孤立性脑桥梗死与脑白质高信号的研究进展
Advances in Research on Isolated Pontine Infarction and White Matter Hyperintensity
DOI: 10.12677/ACM.2022.124397, PDF, HTML, XML, 下载: 225  浏览: 334 
作者: 张琳琳:青海大学研究生院,青海 西宁;拜承萍*:青海大学附属医院神经内科,青海 西宁
关键词: 孤立性脑桥梗死脑白质高信号穿支血管Isolated Pontine Infarction White Matter Hyperintensity Perforator Vessel
摘要: 脑桥的解剖结构较为复杂,基底动脉(Basilar artery, BA)和脑桥穿支动脉是主要的供血动脉。孤立性脑桥梗死(pontine infarction, PI)的发病机制可由脑桥穿支病变所致,目前机制仍在研究中。脑白质高信号(white matter hyperintensity, WMH)是脑小血管病的重要影像标记物之一,而且穿支血管与小血管有更紧密的联系,WMH可能与穿支供血区梗死患者的穿支动脉病变关系密切。目前PI与WMH之间的关系仍在研究中,现就PI与WMH的关系作相关的综述。
Abstract: The anatomical structure of the pons is complex, and the basilar artery (BA) and pontine perforating arteries are the main blood supply arteries. The pathogenesis of isolated pontine infarction (PI) can be caused by pontine perforator lesions, and the mechanism is still under study. White matter hyperintensity (WMH) is one of the important imaging markers of cerebral small vessel disease, and perforator vessels are more closely related to small vessels, WMH may be closely related to the lesion of perforator artery in patients with infarction in perforator area. At present, the relationship between PI and WMH is still under study. Now, we will review the relationship between PI and WMH.
文章引用:张琳琳, 拜承萍. 孤立性脑桥梗死与脑白质高信号的研究进展[J]. 临床医学进展, 2022, 12(4): 2769-2775. https://doi.org/10.12677/ACM.2022.124397

1. 前言

我国的流行病学资料显示,按人口死因顺序排列,脑血管疾病位居第一位,其中69.6%~70.8%的急性脑血管疾病为脑梗死 [1]。脑干梗死约占脑梗死的21.8%,是脑梗死中较为严重的临床类型,病死率为14.2%~45.2% [2]。PI是最常见的脑干梗死类型,占缺血性中风病例的7% [3]。BA和脑桥穿支动脉是脑桥的主要供血动脉,有研究认为PI是由基底动脉粥样硬化和小血管疾病导致的 [4]。PI的发病机制目前仍在研究中。而WMH是脑小血管病的重要影像标记物之一 [5],据研究 [6],在60岁以上的人群中,72%~96%可以检测到WMH。在患有心血管风险因素和症状性脑血管疾病的患者中更为普遍和广泛 [7]。而且穿支血管与小血管有更紧密的联系,WMH可能与穿支供血区梗死患者的穿支动脉病变关系密切。目前有研究通过分析不同部位、不同程度的WMH负担与PI的关系,进一步探讨PI的机制。现就PI与WMH的关系作相关的综述。

2. 脑桥梗死

2.1. 脑桥的解剖结构及血供

脑桥解剖结构复杂,包括基底部及被盖部,其中有复杂的神经核团及神经纤维,例如皮质脊髓束、脊髓丘脑束和颅神经核(如面神经核、外展神经核等)、内侧纵束和网状结构 [8]。脑桥血供主要来自椎动脉和BA,BA及脑桥穿支动脉是脑干的主要供血动脉。BA的主要分支有:小脑前下动脉、小脑上动脉、大脑后动脉和脑桥穿支动脉,以脑桥穿支动脉数量最多。脑桥穿支动脉是基底动脉发出供应脑桥组织血液的许多小分支的总称,分为三组:旁正中动脉(paramedian pontine artery, PPA)、长旋动脉、短旋动脉。脑桥穿支动脉起源于BA主干,开口于背侧壁及双侧壁 [9],PPA循其载体动脉(BA)垂直发出,由于其主干动脉管径粗、流量大、速度快、压力高,且PPA以直角形式发出,其较主干动脉明显变细,此处血流动力学的变化易形成动脉粥样硬化,从而导致相关区域的脑梗死 [10]。BA粥样斑块突出到穿支动脉开口处,部分或完全堵塞管腔可能导致不同类型及不同位置的PI [11]。

