抗转铁蛋白受体抗体靶向脑内药物递送的研究策略
Research Strategy of Anti-Transferrin Receptor Antibody Targeting Intracerebral Drug Delivery
摘要: 血脑屏障的存在限制循环中药物向大脑的渗透,给中枢神经系统疾病的治疗造成巨大挑战。近年来,研究人员发现脑毛细血管内皮细胞存在一类特异性高表达受体,能将循环中特定物质转运到脑内。转铁蛋白受体1 (Transferrin Receptor 1, TfR1)即是其中之一,基于TfR1单克隆抗体的抗体融合蛋白显示了治疗阿尔茨海默病等疾病的潜力,激发了利用TfR1靶向脑内递送药物的研究。本文旨在论述靶向TFR1抗体进行药物脑内递送的研究进程,从而为TfR1抗体药物运载平台的开发提供相关理论基础。
Abstract: The existence of blood brain barrier (blood brain barrier, BBB) limited the penetration of circulating drugs into the brain, which poses a great challenge to the treatment of central nervous system diseases. In recent years, researchers have found that brain capillary endothelial cells have a class of specific highly expressed receptors, which can transport specific substances in the circulation to brain. As a member of them, Transferrin Receptor 1 has become a research hotspot. Antibody fusion proteins based on TfR1 monoclonal antibodies have shown potential for the treatment of diseases such as Alzheimer’s disease. Thus it stimulated the research of using TfR1 to deliver drugs to the brain. This paper aims to discuss the research process of drug delivery in brain targeting TfR1 antibody, so as to provide a relevant theoretical basis for the development of TfR1 antibody drug delivery platform.
文章引用:范双, 刘煜. 抗转铁蛋白受体抗体靶向脑内药物递送的研究策略[J]. 药物资讯, 2022, 11(3): 137-145. https://doi.org/10.12677/PI.2022.113017

1. 血脑屏障与中枢神经系统疾病

在循环系统和CNS之间存在着一层物理屏障,即血液–脑脊液屏障(Blood Brain Barrier, BBB) [1]。BBB位于大脑微血管内,由连续的单层脑毛细血管内皮细胞(Brain Capillary Endothelial Cells, BCECs)组成,与围绕内皮细胞层的星形胶质细胞和周细胞形成紧密结构,在BBB完整性中发挥作用,并构成高度调节的神经血管单元 [2]。此外,BBB上还存在着多药耐药蛋白、P-糖蛋白等转运体,作为外排泵限制药物向脑内输送 [3] [4]。这些因素导致药物难以向大脑内部传递 [5] [6],治疗性药物(如细胞因子、抗体、siRNA等)都很难通过BBB结构 [7],使得靶向中枢神经系统(Central Nervous System, CNS)疾病治疗极具挑战。

BCECs与外周内皮细胞不同,它能显著降低大多数血源性分子的通透性,使传统抗体的渗透受到限制 [8],特别是在结构和功能上与内源性免疫球蛋白G (Immunoglobin G, IgG)相似的传统基于免疫球蛋白γ抗体的被动免疫疗法,仅显示注射剂量的0.1%~0.3%的脑摄取 [9] [10]。为了提高颅内给药的效率和靶向性,人们已经做出了许多尝试来克服这些问题。例如,通过输注甘露糖暂时打开BBB;通过向大脑中注入甘油、乙醇和二甲基亚砜等化学物破坏BBB;溶解BCEC膜 [11] 等。然而,这些方法破坏了BBB中的紧密联系,导致有害物质、代谢废物和致病微生物入侵,进而导致其他脑部疾病 [12]。

利用BBB的特性开发非侵入性或微创性纳米药物递送系统是治疗阿尔茨海默病(Alzheimer Disease, AD)等CNS疾病最合适的选择。为改善BBB穿透性,研究者做了许多尝试:1) 利用BCECs上高表达某些受体或转运体,相应的配体通过受体介导或转运体介导的转运进行摄取 [13];2) 利用内皮细胞膜的负电荷或细胞穿透肽的跨膜特性,阳离子或肽通过修饰后,经吸附介导的转运增强BBB穿透 [14];3) 利用细胞或病毒的固有特性,提取的病毒外体、细胞膜或蛋白质外壳被用作载体,通过细胞介导的转运穿过BBB [15]。其中以受体介导的胞吞作用(Receptor Mediated Transcytosis, RMT)为媒介的药物跨血脑屏障运输取得了较快进展,相关靶点包括包括转铁蛋白受体、胰岛素受体、低密度脂蛋白受体相关蛋白、乳铁蛋白受体、烟碱型乙酰胆碱受体、胰岛素样生长因子受体等 [16] [17]。

