APP  >> Vol. 2 No. 4 (October 2012)

    用于大面积薄膜沉积的线形等离子体源研究进展
    Research Progress of the Linear Plasma Source Used in the Films Deposition over Large Areas

  • 全文下载: PDF(1325KB) HTML    PP.109-115   DOI: 10.12677/APP.2012.24019  
  • 下载量: 3,498  浏览量: 14,060  

作者:  

左 潇,陈龙威,魏 钰,赵 颖,孟月东:中科院等离子体研究所低温等离子体应用研究室

关键词:
大面积均匀磁场线形等离子体Large Scale; Uniformity; Magnetic Field; Linear Plasma Sources

摘要:

本文系统介绍了几种线形等离子体源的特点及其应用,根据激励源的不同分别称为直流、射频、甚高频、微波、双频线形等离子体源,有磁场辅助的称为磁场增强线形等离子体源。与传统的大面积等离子体源不同,线形等离子体源仅需在一维方向实现均匀、稳定的等离子体,采用多个线形结构并排,或者与被镀样品在水平/垂直方向以适当速度运动,即可获得大面积均匀的薄膜沉积。近年来,研究人员采用磁场约束技术,减少带电粒子在器壁的复合损失,进一步提高等离子体的密度、均匀度和稳定性。线形等离子体及磁场增强线形等离子体密度 > 1011 cm−3,不均匀度 < ±5% (L >1 m),被广泛用于Si3N4、SiO2、光伏电池硅本征层、纳米金刚石等薄膜的大面积沉积,具有很重要的应用价值和科学意义。

The characteristics and application of several kinds of linear plasma sources are introduced. According to the power sources for plasma systems, there are DC, RF, VHF, microwave and dual frequency linear plasma sources, which with a magnet system are called magnetic field enhanced linear plasma sources. Compared with the conventional large scale plasma sources, linear plasma sources take the advantage that they just need to obtain uniform and stable plasma in one dimension. Through the linear plasma array or moving the substrate in horizontal and vertical direction, large scale uniform thin film can be deposited. Recent years, researchers tried to use the magnetic field to confine plasma so as to reduce the recombination loss in plasma and improve the density, uniformity and stability of plasma. The linear plasma sources with the density above1011 cm−3, dis-uniformity below ±5% (L >1 m), have been applied to fabricate large scale Si3N4, SiO2, intrinsic Si and nano-diamond thin film.

文章引用:
左潇, 陈龙威, 魏钰, 赵颖, 孟月东. 用于大面积薄膜沉积的线形等离子体源研究进展[J]. 应用物理, 2012, 2(4): 109-115. http://dx.doi.org/10.12677/APP.2012.24019

