长链非编码RNA在乳腺癌中的研究进展
Research Progress of Long Noncoding RNA in Breast Cancer
DOI: 10.12677/WJCR.2022.122007, PDF, HTML, XML, 下载: 321  浏览: 1,038  科研立项经费支持
作者: 郑 欣, 刘 杰, 宋鹏霞, 姚水洪*, 罗 烨:衢州职业技术学院医学院生殖健康研究所,浙江 衢州
关键词: 乳腺癌诊断长链非编码RNA竞争性内源RNA耐药分子靶标Breast Cancer Diagnosis Long Noncoding RNA (lncRNA) Competing Endogenous RNA (ceRNA) Drug Resistance Molecular Target
摘要: 乳腺癌是异质性的恶性肿瘤,发病率位居全球女性恶性肿瘤之首,传统的治疗手段如手术切除和放化疗的作用较为有限,而分子靶向治疗作为乳腺癌的新型治疗手段,具有效率高、特异性强和副作用小等优点。长链非编码RNA (long noncoding RNA, lncRNA)是一类长度大于200 nt且无蛋白编码功能的转录本,其参与细胞的多个生物学进程,进而在多种生理病理活动中起到关键调控的作用。随着高通量测序技术的发展,现已发现多种lncRNA在乳腺癌中异常表达,其与乳腺癌的发生、发展、转移以及耐药均密切相关,有望作为乳腺癌诊断、预后和治疗的分子靶标。
Abstract: As a heterogeneous malignant tumor, female breast cancer has become the most commonly diagnosed cancer worldwide. Conventional treatments such as surgical resection, radiotherapy and chemotherapy are not that useful. Molecular targeted therapy is a new way for breast cancer treatment, with high efficiency, high specificity and less side effects. LncRNA (long noncoding RNA) is a noncoding transcript with lengths over 200 nt. LncRNA modulates various biological functions and participates in a variety of physiological and pathological processes. With the development of transcriptome high-throughput sequencing, it has been found that abnormally expressed LncRNA is associated with occurrence, development, metastasis and drug resistancein breast cancer. lncRNA is expected to act as a molecular target for diagnosis, prognosis and treatment of breast cancer.
文章引用:郑欣, 刘杰, 宋鹏霞, 姚水洪, 罗烨. 长链非编码RNA在乳腺癌中的研究进展[J]. 世界肿瘤研究, 2022, 12(2): 52-60. https://doi.org/10.12677/WJCR.2022.122007

1. 引言

GLOBOCAN提供的最新数据显示,2020年全球新增癌症病例数量达到1930万,有近1000万人死于癌症。乳腺癌的发病率已赶超肺癌,位居全球第一,死亡率仅次于肺癌、肝癌和胃癌,位居全球第四 [1]。在我国,乳腺癌病例数量从2015年的30万增加到2020年的42万,发病率居女性恶性肿瘤之首,死亡人数约占全球乳腺癌死亡人数的18%,死亡率位居全国肿瘤第七 [2]。乳腺癌是异质性的恶性肿瘤,根据肿瘤细胞三种表面受体:雌激素受体(ER)、孕激素受体(PR)和表皮生长因子受体2 (HER-2)表达情况的不同分为:管腔A型 (ER/PR-阳性、HER-2-阴性)、管腔B型(ER/PR-阳性、HER-2-阳性)、HER2过表达型 (ER/PR-阴性、HER-2-阳性)和基底细胞样型(ER-、PR-、HER-2-均阴性),其中基底细胞样乳腺癌即三阴性乳腺癌(triple negative breast cancer, TNBC) [3]。三阴性乳腺癌患者约占乳腺癌患者的15%~20%,其远处复发率和转移风险更高,往往预后不佳 [4]。近年来,随着科学家们对癌症发生发展机制的深入研究,鉴定出一系列乳腺癌诊治的分子靶标,分子靶向治疗逐渐成为乳腺癌治疗的新手段。LncRNA作为一种新型分子靶标,为乳腺癌的早期诊断、治疗和预后提供了新思路。本文通过对近年来相关文献的查阅和总结,综述了一些致癌lncRNA在乳腺癌中的研究进展。

