1161/atvb.38.suppl_1.595
[15] Chen, C., Hu, Y.Y. and Feng, Q. (2018) Research Progress of stearoyl-CoA Desaturase-1 on Obesity and Non-Alcoholic Fatty Liver Disease Abstract. Chinese Journal of Hepatology, 26, 545-548.
[16] Rabinowich, L., Fishman, S., Hubel, E., Thurm, T., Park, W.J., Pewzner-Jung, Y., Saroha, A., Erez, N., Halpern, Z., Futerman, A.H., et al. (2015) Sortilin Deficiency Improves the Metabolic Phenotype and Reduces He-patic Steatosis of Mice Subjected to Diet-Induced Obesity. Journal of Hepatology, 62, 175-181.
https://doi.org/10.1016/j.jhep.2014.08.030
[17] Labonte, E.D., Camarota, L.M., Rojas, J.C., Jandacek, R.J., Gilham, D.E., Davies, J.P., Ioannou, Y.A., Tso, P., Hui, D.Y. and Howles, P.N. (2008) Reduced Absorption of Saturated Fatty Acids and Resistance to Diet-Induced Obesity and Diabetes by Ezetimibe-Treated and Npc1l1-/-Mice. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 295, G776-G783.
https://doi.org/10.1152/ajpgi.90275.2008
[18] Patel, K.M., Strong, A., Tohyama, J., Jin, X., Morales, C.R., Billheimer, J., Millar, J., Kruth, H. and Rader, D.J. (2015) Macrophage Sortilin Promotes LDL Uptake, Foam Cell Formation, and Atherosclerosis. Circulation Research, 116, 789-796.
https://doi.org/10.1161/CIRCRESAHA.116.305811
[19] Gustafsen, C., Kjolby, M., Nyegaard, M., Mattheisen, M., Lundhede, J., Buttenschon, H., Mors, O., Bentzon, J.F., Madsen, P., Nykjaer, A., et al. (2014) The Hypercholester-olemia-Risk Gene SORT1 Facilitates PCSK9 Secretion. Cell Metabolism, 19, 310-318.
https://doi.org/10.1016/j.cmet.2013.12.006
[20] Sparks, R.P., Arango, A.S., Jenkins, J.L., Guida, W.C., Tajkhorshid, E., Sparks, C.E., Sparks, J.D. and Fratti, R.A. (2020) An Allosteric Binding Site on Sortilin Regulates the Trafficking of VLDL, PCSK9, and LDLR in Hepatocytes. Biochemistry, 59, 4321-4335.
https://doi.org/10.1021/acs.biochem.0c00741
[21] Kjolby, M. andersen, O.M., Breiderhoff, T., Fjorback, A.W., Pedersen, K.M., Madsen, P., Jansen, P., Heeren, J., Willnow, T.E. and Nykjaer, A. (2010) Sort1, Encoded by the Car-diovascular Risk Locus 1p13.3, Is a Regulator of Hepatic Lipoprotein Export. Cell Metabolism, 12, 213-223.
https://doi.org/10.1016/j.cmet.2010.08.006
[22] Musunuru, K., Strong, A., Frank-Kamenetsky, M., Lee, N.E., Ahfeldt, T., Sachs, K.V., Li, X., Li, H., Kuperwasser, N., Ruda, V.M., et al. (2010) From Noncoding Variant to Phe-notype via SORT1 at the 1p13 Cholesterol Locus. Nature, 466, 714-719.
https://doi.org/10.1038/nature09266
[23] Bi, L., Chiang, J.Y., Ding, W.X., Dunn, W., Roberts, B. and Li, T. (2013) Saturated Fatty Acids Activate ERK Signaling to Downregulate Hepatic Sortilin 1 in Obese and Diabetic Mice. Journal of Lipid Research, 54, 2754-2762.
https://doi.org/10.1194/jlr.M039347
[24] Conlon, D.M., Schneider, C.V., Ko, Y.A., Rodrigues, A., Guo, K., Hand, N.J. and Rader, D.J. (2022) Sortilin Restricts Secretion of Apolipoprotein B-100 by Hepatocytes under Stressed But Not Basal Conditions. Journal of Clinical Investigation, 132, e144334.
https://doi.org/10.1172/JCI144334
[25] Su, X. and Peng, D. (2019) New Insight into Sortilin in Controlling Lipid Metabolism and the Risk of Atherogenesis. Biological Reviews, 95, 232-243.
https://doi.org/10.1111/brv.12561
[26] Willnow, T.E., Kjolby, M. and Nykjaer, A. (2011) Sortilins: New Players in Lipoprotein Metabolism. Current Opinion in Lipidology, 22, 79-85.
https://doi.org/10.1097/MOL.0b013e3283416f2b
[27] Lv, Y., Yang, J., Gao, A., Sun, S., Zheng, X., Chen, X., Wan, W., Tang, C., Xie, W., Li, S., et al. (2019) Sortilin Promotes Macrophage Cholesterol Accumulation and Aortic Atherosclerosis through Lysosomal Degradation of ATP-Binding Cassette Transporter A1 Protein. Acta Biochimica et Biophysica Sinica (Shanghai), 51, 471-483.