参考文献

[1] K. H. Schoenbach, T. Tessnow, F. E. Peterkin and W. W. Byszewski. Microhollow cathode discharges. Applied Physics Letters, 1996, 68(1): 3.
[2] S. Xu, et al. Low-frequency, high-density, inductively coupled plasma sources: Operation and applications. Physics of Plasmas, 2001, 8(5): 2549-2557.
[3] R. Amrani, et al. Optical and structural proprieties of nc-Si:H prepared by argon diluted silane PECVD. Journal of Non- Crystalline Solids, 2012, 358(17): 1978-1982
[4] A. J. Flikweert, et al. Microcrystalline thin-film solar cell deposition on moving substrates using a linear VHF-PECVD reactor and a cross-flow geometry. Journal of Physics D: Applied Physics, 2012, 45(1): Article ID: 015101.
[5] M. Tanjyo, S. Sakai and M. Takahashi. RF ion source for low energy ion implantation—Beam profile control of a large-area ion source using 500-MHz discharge. Surface and Coatings Technology, 2001, 136(1-3): 281-284.
[6] H. Aguas, et al. Large area deposition of polymorphous silicon by plasma enhanced chemical vapor deposition at 27.12 MHz and 13.56 MHz. Japanese Journal of Applied Physics Part 1- Regular Papers Short Notes & Review Papers, 2003, 42(8): 4935- 4942.
[7] A. Taylor, et al. Novel high frequency pulsed MW-linear antenna plasma-chemistry: Routes towards large area, low pressure nano- diamond growth. Diamond and Related Materials, 2011, 20(4): 613-615.
[8] R. Rank, T. Wünsche and S. Günther. Magnetically enhanced RF discharges for effective pre-treatment of plastic webs at high speed. Surface and Coatings Technology, 2003, 174-175: 218- 221.
[9] G. H. Gweon, et al. Investigation of the plasma uniformity in an internal linear antenna-type inductively coupled plasma source by applying dual frequency. Vacuum, 2010, 84(6): 823-827.
[10] M. Mao, A. Bogaerts. Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma enhanced CVD system: The effect of different gas mixtures. Journal of Physics D: Applied Physics, 2010, 43(20): Article ID: 205201.
[11] S. Shinohara, et al. Large-area high-density helicon plasma sources. Plasma Sources Science and Technology, 2010, 19(3): Article ID: 034018.
[12] A. Anders. Plasma and ion sources in large area coating: A review. Surface and Coatings Technology, 2005, 200(5-6): 1893- 1906.
[13] W. Miyazawa, et al. A large-area ECR processing plasma. Plasma Sources Science and Technology, 1996, 5(2): 265.
[14] H. Schlemm, et al. Industrial large scale silicon nitride deposition on photovoltaic cells with linear microwave plasma sources. Surface and Coatings Technology, 2003, 174-175: 208-211.
[15] J. Madocks, J. Rewhinkle and L. Barton. Packaging barrier films deposited on PET by PECVD using a new high density plasma source. Materials Science and Engineering: B, 2005, 119(3): 268- 273.
[16] K. N. Kim, M. S. Kim and G. Y. Yeom. Effective plasma con- finement by applying multipolar magnetic fields in an internal linear inductively coupled plasma system. Applied Physics Letters, 2006, 88(16): Article ID: 161503.
[17] U. Stephan, et al. Problems of power feeding in large area PECVD of amorphous silicon. MRS Proceedings, 1999, 557: 157-162.
[18] J. Lim, et al. Study of internal linear inductively coupled plasma source for ultra large-scale flat panel display processing. Plasma Chemistry and Plasma Processing, 2009, 29(4): 251-259.
[19] D. S. Hwang, et al. Dual comb-type electrodes as a plasma source for very high frequency plasma enhanced chemical vapor deposition. Thin Solid Films, 2010, 518(8): 2124-2127.
[20] Y. Kimura, et al. A new method of line plasma production by microwave in a narrowed rectangular waveguide. Applied Physics Express, 2009, 2(12): 126002-126002-3.
[21] S. Hubner, et al. Investigating a coaxial linear microwave discharges. Journal of Physics D—Applied Physics, 2011, 44(38): Article ID: 385202.
[22] K. N. Kim, et al. Linear inductive antenna design for large area flat panel display plasma processing. Microelectronic Engineering, 2012, 89: 133-137.
[23] B. B. Van Aken, et al. PECVD deposition of a-Si:H and mu c-Si:H using a linear RF source. San Diego: SPIE, 2007.
[24] T. Zimmermann, et al. Inline deposition of microcrystalline silicon solar cells using a linear plasma source. Physica Status Solidi C—Current Topics in Solid State Physics, 2010, 7(3-4): 1097-1100.
[25] H. Schlemm, M. Fritzsche and D. Roth. Linear radio frequency plasma sources for large scale industrial applications in photo- voltaics. Surface & Coatings Technology, 2005, 200(1-4): 958- 961.
[26] C. Strobel, et al. Productivity potential of an inline deposition system for amorphous and microcrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2009, 93(9): 1598-1607.
[27] J. Rudiger, et al. VHF plasma processing for in-line deposition systems. Thin Solid Films, 2003, 427(1-2): 16-20.