2. LncRNA概述

癌症从根本上来说是一种基因疾病。然而,只有不到2%的基因组编码蛋白质,却有至少75%的基因组转录成非编码RNA (non-coding RNA, ncRNA) [5]。其中,长链非编码RNA (long non-coding RNA, lncRNA)是ncRNA家族中十分重要的一员,其长度大于200 nt [6]。尽管科学家们在很早以前就发现了lncRNA,但“lncRNA”一词的诞生并不是一个简单的过程,1990年,Brannan等将lncRNA H19定义为“非经典mRNA” [7],直到21世纪初,Maeda等在对小鼠全长cDNA文库进行大规模测序时,才首次定义lncRNA [8]。如今,随着二代测序技术的发展,我们能从多个数据库中,如非编码数据库 (http://www.noncode.org)和LNCipedia (http://www.lncipedia.org)获取各种lncRNA的相关信息 [9]。

LncRNA大量表达并广泛参与多种癌症进程,其异常表达与肿瘤发生、发展、转移以及TNM分期密切相关。例如,MALAT1可通过激活Wnt/β-连环蛋白通路、PI3K/AKT通路、ERK/MAPK通路和促进血管生成进而促进多种肿瘤发生 [10];AK023948在乳腺癌中上调,并促进乳腺癌细胞生长 [11];HOTAIR在乳腺癌中上调,其表达与乳腺癌转移和患者生存密切相关 [12]。此外,lncRNA在癌症中特异表达,并且可在血液或尿液中检测到。因此,lncRNA是肿瘤治疗的潜在靶点,也是癌症诊断及预后的潜在指标。

3. LncRNA在乳腺癌中的作用

LncRNA在乳腺癌的发生、发展、转移和耐药等多个进程中起到关键作用,探究其在乳腺癌中的作用机制,将对乳腺癌的早期诊断、临床治疗和预后监测提供十分重要的帮助。LncRNA 在乳腺癌中的功能及作用机制如表1所示。

Table 1. The function and mechanism of lncRNA in breast cancer

表1. LncRNA在乳腺癌中的功能及作用机制

3.1. LncRNA BCAR4

LncRNA BCAR4在多种肿瘤组织中高表达,如乳腺癌 [28]、宫颈癌 [29]、结肠癌 [30]、胃癌 [31]、非小细胞肺癌 [32]、前列腺癌 [33] 等。BCAR4高表达的患者往往生存率降低、转移风险增高。2006年,Meijer等在筛选乳腺癌内分泌抵抗相关基因时首次鉴定出了lncRNA BCAR4 [34]。研究发现约29%的乳腺癌患者表达BCAR4,BCAR4高表达的患者其无进展生存期、无远处转移生存期和总生存期均较短 [13]。BCAR4的表达水平与抗雌激素抵抗呈正相关,其能够通过诱导ERBB2/3的磷酸化激活ERBB2/3信号通路,进而促进乳腺癌的抗雌激素抵抗 [13]。应用EGFR/ERBB2抑制剂拉帕替尼和抗雌激素对BCAR4高表达患者进行联合治疗是一种潜在的有效治疗方法 [35]。另一项研究表明,BCAR4对于乳腺癌侵袭和转移具有促进作用。在趋化因子CCL21的诱导下,BCAR4能够与两种转录因子SNIP1和PNUT结合,经过下游一系列蛋白的信号放大作用,最终激活Hedgehog/GLI2通路进而促进乳腺癌转移。在小鼠模型中,使用靶向BCAR4的锁核酸(LNA)能明显抑制小鼠乳腺癌的肺转移 [14]。亦有研究表明,BCAR4能够促进乳腺癌的糖酵解。BCAR4能够调节Hippo和Hedgehog通路以促进糖酵解中两个关键酶:己糖激酶和果糖-2,6-二磷酸酶3的转录,在小鼠模型中,使用靶向BCAR4的锁核酸能够明显抑制肿瘤生长和糖酵解 [15]。由此,以BCAR4为靶标的分子靶向治疗有望成为乳腺癌治疗的有效途径。

3.2. LncRNA LUCAT1

LncRNA LUCAT1是在吸烟相关肺癌中首次发现的,且与非小细胞肺癌的不良预后密切相关 [36]。目前,越来越多的证据表明LUCAT1参与多种肿瘤的发生发展。在乳腺癌中,LUCAT1的高表达与肿瘤大小(P = 0.015)、淋巴结转移(P = 0.002)和TNM分期(P < 0.001)显著相关,且LUCAT1高表达的患者总生存期(P = 0.006)和无病生存期(P = 0.011)较短,可作为评估乳腺癌患者预后的重要生物标志物 [16]。研究表明,LUCAT1能通过竞争性地与miR-5582-3p和TCF7L2结合来激活Wnt/β-连环蛋白信号通路,进而增强乳腺癌细胞的干细胞特性,LUCAT1/miR-5582-3p/TCF7L2轴为寻找乳腺癌新型诊断标志物和治疗靶点提供了理论支持 [16]。另一项研究表明,LUCAT1的高表达与三阴性乳腺癌的不良预后密切相关,LUCAT1能与miR-5702结合并抑制miR-5702的表达,进而促进三阴性乳腺癌的发生和转移 [17]。LUCAT1有望成为乳腺癌潜在的治疗靶点和预后指标。