2. Tf/TfR1转胞吞系统

转铁蛋白受体1 (Transferrin Receptor 1, TfR1)是RMT系统中一个特别有吸引力的靶标,是CNS药物递送研究最广泛的系统之一 [18]。转铁蛋白(Tf)是一种双叶血清蛋白(80 kDa),每叶结合一个铁离子 [19]。含铁的Tf (holo-transferrin, holo-Tf)是大多数组织的主要铁来源。TfR1也称为CD71,是是一种II型跨膜糖蛋白,由两个90 kDa亚基形成同二聚体,并通过两个二硫键连接。每个TfR1亚基可以结合一个携带铁的Tf蛋白。TfR1的同源物TfR2也能够结合循环Tf,但机制不同 [20],其生理作用是维持体内铁水平而不是细胞吸收铁 [21]。参与TfR1结合的配体包括Tf和血色素沉着蛋白(Hemochromatin, HFE),二者存在一定竞争关系 [22]。

在循环中,holo-Tf与细胞表面TfR1结合并被内吞。通过称为Tf循环的内吞过程,铁从Tf中释放出来并被吸收到细胞中。铁耗尽的Tf (apo-transferrin, apo-Tf)仍然与TfR1结合并循环到细胞表面,在细胞外环境的中性pH值下从TfR1中释放出来 [23]。TfR1与Tf结合与否不影响其内化到网格蛋白有被小窝,并且TfR1的循环十分迅速,是一个高度动态的过程 [24]。

鉴于TfR1选择性在脑毛细血管内皮细胞中高度表达 [25] [26],且能够实现转铁蛋白(Tf)的内吞作用和转胞吞作用 [27],因此理论上它也可用于将治疗剂转运到大脑中。这激起人们通过靶向Tf或设计针对TfR1的抗体而利用该系统进行靶向中枢神经系统(CNS)药物运输的兴趣。

3. TfR抗体开发策略

在CNS疾病治疗方面,TfR1抗体研发的一个主要方向是将其作为跨BBB运输工具,靶向脑部递送治疗药物。一开始,研究者普遍选用AD作为研究模型,将TfR1抗体与抗 tau蛋白抗体、抗β淀粉样蛋白抗体及抗β淀粉样前体蛋白裂解酶1 (βAmyloid precursor protein lyase 1, BACE1)抗体等治疗药物相融合 [28],把药物靶向输送到脑内。然而,一开始TfR抗体介导的RMT作用效率有限,因为跨BBB涉及多个环节,血液侧的结合、内吞、分选、胞吐和脑侧释放都是调节TfR1抗体通过BBB进入脑实质的关键步骤 [29]。近年来的研究逐渐阐明了影响该过程的因素,并通过改变TfR抗体亲和力、结合价、PH敏感性以及选择合适的分子构型来实现更大的转运效率和更高的安全性。

3.1. 降低抗体亲和力

靶向TfR1的单克隆抗体及其偶联物可以有效集中分布到BCECs [30],然而要真正进入CNS却非易事。在早期研究中发现,靶向大鼠TfR1的单克隆抗体OX26 [31]、放射性标记的OX26和OX26-偶联的脂质体 [30]、静脉注射标记的抗小鼠TfR1单克隆抗体Ri7和8D3等都易于聚集在BCECs,但在脑实质中的渗透量有限 [32]。为有效利用Tf-TfR1转胞吞系统提供指导,Yu YJ等首次通过抗体互补决定区(Complementary Decision Regions, CDRs)丙氨酸突变,研究TfR抗体亲和力对脑内渗透的影响。在微量剂量下,小鼠脑摄取与亲和力直接相关,说明血液侧TfR1受体参与的重要性;在治疗剂(20 mg/kg)下,低亲和力抗体显示更高的脑实质积累 [33]。其他研究者也通过CDRs外 [34] 或CDR3 [35] 的丙氨酸突变得到8D3的亲和力低亲和力突变型,Tuan-Minh Do等 [36] 发现重链恒定区和轻链恒定区存在多个氨基酸残基突变为丙氨酸后可降低TfR亲和力。

后来的研究表明,低亲和力TfR1抗体易于跨过血脑屏障的原因是由于抗体亲和力影响了其进入大脑内皮细胞后的选择途径 [37] [38] [39]。一方面低亲和力易于抗体从TfR1上解离,从而通过胞吐作用从内体释放到BCECs基底侧并进入脑实质,而TfR1则循环回收到管腔侧。另一方面,低亲和力结合能减少anti-TfR1 mAb与TfR1复合物向溶酶体的转运,从而避免内吞的抗体进入溶酶体途径 [40]。这与高亲和力TfR1抗体更多进入溶酶体途径而被降解的结果一致 [33],这一过程同也导致TfR1的降解而使其在BCEC中含量下降 [39]。因此,适度降低亲和力可以增加抗TfR1抗体跨BBB的运输能力。

3.2. 改变抗体PH敏感性

在细胞内吞过程中,酸化是囊泡成熟和分类过程中的关键步骤 [41]。该pH梯度已被用于涉及转铁蛋白在内的天然配体的蛋白质工程 [42]。早期研究探讨了PH敏感结合是否可以作为调节抗TfR抗体运输和增加跨BBB运输的额外方式 [43]。研究者在体外BBB模型中观察到pH不敏感的抗TfR抗体128.1与pH敏感的抗TfR抗体MEM-189的细胞内差异运输。128.1与晚期内体/溶酶体标记物CD63共定位,溶酶体降解增加。而MEM-189则出现在与晚期内体不同的囊泡结构,在hCMEC/D3细胞系中的跨细胞转运增加。这是由于PH敏感的TfR1 mAb在内吞形成的内体逐渐酸化的过程中,逐渐降低的PH使得抗体易于从受体上解离下来成为游离状态。Tillotson Benjamin J等 [44] 使用组氨酸扫描诱变方法将TfR抗体改造成pH敏感性,使得该抗体可能识别与PH敏感的野生型抗体相似结合表位,从而增强了抗体转胞吞能力。因此,pH敏感结合是增加TfR抗体跨BBB转运的替代思路。