根据脑桥的血供和血管分布,脑桥分为4个区域:① 前内侧区:由PPA供血;② 前外侧区:由短旋动脉供血;③ 外侧区:由长旋动脉供血;④ 背侧区。

2.2. 孤立性脑桥梗死分型

PI按垂直位置分为上、中、下3部分 [12] :1) 上部:形状相对较圆、有小圆型导水管;2) 中部:具有方形的第四脑室、小脑中脚,三叉神经由沟内穿出;3) 下部:与中部形状相似,面神经及听神经由沟内穿出。

根据PI的位置,分为 [13] :1) 旁正中型脑桥梗死(paramedian pontine infarction, PPI):以中线为基底的单侧脑桥梗死灶达到脑桥腹侧表面;2) 脑桥内部的腔隙性梗死(lacunar pontine infarction, LPI):圆形且局限的单侧脑桥梗死灶,病灶未及腹侧面;3) 不典型的旁正中型脑桥梗死(Atypical paramedian infarction):以中线为基底,类似PPI的形状,但单侧脑桥梗死灶未达到脑桥腹侧表面;4) 其他:不能归类为上述三种。

根据Kumral等 [14] 研究,将PI分为经典的三种亚型:① 大动脉闭塞型病变(large artery occlusion disease, LAOD):影像学检查确定与梗死部位对应的椎动脉或BA狭窄>50%,行高分辨磁共振成像(high resolution Magneticresonance imaging, HR-MRI)在梗死相应的椎基底动脉部位可见动脉粥样硬化斑块。② 基底动脉分支动脉粥样硬化病变(branch atheromatous disease, BABD):PI病灶蔓延至脑桥腹侧表面,并且没有潜在的心源性栓子或LAOD。HR-MRI显示BA分支中存在粥样硬化斑块。③ 小动脉病变(small vessel disease, SVD):PI病灶的直径<1.5 cm,并且病灶未蔓延至脑桥腹侧表面,没有潜在的心源性栓子或LAOD。HR-MRI的相应部位没有明显动脉粥样硬化斑块。其中BABD最常见,其次为SVD,LAOD最少见。fisher和caplan最早提出BABD的概念 [15],它的发病机制可能是BA主干斑块堵塞穿支动脉口,也可能是穿支动脉本身的动脉粥样硬化斑块引起的血管闭塞 [16]。

2.3. 影像学

目前常用且有效的为MRI检查,文献报导MRI的检出率可达92%~100% [17]。因此,当临床怀疑脑桥梗死时,MRI应为首选项目,MRI检查在脑桥梗死诊断中具有独特的优势 [18]。其中弥散加权成像(diffusion-weighted imaging, DWI)对急性病变最有诊断价值 [19]。

3. 脑白质高信号

3.1. 脑白质高信号简介

WMH是脑室旁或深部白质的缺血性改变,在头颅MRI的T2、FLAIR序列上表现为非特异性的高信号影,也称脑白质疏松。WMH被认为是脑小血管疾病的影像学标志之一,在老年人中很常见,在患有心血管风险因素和症状性脑血管疾病的患者中更为普遍和广泛 [20]。它的患病率随着年龄的增长而迅速增加 [21],在一般人群中,64岁左右成年人的WMH患病率从11%~21%到82岁时的94% [20]。脑白质病变的分布并不均匀;一般来说,脑白质病变在大脑半球前部更为明显 [22]。也有研究表明,WMH易发生在脑白质的分水岭区域 [21]。

3.2. 脑白质高信号的发生机制

目前WMH的机制仍不清楚,目前认为有以下机制可能 [23] :① 缺血假说:由于低灌注–缺氧事件而导致的白质(WM)微观结构完整性的损失,损害了流域区域。② 炎症过程中的内皮功能障碍和炎症过程引起的血脑屏障破坏,导致液体渗漏和水肿。炎症本身可能是缺血后细胞外基质修复和重塑过程的一部分,导致小胶质细胞和星形胶质细胞的激活。小血管疾病炎症的另一种病因是通过脑肠轴的感染。