3.3. LncRNA SPRY4-IT1

SPRY4-IT1在黑色素瘤中首次发现,其在黑色素瘤中表达上调,并在缺失时诱导细胞凋亡 [37]。随着研究的深入,科学家们发现SPRY4-IT1在乳腺癌的发生发展中具有重要作用。研究指出,SPRY4-IT1能够通过上调ZNF703的表达发挥其致癌作用,促进乳腺癌细胞的增殖,抑制乳腺癌细胞凋亡 [18]。亦有研究发现,SPRY4-IT1能够通过靶向miR-6882调节Wnt/β-catenin信号通路的活性,促进乳腺癌细胞的干性 [19]。Wu等研究发现,SPRY4-IT1可促进乳腺癌细胞的增殖、迁移和侵袭,抑制细胞凋亡,而NT21MP可以通过SDF-1α/CXCR4途径抑制lncRNA SPRY4-IT1的表达,从而发挥其抗肿瘤作用 [38]。SPRY4-IT1在乳腺癌中高表达,并且其表达水平与肿瘤大小(P = 0.009)、TNM分期(P = 0.0008)和淋巴结转移(P = 0.01)显著相关。一项Kaplan-Meier法分析得出,SPRY4-IT1高表达的患者总生存率(P = 0.0056)和无病生存率(P = 0.0001)均显著降低 [39]。SPRY4-IT1还与乳腺癌的化疗耐药有关,SPRY4-IT1的过度表达能促进MCF-7和MDA-MB-231细胞对表阿霉素的耐药性 [40]。SPRY4-IT1可成为预测乳腺癌患者新辅助化疗疗效和预后的生物标志物。

3.4. LncRNA LINC00511

LINC00511在乳腺癌中表达显著升高,且其高表达水平与乳腺癌患者的总生存期降低和淋巴结转移显著相关 [41]。研究表明,LINC00511能够促进乳腺癌细胞的增殖和侵袭。LINC00511作为miR-185-3p的ceRNA促进E2F1的表达,进而促进乳腺癌细胞的球体形成能力以及干细胞因子Oct4、Nanog、SOX2的表达,有助于维持乳腺癌干细胞特性,促进肿瘤生长 [20]。另一项研究表明,LINC00511能够与miR-150竞争性结合MMP13蛋白,从而促进乳腺癌细胞的增殖、迁移和侵袭 [21]。LINC00511还与保乳术后放疗的复发和低生存率相关,敲除LINC00511可在体外抑制乳腺癌细胞增殖,促进细胞凋亡,增强放射敏感性,并通过增加体内对辐射的反应抑制肿瘤生长。进一步研究发现,LINC00511与miR-185竞争性结合,促进了STXBP4的表达,而沉默LINC00511则降低了STXBP4的表达并增强了乳腺癌细胞的放射敏感性。LINC00511/miR-185/STXBP4轴可作为改善乳腺癌预后的潜在治疗靶点 [22]。LINC00511还与乳腺癌耐药有关,LINC00511可作为miR-29c的ceRNA正向调节CDK6的表达,敲除LINC00511能够通过调节miR-29c/CDK6轴增强乳腺癌细胞中紫杉醇的细胞毒性 [23]。负载LINC00511 siRNA的新型治疗剂能有效降低三阴性乳腺癌对于顺铂的耐药性,为三阴性乳腺癌耐药提供了一种潜在的临床治疗策略 [42]。探究LINC00511的致癌机制对于乳腺癌的治疗有重要意义。