3.3. 改变抗体结合价态

Jens Niewoehner等 [37] 首先研究了TfR1结合价态对TfR1抗体跨越BBB效率的影响。其体内实验表明,TfR1抗体跨细胞转运通过脑血管内皮细胞内的囊泡结构发生。在这一过程中,单价结合TfR1 (Single Fab, sFab)导致成功的跨细胞作用,使治疗性抗体的脑暴露量大大增加,并在AD小鼠模型中显示淀粉样蛋白负荷的显著降低;而与TfR1的二价结合(Double Fab, dFab)诱导穿梭载体进入溶酶体分选途径和降解,这与体内观察到的不完全跨细胞运输一致。此外,二价受体结合导致细胞表面的TfR水平因内吞循环被阻止而逐渐下调。sFab和dFab之间细胞内分选差异的一种解释可能是在dFab交联TfR1时在质膜上形成受体簇,这种受体聚集不是dFab独有的,而可能是与TfR1二价结合的一般结果 [45]。因此,单价的TfR1结合更有利于RMT作用,但在实际选择中还应与相应分子构型进行综合考虑。

另外,这改变抗体结合PH敏感性的策略可能并不适于其他转运受体,针对不同RMT受体甚至同一受体的不同表位的抗体可能具有不同的最佳结合特性。例如,BBB上与细胞内吞有关的α-(2,3)-唾液酸糖蛋白TMEM-30A受体,其单域抗体(Single Domain Antibody, sdAb) FC5在二价结合状态下具有更高转胞吞能力 [26],这与TfR系统相反,并且也有的RMT受体抗体在高亲和力下具有较好的转运效率 [46]。

3.4. 选择合适的分子构型

分子构型会影响TfR结合及转运效率等,现有的不同TfR抗体多是以大鼠抗小鼠TfR1单克隆抗体8D3 [47] 为亲本抗体衍生而来,在此基础上构建双特异性抗体,或以8D3的Fab片段、ScFv片段或全抗形式融合其他治疗性蛋白。

目前对TfR1抗体的利用主要包括以下几种:1) 保留TfRmab的完整抗体形式,在重链C端融合治疗性抗体(如抗Aβ抗体) ScFvs片段 [48];或融合两个有效负载蛋白 [35] [49] [50] [51],如肿瘤坏死因子α、艾杜糖醛酸-2-硫酸酯酶、白介素1受体激动剂、胶质源性神经营养因子等,这种结构称为四价双特异性抗体,由于TfR抗体部分是二价结合,因此所选TfR亲本抗体亲和力不宜过高。2) 截取TfR抗体部分片段,以ScFv形式融合到治疗性抗体轻链C端 [38],或以ScFv/Fab形式融合到治疗性抗体重链C端 [37],这种结构便于选择TfR抗体以单价还是双价结合。3) 将治疗性抗体和TfR亲本抗体的半抗体组合 [33],称为二价双特异性抗体,其分子量及分子结构与单克隆抗体相似,但由于正确配对等问题,该形式抗体大规模生产产量较低。4) 运用抗体可结晶片段(Fc)工程技术,通过随机突变和定向筛选,直接对治疗性抗体进行改造,使其Fc部位具有靶向结合TfR能力,从而在不引入TfR抗体片段的前提下获得跨BBB运输的能力 [52]。目前来看,该方法在与治疗性抗体的组合中具有显著优点。5) 将两个治疗性抗体ScFv与一个TfR抗体Fab片段融合,形成三价抗体形式 [53]。在这几种形式中,该分子形式具有最小的分子量。6) 四价的DVD构型 [34] [54],该构型相比于二价双特异性抗体而言更易表达,但分子量较大,且抗体互补表位所处的空间位置对跨BBB能力和治疗效果有显著的潜在影响。例如,在Tuan-Minh Do [36] 等设计的DVD构型中,当抗TfR互补表位处于外侧时,其亲和力比内侧对照抗体高45倍,且比8D3亲本抗体高10倍。

其他形式分子构型则是灵活运用TfR抗体互补表位作为药物运输的载体。例如,以8D3-scFv为基础的三特异性融合蛋白scFv-8D3-ZSYM73-ABD [55],以单域VNAR抗体为基础的TXB2-hFc [56],都显示出显著增强的脑内渗透。此外,Joshua Yang等 [57] 另辟蹊径,通过分子特洛伊木马 (Molecular Trojan Horse, MTH)技术得到TfRMAb-EPO融合蛋白,有效将红细胞生成素(Erythropoietin, EPO)运送到大脑。