3.3. 脑白质高信号的病理研究

影像病理研究显示 [24],这种脑白质异常信号在病理上表现为胶质增生、髓鞘苍白、轴索丢失、小灶的梗死、血管周围间隙扩大。病变区可见小动脉的玻璃样变性、动脉硬化、脂质玻璃样变性、纤维素样坏死等,因此被认为是脑小血管病的重要影像标记物之一。

3.4. 脑白质高信号的危险因素

有研究表明 [25],年龄、种族、性别、载脂蛋白Eε4等位基因突变可能是WMH进展的不可控危险因素。黑人、女性和载脂蛋白Eε4等位基因的存在可能是WMH的高危因素,但无具体定论。高血压、高血脂、空腹血糖、吸烟、炎症反应、维生素B12降低和高同型半胱氨酸血症是WMH进展的可控危险因素。

3.5. 与脑白质高信号相关的疾病

据研究,WMH与认知功能减退 [26]、脑卒中发病风险增加 [27]、步态不稳及跌倒 [28]、抑郁 [29] 等不同临床表现都存在密切的联系。

3.6. 脑白质高信号的分类

基于与侧脑室的解剖关系,WMH被分为室周脑白质高信号(Periventricular white-matter hyperintensities, PWMH)及深部白质高信号(deep white matter hyperintensity, DWMH) [30]。分类标准:有研究提出 [31],邻近脑室表面的WMH为PWMH,否则为DWMH。距离脑室距离小于10 mm的WMH为PWMH,否则为DWMH [32]。距离侧脑室小于3 mm的病变被归类为脑室旁脑白质高信号(juxtaventricular white matter hyperintensities, JVWMH);距离侧脑室3~13 mm的病变为PWMH,否则为DWMH [33]。病理表现:研究表明 [30],PVWMH与DWMH在病理学上存在差异性,PVWMH在显微镜下表现为脱髓鞘病变,并伴有室管膜下胶质细胞增生和室管膜连续性缺失,并非缺血性病变。DWMH表现出更多的轴突丢失、空泡化和组织丢失增加以及脱髓鞘和胶质细胞增生。这提示不同部位的WMH在发病机制上可能不同 [34]。可能的发病机制:平滑的PWMH可能与脑脊液漏的增加有关,不规则的PWMH更可能是由慢性血流动力学功能不全(低灌注)决定的,而DWMH可能更多地归因于小血管疾病 [30]。血液供应:室周白质区由脑室血管供血,脑室血管可起源于脉络膜动脉。脑室血管走向来自软脑膜表面的向心血管,但这两组血管之间的吻合不是稀少就是没有。因此,该区域易发生局灶性或全身性低灌注,因此PVWMH可能被更多地用于血流动力学检测。深部白质区如半卵圆中心,则由大脑中动脉皮质分支发出的髓质动脉供血,更可能对SVD敏感 [33]。临床表现:PVWMH与认知能力下降和收缩压、动脉压增加有关,而DWMH与体重指数、情绪障碍、步态障碍和动脉高血压有关 [30]。

另一种建议的分类进一步将WMH分为四类 [33] :JVWMH:距离脑室表面3 mm内、PWMH:3~13 mm之间、DWMH:室周白质和近皮质白质之间、近皮质旁(juxtacortical white matter hyperintensities, JCWMH):距离皮质髓质交界处4 mm内。

4. PI与WMH的关系

WMH是脑小血管病的重要影像标记物之一,而且穿支血管与小血管有更紧密的联系,推测WMH可能与穿支供血区梗死患者的穿支动脉病变关系密切。有研究通过分析不同部位、不同程度的WMH负担与PI的关系,进一步探讨了PI的机制。