3.5. LncRNA TINCR

LncRNA TINCR是从分化良好的人体组织中分离出来的,为正常表皮分化所必需 [43]。随着研究的深入,研究者们发现TINCR参与多种癌症进程,如乳腺癌 [24]、肝细胞癌 [44] 和宫颈鳞状细胞癌 [45]。TINCR在乳腺癌中高表达,沉默TINCR能显著抑制乳腺癌细胞的生长和增殖,降低迁移和侵袭能力,促进凋亡。进一步研究发现,TINCR可作为miR-7的ceRNA促进KLF4的表达,进而发挥其致癌作用 [24]。另一项研究表明,TINCR可通过抑制miR-589-3p的表达促进IGF1R-AKT通路的激活,从而促进乳腺癌细胞的增殖、迁移和侵袭能力,并抑制癌细胞凋亡 [25]。Wang等发现TINCR能将DNMT1招募至miR-503-5p基因座启动子,增加miR-503-5p甲基化并抑制其转录表达,此外,TINCR还作为miR-503-5p的ceRNA上调EGFR的表达。TINCR刺激EGFR下游的JAK2–STAT3通路,STAT3又反过来增强TINCR的转录。该研究揭示了STAT3-TINCR-EGFR反馈环在肿瘤发生中的重要作用,是乳腺癌的潜在治疗靶点 [26]。亦有研究表明,乳腺癌患者,尤其是三阴性乳腺癌患者的血清TINCR水平显著增高,并且血清高TINCR水平与三阴性乳腺癌患者的不良临床病理特征和生存率密切相关,血清TINCR是三阴性乳腺癌的独立预后因素 [46]。Dong等发现TINCR能够通过靶向miR-125b,从而释放HER-2并诱导曲妥珠单抗耐药。临床上,TINCR高表达水平的HER-2-阳性乳腺癌患者对曲妥珠单抗治疗反应差,生存时间短 [27]。TINCR是提高曲妥珠单抗治疗临床疗效的治疗靶点,也是乳腺癌患者的预后指标。

4. LncRNA与乳腺癌诊断

癌症的早期诊断是取得有效治疗的关键,如今,已有越来越多的研究集中于寻找癌症检测的生物标志物。乳腺癌组织中存在多种差异表达的lncRNA,对患者的诊断及预后有较大的帮助。研究发现lncRNA ANRIL、HIF1A-AS2和UCA1 在三阴性乳腺癌患者血浆中的表达水显著平升高,研究人员基于这三个lncRNA构建了TNBC SigLnc-3模型,其曲线下面积(area under curve, AUC)值为0.934,敏感性为76.0%,特异性为97.1%。因而,这三种lncRNA可作为三阴性乳腺癌的特异性诊断标记物,且联合诊断效果更佳 [47]。亦有研究发现lncRNA H19在乳腺癌患者血浆中异常上调,进一步分析发现,H19的AUC值为0.81,敏感性为56.7%,特异性为86.7%,表明H19可作为乳腺癌早期筛查和预后监测的潜在生物标志物 [48]。Zhang等研究表明,lncRNA HOTAIR的诊断能力高于CEA和CA15-3,其AUC值为0.80;敏感性为69.2%;特异性为93.3%。此外,HOTAIR与CEA和CA15-3联合检测可提高诊断能力,这三项血浆指标的AUC 值为 0.82;敏感性为73.1%;特异性为90.0% [49]。

Fan等对TCGA数据库中1097例乳腺癌样本的lncRNA表达谱和临床数据进行了全面分析,最终确定了lncRNA AC091043.1、AP000924.1和FOXCUT对TNBC具有很强的诊断价值。另外,lncRNA AC010343.3、AL354793.1和FGF10-AS1的表达水平与三阴性乳腺癌患者的临床预后相关 [50]。最近的一项Meta分析总结了27篇文献的2803例TNBC患者的数据,最终汇总出24个lncRNAs的预后价值,该Meta分析证明lncRNA SNHG12、MALAT1、HOTAIR、HIF1A-AS2、HULC、LINC00096、ZEB2-AS1、LUCAT1和LINC000173与淋巴转移阳性显著相关,另外,lncRNA MALAT1、HIF1A-AS2、HULC、LINC00096、ADPGK-AS1、ZEB2-AS1、LUCAT1的表达水平与远处转移呈正相关,而lncRNA MIR503HG高表达水平的患者远处转移率较低 [51]。Bermejo等进行的表观基因组关联研究发现,LINC00299在三阴性乳腺癌患者的外周血中高度甲基化,高度甲基化的LINC00299可成为三阴性乳腺癌患者诊断的循环生物标记物 [52]。以上研究表明,lncRNA是一种新型无创的诊断及预后的生物标志物,但也有待于大规模的临床试验来加以证实。LncRNA 在乳腺癌诊断中的作用如表2所示。