在对TfRmab进行改造以用作药物运输载体时,选择多大的抗体片段和分子构型也需要慎重考虑。就分子量而言,较小的抗体片段(如,sdAb,15kD)显示出比较大抗体(如,IgG,150 kD)更广泛和更深的脑实质分布 [58],但其具有较短的半衰期、更快的血液消除速度、较低的最大脑浓度、较低的最大脑浓度时间、较大的实质–毛细血管浓度比。然而,分子量不同的TfR抗体从脑中的消除率没有差异 [59]。这与大分子在脑内通过向淋巴系统的整体流动消除的机制一致 [60],提示TfR抗体在脑内的清除可能主要通过这一途径,而非逆转TfR胞吞作用 [61]。

3.5. 结合脂质体和纳米技术实现脑内递送

设计能特异靶向并穿过BBB的纳米颗粒能解决传统方法导致的BBB破坏及药物药代动力学特性变化问题 [62]。原理是将TfR1抗体掺入脂质体表面,作为分子特洛伊木马结构与TfR1结合,触发纳米药物颗粒实现跨越 BBB的运输 [63]。通过这一系统能靶向脑内递送、释放脂质体包裹的药物。例如,Dahai Jiang等 [64] [65] 通过此法将脂质体包裹的质粒DNA运送到小鼠大脑中表达,以治疗NPC1 (一种遗传性溶酶体贮积症)。康双明等 [66] 使用麝香酮和TfR抗体(RI7217)共修饰的多西紫杉醇(DTX)脂质体增强药物向大脑的递送以达到抗神经胶质瘤的效果。OX26修饰的纳米结构脂质载体(NLC)可以促进丹酚酸B (Sal B)和黄芩苷(BA)的脑递送,修复神经元损伤并改善脑缺血再灌注损伤(IRI) [67]。然而,应注意有效调整纳米颗粒表面上的TfR抗体密度对调节纳米颗粒吸收和转运到大脑中的十分重要,并且TfR靶向小鼠脂质体可能会在静脉内给药后引起严重的不良反应 [68]。

4. TfR抗体作为药物递送载体需要注意的问题

由于循环系统中还存在表达TfR的细胞,如网织红细胞,TfR抗体作为药物载体可能的副作用以及如何规避相应问题也是成功药物开发不可避免的环节。Couch等 [69] 发现,双价的TfRmab会引起小鼠严重的临床正症状,如抽搐、血管内溶血、尿血等,这主要由抗体可结晶片段(Antibody crystallizable fragment, Fc)介导的效应引起的细胞毒性造成。另外,高剂量和高亲和力的抗体治疗导致网织红细胞大量减少 [57],这部分归因于抗体依赖性细胞介导的细胞毒性作用 [70],以及抗体CH3介导的补体依赖的细胞毒作用效应。而使用包含Fc N-连接糖基化突变(N292G)的“无效应”TfRmab时,与Fcγ受体的结合被消除,可部分挽救小鼠中网织红细胞的抑制并消除非人类灵长类动物的这种不利影响,并且不会改变小鼠中低亲和力TfRmab的血浆清除率及小鼠和非人灵长类动物中非TfR靶向单克隆抗体的血浆清除 [71] [72]。

提示,在开发TfR1抗体时去除Fcγ受体结合作用、降低剂量和亲和力,同时保留抗体新生儿Fc受体(Antibody neonatal Fc receptor, FcRn)结合能力,以尽可能避免上述安全性问题同时确保跨BBB渗透能力和治疗靶点的药效。因为FcRn虽不直接介导跨BCEC的RMT作用,但有助于延长血清半衰期 [73]。此外,还应注意靶向TfR后对TfR蛋白水平的影响。对TfR抗体治疗后脑血管和实质TfR1表达的评估中 [36] 发现,高亲和力的抗体处理导致全细胞TfR1水平显着下调;较低亲和力的抗体不会改变总细胞或表面细胞TfR1水平;并且无论亲和力如何,均未改变原代神经元中的TfR1水平。

5. 总结与展望

由于BBB阻碍了药物在脑内的积累,化疗药物、生物制剂等对CNS疾病的疗效大大降低。因此,需要新的方法来控制有效CNS疾病治疗的局限性。在药物靶向主动靶向系统中,RMT是最有希望的药物递送修饰之一,其中Tf/TfR1系统备受关注。对于CNS疾病而言,主要利用Tf/TfR1的转胞吞作用靶向脑内递送治疗药物。随着对TfR1抗体跨BBB的机制深入研究,针对Tf或TfR1的药物递送平台开发以达到高峰,尤其是针对TfR1的抗体运载工具已有广泛的研究基础,相关研究通过AD、神经母细胞瘤等疾病模型得到验证。目前,基于TfR1抗体的重组异氰酸酯2-硫酸酯酶(JR-141),已被批准上市,用于治疗粘多糖贮积症II型(亨特综合症),进一步增强研究者开发基于TfR1抗体的CNS药物递送平台的信心。除了抗体融合蛋白的形式外,通过纳米颗粒(Nanoparticles, NPs)靶向脑内递送药物也是重要方向。相比于TfR1抗体,Tf更多地被缀合在NPs上以用作靶向TfR1的配体,而NPs内可以包裹核酸、蛋白或化疗药物等,用作诊断剂或治疗剂。