Xia等人 [35] 通过联合高分辨核磁(HR-MRI)与SVD总评分,探讨脑桥梗死的潜在机制,认为小血管疾病可能是LPI的主要机制,BABD可能是PPI的主要机制。还有研究表明 [4],通过与无后循环梗死的对照组相比,PPI、LPI的PWMH、DWMH的负担均较高,表明PPI、LPI都可能由SVD所致。但该研究并未进一步比较PPI与LPI的PWMH、DWMH负担。一项研究 [36] 将急性后循环梗死患者分为大动脉粥样硬化狭窄组(LAA组) (椎基底动脉狭窄超过50%)和BABD组,结果发现BABD组有更严重的WMH,且以PVWMH更严重,表明SVD也参与了BABD的病理生理学,该篇使用的是Scheltens视觉量表评估WMH的严重程度,且未进一步与SVD所致的急性后循环梗死比较WMH严重程度。一项研究 [37] 纳入急性孤立性脑桥梗死患者,用的Fazekas视觉评分量表评估WMH严重程度,结果表明,BABD组与LAA组的WMH负担、血管风险因素和临床特征相似;SVD组的DWMH比BABD组更严重,而PVWMH没有差异;而BABD组与LAA相比,PVWMH、DWMH的严重程度均无差别。最新一项研究 [38] 纳入的是急性孤立性穿支供血区梗死的患者(包括豆纹动脉(LSA)供血区梗死和PPA供血区梗死),将其分为LAA组和穿支动脉疾病组(PAD组)。最后研究表明,PPA供血区的PVWMH、DWMH在两组间并无差异。考虑原因为:PVWMH主要由前循环动脉供血,其中LSA为重要供血动脉之一,而后循环主要供应脑干、小脑、丘脑等部位,其中PPA主要供应脑桥腹侧中线两旁区域,因此LSA病变对PVWMH的影响更为显著。

目前关于WMH的研究大多基于视觉评分量表,且通过分析不同部位、不同程度的WMH负担与PI的关系,进一步探讨PI机制的研究尚少,且结果尚不统一,考虑到可能是纳入的人群不一样、WMH评估方法不一致、视觉量表尚主观存在误差所致。未来考虑通过使用全自动软件来评估WMH的体积,分析与不同分型PI的关系,进一步探讨PI的机制,为临床病因治疗提供基础参考。

5. 结语

PI可由脑桥穿支病变所致,WMH是脑小血管疾病的重要影像标记物之一,而且穿支血管与小血管有更紧密的联系,明确不同分型PI与不同部位WMH之间的关系,可能对PI机制的探讨及治疗具有重要临床意义。