Table 2. The role of lncRNA in breast cancer diagnosis

表2. LncRNA在乳腺癌诊断中的作用

5. 总结与展望

乳腺癌是全世界女性最常见的癌症之一,尽管随着医疗技术的不断进步,乳腺癌患者的诊断、治疗及预后有了很大改善,但它仍是一种高发病率和高死亡率的疾病,尤其是缺乏治疗靶点的三阴性乳腺癌,其治疗药物缺乏和化疗耐药性的问题仍有待解决。因此,为患者开发新型诊断工具、研究新的治疗方案至关重要。LncRNA参与维持乳腺癌的多种恶性生物学行为,目前仅有少部分lncRNA功能被阐明,继续深入探究lncRNA在乳腺癌发生、发展以及耐药中的作用机制,不仅有助于乳腺癌的诊断及预后分析,更有助于确定潜在的治疗靶标并制定更有效的治疗策略。未来,lncRNA功能的揭示可能进一步加深我们对乳腺癌发生发展机制的理解,并为高效、快速、特异的诊断和治疗提供新的应用。

基金项目

衢州市科技竞争性项目2020K42,衢州职业技术学院重点项目(QZYZ1903)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Cao, W., Chen, H.D., Yu, Y.W., Li, N. and Chen, W.-Q. (2021) Changing Profiles of Cancer Burden Worldwide and in China: A Secondary Analysis of the Global Cancer Statistics 2020. Chinese Medical Journal, 134, 783-791.
https://doi.org/10.1097/CM9.0000000000001474
[3] Perou, C.M., Sorlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., et al. (2000) Molecular Portraits of Human Breast Tumours. Nature, 406, 747-752.
https://doi.org/10.1038/35021093
[4] Rakha, E.A., El-Sayed, M.E., Green, A.R., Lee, A.H.S., Robertson, J.F. and Ellis, I.O. (2007) Prognostic Markers in Triple-Negative Breast Cancer. Cancer, 109, 25-32.
https://doi.org/10.1002/cncr.22381
[5] Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., et al. (2012) The GENCODE v7 Catalog of Human Long Noncoding RNAs: Analysis of Their Gene Structure, Evolution, and Expression. Genome Research, 22, 1775-1789.
https://doi.org/10.1101/gr.132159.111
[6] Wilusz, J.E., Sunwoo, H. and Spector, D.L. (2009) Long Noncoding RNAs: Functional Surprises from the RNA World. Genes & Development, 23, 1494-1504.
https://doi.org/10.1101/gad.1800909
[7] Brannan, C.I., Dees, E.C., Ingram, R.S. and Tilghman, S.M. (1990) The Product of the H19 Gene May Function as an RNA. Molecular and Cellular Biology, 10, 28-36.
https://doi.org/10.1128/mcb.10.1.28-36.1990
[8] The FANTOM Consortium and the RIKEN Genome Exploration Research Group Phase I & II Team (2002) Analysis of the Mouse Transcriptome Based on Functional Annotation of 60,770 Full-Length CDNAs. Nature, 420, 563-573.
https://doi.org/10.1038/nature01266
[9] Blythe, A.J., Fox, A.H. and Bond, C.S. (2016) The Ins and Outs of LncRNA Structure: How, Why and What Comes Next? Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1859, 46-58.
https://doi.org/10.1016/j.bbagrm.2015.08.009
[10] Liu, J., Peng, W.X., Mo, Y.Y. and Luo, D. (2017) MALAT1-Mediated Tumorigenesis. Frontiers in Bioscience, 22, 66-80.
https://doi.org/10.2741/4472
[11] Koirala, P., Huang, J., Ho, T.T., Wu, F., Ding, X. and Mo, Y.Y. (2017) LncRNA AK023948 Is a Positive Regulator of AKT. Nature Communications, 8, Article No. 14422.
https://doi.org/10.1038/ncomms14422
[12] Gupta, R.A., Shah, N., Wang, K.C., Kim, J., Horlings, H.M., Wong, D.J., et al. (2010) Long Non-Coding RNA HOTAIR Reprograms Chromatin State to Promote Cancer Metastasis. Nature, 464, 1071-1076.
https://doi.org/10.1038/nature08975
[13] Godinho, M.F., Sieuwerts, A.M., Look, M.P., Meijer, D., Foekens, J.A., Dorssers, L.C.J., et al. (2010) Relevance of BCAR4 in Tamoxifen Resistance and Tumour Aggressiveness of Human Breast Cancer. British Journal of Cancer, 103, 1284-1291.
https://doi.org/10.1038/sj.bjc.6605884
[14] Xing, Z., Lin, A., Li, C., Liang, K., Wang, S., Liu, Y., et al. (2014) LncRNA Directs Cooperative Epigenetic Regulation Downstream of Chemokine Signals. Cell, 159, 1110-1125.