https://doi.org/10.1093/abbs/gmz029
[28] Xu, J., Li, Y., Chen, W.D., Xu, Y., Yin, L., Ge, X., Jadhav, K., Adorini, L. and Zhang, Y. (2014) Hepatic Carboxylesterase 1 Is Essential for Both Normal and Farnesoid X Receptor-Controlled Lipid Homeostasis. Hepatology, 59, 1761-1771.
https://doi.org/10.1002/hep.26714
[29] Li, J., Wang, Y., Matye, D.J., Chavan, H., Krishnamurthy, P., Li, F. and Li, T. (2017) Sortilin 1 Modulates Hepatic Cholesterol Lipotoxicity in Mice via Functional Interaction with Liver Carboxylesterase 1. Journal of Biological Chemistry, 292, 146-160.
https://doi.org/10.1074/jbc.M116.762005
[30] Krishnamurthy, K., Glaser, S., Alpini, G.D., Cardounel, A.J., Liu, Z. and Ilangovan, G. (2016) Heat Shock Factor-1 Knockout Enhances Cholesterol 7alpha-Hydroxylase (CYP7A1) and Multidrug Transporter (MDR1) Gene Expressions to Attenuate Atherosclerosis. Cardiovascular Research, 111, 74-83.
https://doi.org/10.1093/cvr/cvw094
[31] Sparks, J.D., Magra, A.L., Chamberlain, J.M., O’Dell, C. and Sparks, C.E. (2016) Insulin Dependent Apolipoprotein B Degradation and Phosphatidylinositide 3-Kinase Activation with Microsomal Translocation Are Restored in McArdle RH7777 Cells Following Serum Deprivation. Biochemical and Biophysical Research Communications, 469, 326-331.
https://doi.org/10.1016/j.bbrc.2015.11.068
[32] Sparks, R.P., Guida, W.C., Sowden, M.P., Jenkins, J.L., Starr, M.L., Fratti, R.A., Sparks, C.E. and Sparks, J.D. (2016) Sortilin Facilitates VLDL-B100 Secretion by Insulin Sensitive McArdle RH7777 Cells. Biochemical and Biophysical Research Communications, 478, 546-552.
https://doi.org/10.1016/j.bbrc.2016.07.096
[33] Blondeau, N., Beraud-Dufour, S., Lebrun, P., Hivelin, C. and Coppola, T. (2018) Sortilin in Glucose Homeostasis: From Accessory Protein to Key Player? Frontiers in Pharmacology, 9, Article No. 1561.
https://doi.org/10.3389/fphar.2018.01561
[34] Shi, J. and Kandror, K.V. (2007) The Luminal Vps10p Domain of Sortilin Plays the Predominant Role in Targeting to Insulin-Responsive Glut4-Containing Vesicles. Journal of Biological Chemistry, 282, 9008-9016.
https://doi.org/10.1074/jbc.M608971200
[35] Kaddai, V., Jager, J., Gonzalez, T., Najem-Lendom, R., Bonnafous, S., Tran, A., Le Marchand-Brustel, Y., Gual, P., Tanti, J.F. and Cormont, M. (2009) Involvement of TNF-Alpha in Abnormal Adipocyte and Muscle Sortilin Expression in Obese Mice and Humans. Diabetologia, 52, 932-940.
https://doi.org/10.1007/s00125-009-1273-3
[36] Rabinowich, L., Fishman, S., Hubel, E., Thurm, T., Park, W.J., Pewzner-Jung, Y., Saroha, A., Erez, N., Halpern, Z., Futerman, A.H., et al. (2015) Sortilin Deficiency Improves the Metabolic Phenotype and Reduces Hepatic Steatosis of Mice Subjected to Diet-Induced Obesity. Journal of Hepatology, 62, 175-181.
https://doi.org/10.1016/j.jhep.2014.08.030
[37] Zhang, Q., Lin, W., Tian, L., Di, B., Yu, J., Niu, X. and Liu, J. (2021) Oxidized Low-Density Lipoprotein Activates Extracellular Signal-Regulated Kinase Signaling to Downregulate Sortilin Expression in Liver Sinusoidal Endothelial Cells. Journal of Gastroenterology and Hepatology, 36, 2610-2618.
https://doi.org/10.1111/jgh.15486
[38] Zhang, T., Shi, H., Liu, N., Tian, J., Zhao, X., Steer, C.J., Han, Q. and Song, G. (2020) Activation of microRNA-378a-3p Biogenesis Promotes Hepatic Secretion of VLDL and Hyperlipidemia by Modulating ApoB100-Sortilin1 Axis. Theranostics, 10, 3952-3966.
https://doi.org/10.7150/thno.39578