NOTES

*通讯作者。

参考文献

[1] 彭斌, 吴波. 中国急性缺血性脑卒中诊治指南[J]. 中华神经科杂志, 2018, 51(9): 666-682.
[2] 张铁林, 孙中武. 急性脑桥梗死危险因素和梗死部位对近期预后的影响[J]. 安徽医科大学学报, 2020, 55(5): 776-780.
[3] Huang, R., Zhang, X., Chen, W., et al. (2016) Stroke Subtypes and Topographic Locations Associated with Neurological Deterioration in Acute Isolated Pontine Infarction. Journal of Stroke and Cerebrovascular Diseases: The Official Journal of National Stroke Association, 25, 206-213.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.09.019
[4] Feng, C., Xu, Y., Bai, X., et al. (2013) Basilar Artery Atherosclerosis and Hypertensive Small Vessel Disease in Isolated Pontine Infarctions: A Study Based on High-Resolution MRI. European Neurology, 70, 16-21.
https://doi.org/10.1159/000346577
[5] Wardlaw, J.M., Valdés Hernández, M.C. and Muñoz-Maniega, S. (2015) What Are White Matter Hyperintensities Made of? Relevance to Vascular Cognitive Impairment. Journal of the American Heart Association, 4, e001140.
https://doi.org/10.1161/JAHA.114.001140
[6] Lampe, L., Kharabian-Masouleh, S., Kynast, J., et al. (2019) Lesion Location Matters: The Relationships between White Matter Hyperintensities on Cognition in the Healthy Elderly. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 39, 36-43.
https://doi.org/10.1177/0271678X17740501
[7] Launer, L.J. (2004) Epidemiology of White Matter Lesions. Topics in Magnetic Resonance Imaging, 15, 365-367.
https://doi.org/10.1097/01.rmr.0000168216.98338.8d
[8] 高犇, 刘静, 张栩, 等. 脑桥梗死的研究进展[J]. 卒中与神经疾病, 2019, 26(6): 759-763.
[9] 林惠花, 杨本强, 段阳. 非狭窄性基底动脉斑块分布与脑桥梗死相关性研究[J]. 磁共振成像, 2019, 10(8): 566-570.
[10] 门雪娇, 伍爱民, 鲍健, 等. 脑桥旁正中动脉与豆纹动脉粥样硬化型脑梗死的临床差异性研究[J]. 中华神经医学杂志, 2013, 12(2): 152-156.
[11] Gökçal, E., Niftaliyev, E., Baran, G., et al. (2017) Progressive Deficit in Isolated Pontine Infarction: The Association with Etiological Subtype, Lesion Topography and Outcome. Acta Neurologica Belgica, 117, 649-654.
https://doi.org/10.1007/s13760-017-0827-2
[12] Kim, B.J., Lee, K.M., Kim, H.Y., et al. (2018) Basilar Artery Plaque and Pontine Infarction Location and Vascular Geometry. Journal of Stroke, 20, 92-98.
https://doi.org/10.5853/jos.2017.00829
[13] Wilson, L.K., Pearce, L.A., Arauz, A., et al. (2016) Morphological Classification of Penetrating Artery Pontine Infarcts and Association with Risk Factors and Prognosis: The SPS3 Trial. International Journal of Stroke: Official Journal of the International Stroke Society, 11, 412-419.
https://doi.org/10.1177/1747493016637366
[14] Aoki, J., Iguchi, Y., Kimura, K., et al. (2010) Diameter of the Basilar Artery May Be Associated with Neurological Deterioration in Acute Pontine Infarction. European Neurology, 63, 221-226.
https://doi.org/10.1159/000279619
[15] Fisher, C.M. and Caplan, L.R. (1971) Basilar Artery Branch Occlusion: A Cause of Pontine Infarction. Neurology, 21, 900-905.
[16] Yamamoto, Y., Ohara, T., Hamanaka, M., et al. (2011) Characteristics of Intracranial Branch Atheromatous Disease and Its Association with Progressive Motor Deficits. Journal of the Neurological Sciences, 304, 78-82.
https://doi.org/10.1016/j.jns.2011.02.006
[17] Dieterich, M. and Brandt, T. (2001) Vestibular System: Anatomy and Functional Magnetic Resonance Imaging. Neuroimaging Clinics of North America, 11, 263-273.
[18] Klein, I.F., Lavallée, P.C., Mazighi, M., et al. (2010) Basilar Artery Atherosclerotic Plaques in Paramedian and Lacunar Pontine Infarctions: A High-Resolution MRI Study. Stroke, 41, 1405-1409.
https://doi.org/10.1161/STROKEAHA.110.583534
[19] Wintermark, M., Sanelli, P.C., Albers, G.W., et al. (2013) Imaging Recommendations for Acute Stroke and Transient Ischemic Attack Patients: A Joint Statement by the American Society of Neuroradiology, the American College of Radiology, and the Society of NeuroInterventional Surgery. American Journal of Neuroradiology, 34, E117-E127.
https://doi.org/10.3174/ajnr.A3690
[20] Debette, S. and Markus, H.S. (2010) The Clinical Importance of White Matter Hyperintensities on Brain Magnetic Resonance Imaging: Systematic Review and Meta-Analysis. British Medical Journal, 341, c3666.