https://doi.org/10.1016/j.cell.2014.10.013
[15] Zheng, X., Han, H., Liu, G.P., Ma, Y.X., Pan, R.L., Sang, L.J., et al. (2017) LncRNA Wires up Hippo and Hedgehog Signaling to Reprogramme Glucose Metabolism. The EMBO Journal, 36, 3325-3335.
https://doi.org/10.15252/embj.201797609
[16] Zheng, A., Song, X., Zhang, L., Zhao, L., Mao, X., Wei, M., et al. (2019) Long Non-Coding RNA LUCAT1/miR- 5582-3p/TCF7L2 Axis Regulates Breast Cancer Stemness via Wnt/Beta-Catenin Pathway. Journal of Experimental & Clinical Cancer Research, 38, Article No. 305.
https://doi.org/10.1186/s13046-019-1315-8
[17] Mou, E. and Wang, H. (2019) LncRNA LUCAT1 Facilitates Tumorigenesis and Metastasis of Triple-Negative Breast Cancer through Modulating MiR-5702. Bioscience Reports, 39, BSR20190489.
https://doi.org/10.1042/BSR20190489
[18] Shi, Y., Li, J., Liu, Y., Ding, J., Fan, Y., Tian, Y., et al. (2015) The Long Noncoding RNA SPRY4-IT1 Increases the Proliferation of Human Breast Cancer Cells by Upregulating ZNF703 Expression. Molecular Cancer, 14, Article No. 51.
https://doi.org/10.1186/s12943-015-0318-0
[19] Song, X., Zhang, X., Wang, X., Chen, L., Jiang, L., Zheng, A., et al. (2020) LncRNA SPRY4-IT1 Regulates Breast Cancer Cell Stemness through Competitively Binding MiR-6882-3p with TCF7L2. Journal of Cellular and Molecular Medicine, 24, 772-784.
https://doi.org/10.1111/jcmm.14786
[20] Lu, G., Li, Y., Ma, Y., Lu, J., Chen, Y., Jiang, Q., et al. (2018) Long Noncoding RNA LINC00511 Contributes to Breast Cancer Tumourigenesis and Stemness by Inducing the MiR-185-3p/E2F1/Nanog Axis. Journal of Experimental & Clinical Cancer Research, 37, Article No. 289.
https://doi.org/10.1186/s13046-018-0945-6
[21] Shi, G., Cheng, Y., Zhang, Y., Guo, R., Li, S. and Hong, X. (2021) Long Non-Coding RNA LINC00511/miR-150/ MMP13 Axis Promotes Breast Cancer Proliferation, Migration and Invasion. Biochimica et Biophysica Acta (BBA)— Molecular Basis of Disease, 1867, Article ID: 165957.
https://doi.org/10.1016/j.bbadis.2020.165957
[22] Liu, L., Zhu, Y., Liu, A.M., Feng, Y. and Chen, Y. (2019) Long Noncoding RNA LINC00511 Involves in Breast Cancer Recurrence and Radio Resistance by Regulating STXBP4 Expression via MiR-185. European Review for Medical and Pharmacological Sciences, 23, 7457-7468.
https://doi.org/10.1016/j.bbadis.2020.165957
[23] Zhang, H., Zhao, B., Wang, X., Zhang, F. and Yu, W. (2019) LINC00511 Knockdown Enhances Paclitaxel Cytotoxicity in Breast Cancer Via Regulating MiR-29c/CDK6 Axis. Life Sciences, 228, 135-144.
https://doi.org/10.1016/j.lfs.2019.04.063
[24] Liu, Y., Du, Y., Hu, X., Zhao, L. and Xia, W. (2018) Up-Regulation of CeRNA TINCR by SP1 Contributes to Tumorigenesis in Breast Cancer. BMC Cancer, 18, Article No. 367.
https://doi.org/10.1186/s12885-018-4255-3
[25] Guo, F., Zhu, X., Zhao, Q. and Huang, Q. (2020) MiR5893p Sponged by the LncRNA TINCR Inhibits the Proliferation, Migration and Invasion and Promotes the Apoptosis of Breast Cancer Cells by Suppressing the Akt Pathway via IGF1R. International Journal of Molecular Medicine, 46, 989-1002.
https://doi.org/10.3892/ijmm.2020.4666
[26] Wang, Q., Liu, J., You, Z., Yin, Y., Liu, L., Kang, Y., et al. (2021) LncRNA TINCR Favors Tumorigenesis via STAT3-TINCR-EGFR-Feedback Loop by Recruiting DNMT1 and Acting as a Competing Endogenous RNA in Human Breast Cancer. Cell Death & Disease, 12, Article No. 83.