此外,Tf/TfR1也在脑外肿瘤治疗中发挥作用。由于Tf转运和调节细胞外铁元素的作用、由于癌细胞的高增殖率和铁需求以及显著高于正常细胞的TfR水平,使得可以通过靶向Tf (间接)或TfR1 (直接)实现对癌细胞的特异杀伤。已证明各种抗TfR mAb在诱导成人T细胞白血病/淋巴瘤、红白血病等细胞凋亡方面的功效。基于抗TfR-scFv的嵌合抗原受体T细胞免疫疗法(Chimeric Antigen Receptor T-Cell Immunotherapy, CAR-T)治疗策略也被证明在体外对四种类型的TfR+血液系统恶性肿瘤表现出强效的效应功能。但靶向Tf/TfR1以直接治疗肿瘤仍有一些问题需要解决,如CAR-T治疗后的抗原丢失和抗原低逃逸等。

不管怎样,需要进一步阐明TfR1抗体介导RMT机制,从而建立起更加成熟而普适的CNS药物递送平台;继续优化Tf/TfR1靶向系统以实现更为有效的跨BBB能力、更为安全抗肿瘤活性,进而助力Tf/TfR1系统成为CNS疾病和抗肿瘤治疗有价值的靶点。

NOTES

*通讯作者。

参考文献

[1] Neuwelt, E., et al. (2008) Strategies to Advance Translational Research into Brain Barriers. The Lancet Neurology, 7, 84-96.
https://doi.org/10.1016/S1474-4422(07)70326-5
[2] Arvanitis, C.D., Ferraro, G.B. and Jain, R.K. (2019) The Blood-Brain Barrier and Blood-Tumour Barrier in Brain Tumours and Metastases. Nature Reviews. Cancer, 20, 26-41.
https://doi.org/10.1038/s41568-019-0205-x
[3] Lee, G., et al. (2001) Drug Transporters in the Central Nervous System: Brain Barriers and Brain Parenchyma Considerations. Pharmacological Reviews, 53, 569-596.
https://doi.org/10.1146/annurev.pharmtox.41.1.569
[4] Ouyang, Q., et al. (2021) New Advances in Brain-Targeting Nano-Drug Delivery Systems for Alzheimer’s Disease. Journal of Drug Targeting, 30, 61-81.
https://doi.org/10.1080/1061186X.2021.1927055
[5] Siti, Y. (2010) Structure and Function of the Blood-Brain Barrier. Frontiers in Pharmacology, 11, Article No. 914.
https://doi.org/10.3389/conf.fphar.2010.02.00002
[6] Daniels, T.R., et al. (2012) The Transferrin Receptor and the Targeted Delivery of Therapeutic Agents against Cancer. Biochimica et Biophysica Acta BBA—General Subjects, 1820, 291-317.
https://doi.org/10.1016/j.bbagen.2011.07.016
[7] Sharma, G., et al. (2019) Advances in Nanocarriers Enabled Brain Targeted Drug Delivery across Blood Brain Barrier. International Journal of Pharmaceutics, 559, 360-372.
https://doi.org/10.1016/j.ijpharm.2019.01.056
[8] Poduslo, J.F., Curran, G.L. and Berg, C.T. (1994) Macromolecular Permeability across the Blood-Nerve and Blood-Brain Barriers. Proceedings of the National Academy of Sciences, 91, 5705-5709.
https://doi.org/10.1073/pnas.91.12.5705
[9] Yu, Y.J. and Watts, R.J. (2013) Developing Therapeutic Antibodies for Neurodegenerative Disease. Neurotherapeutics, 10, 459-472.
https://doi.org/10.1007/s13311-013-0187-4
[10] Sevigny, J., et al. (2016) The Antibody Aducanumab Reduces Aβ Plaques in Alzheimer’s Disease. Nature, 537, 50-56.
https://doi.org/10.1038/nature19323
[11] Chen, R.J., Zhao, X. and Hu, K.L. (2019) Physically Open BBB. In: Gao, H.L. and Gao, X.L., Eds., Brain Targeted Drug Delivery System: A Focus on Nanotechnology and Nanoparticulates, Elsevier, Amsterdam, 197-217.
https://doi.org/10.1016/B978-0-12-814001-7.00009-3
[12] Frster, C. (2008) Tight Junctions and the Modulation of Barrier Function in Disease. Histochemistry and Cell Biology, 130, 55-70.
https://doi.org/10.1007/s00418-008-0424-9
[13] Li, G., Shao, K. and Umeshappa, C.S. (2019) Recent Progress in Blood-Brain Barrier Transportation Research. In: Gao, H.L. and Gao, X.L., Eds., Brain Targeted Drug Delivery System: A Focus on Nanotechnology and Nanoparticulates, Elsevier, Amsterdam, 33-51.
https://doi.org/10.1016/B978-0-12-814001-7.00003-2
[14] O’Kane, R.L., et al. (2006) Cationic Amino Acid Transport across the Blood-Brain Barrier Is Mediated Exclusively by System Y+. AJP Endocrinology & Metabolism, 291, E412-E419.
https://doi.org/10.1152/ajpendo.00007.2006
[15] Li, R.X., He, Y.W., et al. (2018) Cell Mem-brane-Based Nanoparticles: A New Biomimetic Platform for Tumor Diagnosis and Treatment. Acta Pharmaceutica Sini-ca B, 8, 14-22.
https://doi.org/10.1016/j.apsb.2017.11.009
[16] Willingham, M.C. and Pastan, I. (1980) The Re-ceptosome: An Intermediate Organelle of Receptor-Mediated Endocytosis in Cultured Fibroblasts. Cell, 21, 67-77.
https://doi.org/10.1016/0092-8674(80)90115-4