[28] M. Kaiser, et al. Linearly extended plasma source for large- scale applications. Surface and Coatings Technology, 1999, 116- 119: 552-557.
[29] K. N. Kim, et al. Low-impedance internal linear inductive antenna for large-area flat panel display plasma processing. Applied Physics Letters, 2005, 97(6): Article ID: 063302.
[30] J. H. Lim, et al. Uniformity of internal linear-type inductively coupled plasma source for flat panel display processing. Applied Physics Letters, 2008, 92(5): Article ID: 051504.
[31] K. N. Kim, et al. Scalable internal linear double comb-type inductively coupled plasma source for large area flat panel display processing. Surface and Coatings Technology, 2008, 202(22-23): 5242-5245.
[32] K. N. Kim, S. J. Jung and G. Y. Yeom. Plasma and impedance characteristics of internal linear antennas for flat panel display applications. Thin Solid Films, 2005, 491(1-2): 82-85.
[33] K. N. Kim, et al. Novel internal linear inductively coupled plasma source for flat panel display applications. Japanese Journal of Applied Physics, 2005, 44: 8133.
[34] J. H. Lim, K. N. Kim and G. Y. Yeom. Inductively coupled plasma source using internal multiple U-type antenna for ultra large-area plasma processing. Plasma Processes and Polymers, 2007, 4(S1): S999-S1003.
[35] S. J. Jung, K. N. Kim and G. Y. Yeom. Etching characteristics of multiple U-type internal linear inductively coupled plasma for flat panel display. Surface and Coatings Technology, 2005, 200 (1-4): 780-783.
[36] K. N. Kim, et al. Characteristics of large area inductively coupled plasma using a multiple linear antennas with U-type parallel connection for flat panel display processing. Japanese Journal of Applied Physics, 2006, 45: 8869-8872.
[37] K. N. Kim, S. J. Jung and G. Y. Yeom. Characteristics of inductively coupled plasma with multiple U-type internal antennas for flat panel display applications. Surface and Coatings Technology, 2005, 200(1-4): 784-787.
[38] M. Liehr, M. Dieguez-Campo. Microwave PECVD for large area coating. Surface & Coatings Technology, 2005, 200(1-4): 21-25.
[39] N. Neykova, et al. Novel plasma treatment in linear antenna microwave PECVD system. Vacuum, 2012, 86(6): 603-607.
[40] M. Liehr, S. Wieder and M. Dieguez-Campo. Large area micro- wave coating technology. Thin Solid Films, 2006, 502(1-2): 9- 14.
[41] E. Räuchle. Duo-plasmaline, a surface wave sustained linearly extended discharge. Journal de Physique Archives, 1998, 8(PR7): 99-108.
[42] F. Fendrych, et al. Growth and characterization of nanodiamond layers prepared using the plasma-enhanced linear antennas micro- wave CVD system. Journal of Physics D: Applied Physics, 2010, 43(37): Article ID: 374018.
[43] 杨志威, 陈立民, 耿春雷, 唐伟忠, 吕反修, 苗晋琦, 赵中琴. 线形同轴耦合式微波等离子体CVD法制备金刚石薄膜[J]. 人工晶体学报, 2004, 33: 4.
[44] 唐伟忠, 蒋开云, 耿春雷, 黑立富. 线形微波等离子体CVD金刚石薄膜沉积技术[J]. 真空科学与技术学报, 2006, 26: 4.
[45] K. N. Kim, et al. Effect of dual frequency on the plasma cha- racteristics in an internal linear inductively coupled plasma source. Applied Physics Letters, 2006, 89(25): Article ID: 251501.
[46] V. Hopfe, et al. Linear extended ArcJet-CVD—A new PECVD approach for continuous wide area coating under atmospheric pressure. Chemical Vapor Deposition, 2005, 11(11-12): 510-522.
[47] D. Linaschke, et al. In-line plasma-chemical etching of crystalline silicon solar wafers at atmospheric pressure. IEEE Transactions on Plasma Science, 2009, 37(6): 979-984.
[48] I. Dani, et al. Atmospheric-pressure plasmas for solar cell manu- facturing. Contributions to Plasma Physics, 2009, 49(9): 662- 670.
[49] G. Bräuer. Large area glass coating. Surface and Coatings Tech- nology, 1999, 112(1-3): 358-365.
[50] L. Bardos, et al. Linear arc discharge source for large area plasma processing. Applied Physics Letters, 1997, 70(5): 577.
[51] B. B. Van Aken, et al. Deposition of phosphorus doped a-Si:H and mu c-Si:H using a novel linear RF source. Journal of Non- Crystalline Solids, 2008, 354(19-25): 2392-2396.
[52] Y. J. Lee, et al. Linear internal inductively coupled plasma (ICP) source with magnetic fields for large area processing. Thin Solid Films, 2003, 435(1-2): 275-279.
[53] K. N. Kim, et al. Effects of multipolar magnetic fields on the characteristics of plasma and photoresist etching in an internal linear inductively coupled plasma system. Surface and Coatings Technology, 2004, 177-178: 752-757.
[54] K. N. Kim, J. H. Lim and G. Y. Yeom. Plasma and antenna characteristics of a linearly extended inductively coupled plasma system using multi-polar magnetic field. Thin Solid Films, 2007. 515(12): 5193-5196.
[55] K. N. Kim, et al. Plasma characteristics and antenna electrical characteristics of an internal linear inductively coupled plasma source with a multi-polar magnetic field. Plasma Chemistry and Plasma Processing, 2008, 28(1): 147-158.