https://doi.org/10.1038/s41419-020-03188-0
[27] Dong, H., Hu, J., Zou, K., Ye, M., Chen, Y., Wu, C., et al. (2019) Activation of LncRNA TINCR by H3K27 Acetylation Promotes Trastuzumab Resistance and Epithelial-Mesenchymal Transition by Targeting MicroRNA-125b in Breast Cancer. Molecular Cancer, 18, Article No. 3.
https://doi.org/10.1186/s12943-018-0931-9
[28] Xing, Z., Park, P.K., Lin, C. and Yang, L. (2015) LncRNA BCAR4 Wires up Signaling Transduction in Breast Cancer. RNA Biology, 12, 681-689.
https://doi.org/10.1080/15476286.2015.1053687
[29] Zou, R., Chen, X., Jin, X., Li, S., Ou, R., Xue, J., et al. (2018) Up-Regulated BCAR4 Contributes to Proliferation and Migration of Cervical Cancer Cells. Surgical Oncology, 27, 306-313.
https://doi.org/10.1016/j.suronc.2018.05.013
[30] Ouyang, S., Zheng, X., Zhou, X., Chen, Z., Yang, X. and Xie, M. (2017) LncRNA BCAR4 Promotes Colon Cancer Progression via Activating Wnt/Beta-Catenin Signaling. Oncotarget, 8, 92815-92826.
https://doi.org/10.18632/oncotarget.21590
[31] Wang, L., Chunyan, Q., Zhou, Y., He, Q., Ma, Y., Ga, Y., et al. (2017) BCAR4 Increase Cisplatin Resistance and Predicted Poor Survival in Gastric Cancer Patients. European Review for Medical and Pharmacological Sciences, 21, 4064-4070.
[32] Gong, J., Zhang, H., He, L., Wang, L. and Wang, J. (2017) Increased Expression of Long Non-Coding RNA BCAR4 Is Predictive of Poor Prognosis in Patients with Non-Small Cell Lung Cancer. The Tohoku Journal of Experimental Medicine, 241, 29-34.
https://doi.org/10.1620/tjem.241.29
[33] Cai, Z., Wu, Y., Li, Y., Ren, J. and Wang, L. (2018) BCAR4 Activates GLI2 Signaling in Prostate Cancer to Contribute to Castration Resistance. Aging, 10, 3702-3712.
https://doi.org/10.18632/aging.101664
[34] Meijer, D., Van Agthoven, T., Bosma, P.T., Nooter, K. and Dorssers, L.C. (2006) Functional Screen for Genes Responsible for Tamoxifen Resistance in Human Breast Cancer Cells. Molecular Cancer Research, 4, 379-386.
https://doi.org/10.1158/1541-7786.MCR-05-0156
[35] Godinho, M.F., Wulfkuhle, J.D., Look, M.P., Sieuwerts, A.M., Sleijfer, S., Foekens, J.A., et al. (2012) BCAR4 Induces Antioestrogen Resistance But Sensitises Breast Cancer to Lapatinib. British Journal of Cancer, 107, 947-955.
https://doi.org/10.1038/bjc.2012.351
[36] Sun, Y., Jin, S.D., Zhu, Q., Han, L., Feng, J., Lu, X.Y., et al. (2017) Long Non-Coding RNA LUCAT1 Is Associated with Poor Prognosis in Human Non-Small Lung Cancer and Regulates Cell Proliferation Via Epigenetically Repressing P21 and P57 Expression. Oncotarget, 8, 28297-28311.
https://doi.org/10.18632/oncotarget.16044
[37] Khaitan, D., Dinger, M.E., Mazar, J., Crawford, J., Smith, M.A., Mattick, J.S., et al. (2011) The Melanoma-Upregulated Long Noncoding RNA SPRY4-IT1 Modulates Apoptosis and Invasion. Cancer Research, 71, 3852-3862.
https://doi.org/10.1158/0008-5472.CAN-10-4460
[38] Wu, H., Wang, Y., Chen, T., Li, Y., Wang, H., Zhang, L., et al. (2018) The N-Terminal Polypeptide Derived from VMIP-II Exerts Its Anti-Tumor Activity in Human Breast Cancer by Regulating LncRNA SPRY4-IT1. Bioscience Reports, 38, BSR20180411.
https://doi.org/10.1042/BSR20180411
[39] Xiang, Y., Chen, Y., Shi, Y., Wu, X., Hao, R., Li, Q., et al. (2019) Upregulation of the Long Non-Coding RNA SPRY4-IT1 Predicts Poor Prognosis in Breast Cancer. International Journal of Clinical and Experimental Pathology, 12, 1003-1008.