[17] Gao, H. (2019) Introduction and Overview. In: Gao, H.L. and Gao, X.L., Eds., Brain Targeted Drug Delivery System, Elsevier, Amsterdam, 1-4.
https://doi.org/10.1016/B978-0-12-814001-7.00001-9
[18] Kbj, A., et al. (2019) Targeting the Transferrin Receptor for Brain Drug Delivery. Progress in Neurobiology, 181, Article ID: 101665.
https://doi.org/10.1016/j.pneurobio.2019.101665
[19] Aisen, P., Leibman, A. and Zweier, J. (1978) Stoichiometric and Site Characteristics of the Binding of Iron to Human Transferrin. Journal of Biological Chemistry, 253, 1930-1937.
https://doi.org/10.1016/S0021-9258(19)62337-9
[20] Kleven, M.D., Jue, S. and Enns, C.A. (2018) Transferrin Receptors TfR1 and TfR2 Bind Transferrin through Differing Mechanisms. Biochemistry, 57, 1552-1559.
https://doi.org/10.1021/acs.biochem.8b00006
[21] Robb, A. and Wessling-Resnick, M. (2004) Regulation of Transferrin Receptor 2 Protein Levels by Transferrin. Blood, 104, 4294-4299.
https://doi.org/10.1182/blood-2004-06-2481
[22] Feder, J.N., et al. (1998) The Hemochromatosis Gene Product Complexes with the Transferrin Receptor and Lowers Its Affinity for Ligand Binding. Proceedings of the National Academy of Sciences of the United States of America, 95, 1472-1477.
https://doi.org/10.1073/pnas.95.4.1472
[23] Klausner, R.D., et al. (1983) Binding of Apotransferrin to K562 Cells: Explanation of the Transferrin Cycle. Proceedings of the National Academy of Sciences, 80, 2263-2266.
https://doi.org/10.1073/pnas.80.8.2263
[24] Zhou, X., Smith, Q.R. and Liu, X. (2021) Brain Penetrating Peptides and Peptide-Drug Conjugates to Overcome the Blood-Brain Barrier and Target CNS Diseases. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 13, e1695.
https://doi.org/10.1002/wnan.1695
[25] Allden, S.J., et al. (2019) The Transferrin Receptor CD71 Delineates Functionally Distinct Airway Macrophage Subsets during Idio-pathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 200, 209-219.
https://doi.org/10.1164/rccm.201809-1775OC
[26] Farrington, G.K., et al. (2014) A Novel Platform for Engineer-ing Blood-Brain Barrier-Crossing Bispecific Biologics. FASEB Journal, 28, 4764-4778.
[27] Crawford, L., Rosch, J. and Putnam, D. (2016) Concepts, Technologies, and Practices for Drug Delivery past the Blood-Brain Barrier to the Central Nervous System. Journal of Controlled Release, 240, 251-266.
https://doi.org/10.1016/j.jconrel.2015.12.041
[28] Jca, B., et al. (2019) Alzheimer’s Disease Drug Development Pipeline: 2019. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 5, 272-293.
https://doi.org/10.1016/j.trci.2019.05.008
[29] Ward, E.S. and Ober, R.J. (2018) Targeting FcRn to Generate Anti-body-Based Therapeutics. Cancel, 39, 892-904.
https://doi.org/10.1016/j.tips.2018.07.007
[30] Thom, G., et al. (2018) Enhanced Delivery of Galanin Conjugates to the Brain through Bioengineering of the Anti-Transferrin Receptor Antibody OX26. Molecular Pharmaceutics, 15, 1420-1431.
https://doi.org/10.1021/acs.molpharmaceut.7b00937
[31] Moos, T. and Morgan, E.H. (2001) Restricted Transport of Anti-Transferrin Receptor Antibody (OX26) through the Blood-Brain Barrier in the Rat. Journal of Neurochemistry, 79, 119-129.
https://doi.org/10.1046/j.1471-4159.2001.00541.x
[32] Paris-Robidas, S., et al. (2011) In Vivo Labeling of Brain Capillary Endothelial Cells after Intravenous Injection of Monoclonal Antibodies Targeting the Transferrin Receptor. Molecular Pharmacology, 80, 32-39.
https://doi.org/10.1124/mol.111.071027
[33] Yu, Y.J., et al. (2011) Boosting Brain Uptake of a Therapeutic Anti-body by Reducing Its Affinity for a Transcytosis Target. Science Translational Medicine, 3, 84ra44.
https://doi.org/10.1126/scitranslmed.3002230
[34] Hanzatian, D.K., et al. (2015) Blood-Brain Barrier (BBB) Pene-trating Dual Specific Binding Proteins for Treating Brain and Neurological Diseases.