https://doi.org/10.1136/bmj.c3666
[21] Hindenes, L.B., Håberg, A.K., Mathiesen, E.B., et al. (2021) An Incomplete Circle of Willis Is Not a Risk Factor for White Matter Hyperintensities: The Tromsø Study. Journal of the Neurological Sciences, 420, Article ID: 117268.
https://doi.org/10.1016/j.jns.2020.117268
[22] Jung, S., Mono, M.L., Findling, O., et al. (2012) White Matter Lesions and Intra-Arterial Thrombolysis. Journal of Neurology, 259, 1331-1336.
https://doi.org/10.1007/s00415-011-6352-y
[23] Iordanishvili, E., Schall, M., Loução, R., et al. (2019) Quantitative MRI of Cerebral White Matter Hyperintensities: A New Approach towards Understanding the Underlying Pathology. NeuroImage, 202, Article ID: 116077.
https://doi.org/10.1016/j.neuroimage.2019.116077
[24] 张梦雨. 脑白质高信号与急性缺血性卒中患者预后相关性研究[D]: [博士学位论文]. 北京: 北京协和医学院, 2016.
[25] 周西瑞, 喻志源, 骆翔. 脑白质高信号的研究进展[J]. 神经损伤与功能重建, 2020, 15(8): 464-465+468.
[26] Jokinen, H., Kalska, H., Ylikoski, R., et al. (2009) Longitudinal Cognitive Decline in Subcortical Ischemic Vascular Disease—The LADIS Study. Cerebrovascular Diseases, 27, 384-391.
https://doi.org/10.1159/000207442
[27] Buyck, J.F., Dufouil, C., Mazoyer, B., et al. (2009) Cerebral White Matter Lesions Are Associated with the Risk of Stroke but Not with Other Vascular Events: The 3-City Dijon Study. Stroke, 40, 2327-2331.
https://doi.org/10.1161/STROKEAHA.109.548222
[28] Baezner, H., Blahak, C., Poggesi, A., et al. (2008) Association of Gait and Balance Disorders with Age-Related White Matter Changes: The LADIS Study. Neurology, 70, 935-942.
[29] Teodorczuk, A., Firbank, M.J., Pantoni, L., et al. (2010) Relationship between Baseline White-Matter Changes and Development of Late-Life Depressive Symptoms: 3-Year Results from the LADIS Study. Psychological Medicine, 40, 603-610.
https://doi.org/10.1017/S0033291709990857
[30] Griffanti, L., Jenkinson, M., Suri, S., et al. (2018) Classification and Characterization of Periventricular and Deep White Matter Hyperintensities on MRI: A Study in Older Adults. NeuroImage, 170, 174-181.
https://doi.org/10.1016/j.neuroimage.2017.03.024
[31] van den Heuvel, D.M., ten Dam, V.H., de Craen, A.J., et al. (2006) Increase in Periventricular White Matter Hyperintensities Parallels Decline in Mental Processing Speed in a Non-Demented Elderly Population. Journal of Neurology, Neurosurgery, and Psychiatry, 77, 149-153.
https://doi.org/10.1136/jnnp.2005.070193
[32] DeCarli, C., Fletcher, E., Ramey, V., et al. (2005) Anatomical Mapping of White Matter Hyperintensities (WMH): Exploring the Relationships between Periventricular WMH, Deep WMH, and Total WMH Burden. Stroke, 36, 50-55.
https://doi.org/10.1161/01.STR.0000150668.58689.f2
[33] Kim, K.W., MacFall, J.R. and Payne, M.E. (2008) Classification of White Matter Lesions on Magnetic Resonance Imaging in Elderly Persons. Biological Psychiatry, 64, 273-280.
https://doi.org/10.1016/j.biopsych.2008.03.024
[34] Fazekas, F., Schmidt, R. and Scheltens, P. (1998) Pathophysiologic Mechanisms in the Development of Age-Related White Matter Changes of the Brain. Dementia and Geriatric Cognitive Disorders, 9, 2-5.
https://doi.org/10.1159/000051182
[35] Xia, C., Chen, H.S., Wu, S.W., et al. (2017) Etiology of Isolated Pontine Infarctions: A Study Based on High-Resolution MRI and Brain Small Vessel Disease Scores. BMC Neurology, 17, Article No. 216.
https://doi.org/10.1186/s12883-017-0999-7
[36] Lin, P.C., Chang, F.C., Huang, H.C., et al. (2017) Greater Periventricular White Matter Hyperintensity Severity in Basilar Artery Branch Atheromatous Disease. BMC Neurology, 17, Article No. 135.
https://doi.org/10.1186/s12883-017-0918-y
[37] Zhou, L., Yao, M., Peng, B., et al. (2018) Atherosclerosis Might Be Responsible for Branch Artery Disease: Evidence from White Matter Hyperintensity Burden in Acute Isolated Pontine Infarction. Frontiers in Neurology, 9, Article No. 840.
https://doi.org/10.3389/fneur.2018.00840
[38] 王心, 陈雨洁, 李悦悦, 等. 脑白质高信号与急性孤立性穿支供血区梗死患者卒中病因学分型的相关性[J]. 国际脑血管病杂志, 2021, 29(1): 6-12.