[40] Zheng, A., Zhang, L., Song, X. and Jin, F. (2020) Clinical Significance of SPRY4-IT1 in Efficacy and Survival Prediction in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy. Histology and Histopathology, 35, 361-370.
https://doi.org/10.14670/hh-18-175
[41] Xu, S., Kong, D., Chen, Q., Ping, Y. and Pang, D. (2017) Oncogenic Long Noncoding RNA Landscape in Breast Cancer. Molecular Cancer, 16, Article No, 129.
https://doi.org/10.1186/s12943-017-0696-6
[42] Yuan, Y., Li, E., Zhao, J., Wu, B., Na, Z., Cheng, W., et al. (2021) Highly Penetrating Nanobubble Polymer Enhances LINC00511-siRNA Delivery for Improving the Chemosensitivity of Triple-Negative Breast Cancer. Anti-Cancer Drugs, 32, 178-188.
https://doi.org/10.1097/CAD.0000000000000985
[43] Kretz, M. (2013) TINCR, Staufen1, and Cellular Differentiation. RNA Biology, 10, 1597-1601.
https://doi.org/10.4161/rna.26249
[44] Tian, F., Xu, J., Xue, F., Guan, E. and Xu, X. (2017) TINCR Expression Is Associated with Unfavorable Prognosis in Patients with Hepatocellular Carcinoma. Bioscience Reports, 37, BSR20170301.
https://doi.org/10.1042/BSR20170301
[45] Hou, A., Zhang, Y., Zheng, Y., Fan, Y., Liu, H. and Zhou, X. (2019) LncRNA Terminal Differentiation-Induced NcRNA (TINCR) Sponges MiR-302 to Upregulate Cyclin D1 in Cervical Squamous Cell Carcinoma (CSCC). Human Cell, 32, 515-521.
https://doi.org/10.1007/s13577-019-00268-y
[46] Wang, X., Li, S., Xiao, H. and Deng, X. (2020) Serum LncRNA TINCR Serve as a Novel Biomarker for Predicting the Prognosis in Triple-Negative Breast Cancer. Technology in Cancer Research & Treatment, 19, 1-8.
https://doi.org/10.1177/1533033820965574
[47] Liu, M., Xing, L.Q. and Liu, Y.J. (2017) A Three-Long Noncoding RNA Signature as a Diagnostic Biomarker for Differentiating Between Triple-Negative and Non-Triple-Negative Breast Cancers. Medicine, 96, Article No. e6222.
https://doi.org/10.1097/MD.0000000000006222
[48] Zhang, K., Luo, Z., Zhang, Y., Zhang, L., Wu, L., Liu, L., et al. (2016) Circulating LncRNA H19 in Plasma as a Novel Biomarker for Breast Cancer. Cancer Biomarkers, 17, 187-194.
https://doi.org/10.3233/CBM-160630
[49] Zhang, Y., Zhang, K., Luo, Z., Liu, L., Wu, L. and Liu, J. (2016) Circulating Long Non-Coding HOX Transcript Antisense Intergenic Ribonucleic Acid in Plasma as a Potential Biomarker for Diagnosis of Breast Cancer. Thoracic Cancer, 7, 627-632.
https://doi.org/10.1111/1759-7714.12373
[50] Fan, C.N., Ma, L. and Liu, N. (2019) Comprehensive Analysis of Novel Three-Long Noncoding RNA Signatures as a Diagnostic and Prognostic Biomarkers of Human Triple-Negative Breast Cancer. Journal of Cellular Biochemistry, 120, 3185-3196.
https://doi.org/10.1002/jcb.27584
[51] Zhang, S., Ma, F., Xie, X. and Shen, Y. (2020) Prognostic Value of Long Non-Coding RNAs in Triple Negative Breast Cancer: A PRISMA-Compliant Meta-Analysis. Medicine, 99, Article No. e21861.
https://doi.org/10.1097/MD.0000000000021861
[52] Bermejo, J.L., Huang, G., Manoochehri, M., Mesa, K.G., Schick, M., Silos, R.G., et al. (2019) Long Intergenic Noncoding RNA 299 Methylation in Peripheral Blood Is a Biomarker for Triple-Negative Breast Cancer. Epigenomics, 11, 81-93.
https://doi.org/10.2217/epi-2018-0121