[35] Burrell, et al. (2017) En-hanced Delivery of IL-1 Receptor Antagonist to the Central Nervous System as a Novel Anti-Transferrin Recep-tor-IL-1RA Fusion Reverses Neuropathic Mechanical Hypersensitivity. Pain, 158, 660-668.
https://doi.org/10.1097/j.pain.0000000000000810
[36] Do, T.M., et al. (2020) Tetravalent Bispecific Tandem An-tibodies Improve Brain Exposure and Efficacy in an Amyloid Transgenic Mouse Model. Molecular Therapy: Methods & Clinical Development, 19, 58-77.
https://doi.org/10.1016/j.omtm.2020.08.014
[37] Niewoehner, J., et al. (2014) Increased Brain Penetration and Po-tency of a Therapeutic Antibody Using a Monovalent Molecular Shuttle. Neuron, 81, 49-60.
https://doi.org/10.1016/j.neuron.2013.10.061
[38] Greta, H., et al. (2017) Bivalent Brain Shuttle Increases Anti-body Uptake by Monovalent Binding to the Transferrin Receptor. Theranostics, 7, 308-318.
https://doi.org/10.7150/thno.17155
[39] Bien-Ly, N., et al. (2014) Transferrin Receptor (TfR) Trafficking Deter-mines Brain Uptake of TfR Antibody Affinity Variants. Journal of Experimental Medicine, 211, 233-244.
https://doi.org/10.1084/jem.20131660
[40] Villaseor, R., et al. (2016) Trafficking of Endogenous Immunoglobulins by Endothelial Cells at the Blood-Brain Barrier. Scientific Reports, 6, Article No. 25658.
https://doi.org/10.1038/srep25658
[41] Huotari, J. and Helenius, A. (2014) Endosome Maturation. EMBO Journal, 30, 3481-3500.
https://doi.org/10.1038/emboj.2011.286
[42] Lao, B.J. and Kamei, D.T. (2010) Improving Therapeutic Properties of Protein Drugs through Alteration of Intracellular Trafficking Pathways. Biotechnology Progress, 24, 2-7.
https://doi.org/10.1021/bp070080b
[43] Sade, H., et al. (2014) A Human Blood-Brain Barrier Transcytosis Assay Reveals Antibody Transcytosis Influenced by pH-Dependent Receptor Binding. PLoS ONE, 9, e96340.
https://doi.org/10.1371/journal.pone.0096340
[44] Tillotson, B.J., et al. (2015) Engineering an Anti-Transferrin Receptor ScFv for pH-Sensitive Binding Leads to Increased Intracellular Accumulation. PLoS ONE, 10, e0145820.
https://doi.org/10.1371/journal.pone.0145820
[45] Roberto, et al. (2017) Sorting Tubules Regulate Blood-Brain Barrier Transcytosis. Cell Reports, 21, 3256-3270.
https://doi.org/10.1016/j.celrep.2017.11.055
[46] Zuchero, Y.J.Y., et al. (2016) Discovery of Novel Blood-Brain Barrier Targets to Enhance Brain Uptake of Therapeutic Antibodies. Neuron, 89, 70-82.
https://doi.org/10.1016/j.neuron.2015.11.024
[47] Lee, H.J., et al. (2000) Targeting Rat Anti-Mouse Transferrin Receptor Monoclonal Antibodies through Blood-Brain Barrier in Mouse. Journal of Pharmacology and Experimental Therapeutics, 292, 1048-1052.
[48] Boado, R.J., et al. (2007) Fusion Antibody for Alzheimer’s Disease with Bi-Directional Transport across the Blood-Brain Barrier and Abeta Fibril Disaggregation. Bioconjugate Chemistry, 18, 447-455.
https://doi.org/10.1021/bc060349x
[49] Chang, R., et al. (2017) Blood-Brain Barrier Penetrating Biologic TNF-α Inhibitor for Alzheimer’s Disease. Molecular Pharmaceutics, 14, 2340-2349.
https://doi.org/10.1021/acs.molpharmaceut.7b00200
[50] Sonoda, H., et al. (2018) A Blood-Brain-Barrier-Penetrating Anti-human Transferrin Receptor Antibody Fusion Protein for Neuronopathic Muco-polysaccharidosis II. Molecular Therapy, 26, 1366-1374.
https://doi.org/10.1016/j.ymthe.2018.02.032
[51] Zhou, Q.H., et al. (2010) Monoclonal Antibody-Glial-Derived Neurotrophic Factor Fusion Protein Penetrates the Blood-Brain Barrier in the Mouse. Drug Metabolism & Disposition the Biological Fate of Chemicals, 38, 566.
https://doi.org/10.1124/dmd.109.031534
[52] Kariolis, M.S., et al. (2020) Brain Delivery of Therapeutic Proteins Using an Fc Fragment Blood-Brain Barrier Transport Vehicle in Mice and Monkeys. Science Translational Medicine, 12, eaay1359.
https://doi.org/10.1126/scitranslmed.aay1359
[53] Stina, S., et al. (2018) Efficient Clearance of Aβ Protofibrils in AβPP-Transgenic Mice Treated with a Brain-Penetrating Bifunctional Antibody. Alzheimer’s Research & Therapy, 10, 49.
https://doi.org/10.1186/s13195-018-0377-8
[54] Rao, E., et al. (2009) Antibodies That Bind IL-4 and/or IL-13 and Their Uses.
[55] Meister, S.W., et al. (2020) An Affibody Molecule Is Actively Transported into the Cerebrospinal Fluid via Binding to the Transferrin Receptor. International Journal of Molecular Sciences, 21, 2999.
https://doi.org/10.3390/ijms21082999
[56] Sehlin, D., et al. (2020) Brain Delivery of Biologics Using a Cross-Species Reactive Transferrin Receptor 1 VNAR Shuttle. The FASEB Journal, 34, 13272-13283.
[57] Yang, J., et al. (2020) Eliminating Fc N-Linked Glycosylation and Its Impact on Dosing Consideration for a Transferrin Receptor Antibody-Erythropoietin Fusion Protein in Mice. Molecular Pharmaceutics, 17, 2831-2839.
https://doi.org/10.1021/acs.molpharmaceut.0c00231
[58] Pizzo, M.E., et al. (2017) Intrathecal Antibody Distribu-tion in the Rat Brain: Surface Diffusion, Perivascular Transport and Osmotic Enhancement of Delivery. Journal of Physi-ology, 596, 445-475.
https://doi.org/10.1113/JP275105
[59] Faresj, R., et al. (2021) Brain Pharmacokinetics of Two BBB Penetrating Bispecific Antibodies of Different Size. Fluids and Barriers of the CNS, 18, Article No. 26.
https://doi.org/10.1186/s12987-021-00257-0
[60] Abbott, N.J. (2004) Evidence of Bulk Flow of Brain Interstitial Fluid: Significance for Physiology and Pathology. Neurochemistry International, 45, 545-552.
https://doi.org/10.1016/j.neuint.2003.11.006
[61] Yun, Z. and Pardridge, W.M. (2001) Mediated Efflux of IgG Molecules from Brain to Blood across the Blood-Brain Barrier. Journal of Neuroimmunology, 114, 168-172.
https://doi.org/10.1016/S0165-5728(01)00242-9
[62] Sezgin-Bayindir, Z., et al. (2016) Evaluation of Various Block Copolymers for Micelle Formation and Brain Drug Delivery: In Vitro Characterization and Cellular Uptake Studies. Journal of Drug Delivery Science and Technology, 36, 120-129.
https://doi.org/10.1016/j.jddst.2016.10.003
[63] Pardridge, W.M. (2020) Brain Delivery of Nanomedicines: Trojan Horse Liposomes for Plasmid DNA Gene Therapy of the Brain. Frontiers in Medical Technology, 2, Article ID: 602236.
https://doi.org/10.3389/fmedt.2020.602236
[64] Pardridge, W.M. (2010) Preparation of Trojan Horse Liposomes (THLs) for Gene Transfer across the Blood-Brain Barrier. Cold Spring Harbor Protocols, 2010, pdb.prot5407.
https://doi.org/10.1101/pdb.prot5407
[65] Jiang, D., Lee, H. and Pardridge, W.M. (2020) Plasmid DNA Gene Therapy of the Niemann-Pick C1 Mouse with Transferrin Receptor-Targeted Trojan Horse Liposomes. Scientific Reports, 10, Article No. 13334.
[66] Kang, S., et al. (2020) Muscone/RI7217 Co-Modified Upward Messenger DTX Liposomes Enhanced Permeability of Blood-Brain Barrier and Targeting Glioma. Theranostics, 10, 4308-4322.
https://doi.org/10.7150/thno.41322
[67] Wu, Y., et al. (2019) Brain Targeting of Baicalin and Salvianolic Acid B Combination by OX26 Functionalized Nanostructured Lipid Carriers. International Journal of Pharmaceutics, 571, Arti-cle ID: 118754.
https://doi.org/10.1016/j.ijpharm.2019.118754
[68] Johnsen, K.B., et al. (2019) Modulating the Antibody Density Changes the Uptake and Transport at the Blood-Brain Barrier of Both Transferrin Receptor-Targeted Gold Nanoparticles and Liposomal Cargo. Journal of Controlled Release, 295, 237-249.
https://doi.org/10.1016/j.jconrel.2019.01.005
[69] Couch, J.A., et al. (2013) Addressing Safety Liabilities of TfR Bispecific Antibodies That Cross the Blood-Brain Barrier. Science Translational Medicine, 5, 183ra57.
https://doi.org/10.1126/scitranslmed.3005338
[70] Sun, J., et al. (2019) Plasma Pharmacokinetics of High-Affinity Transferrin Receptor Antibody-Erythropoietin Fusion Protein is a Function of Effector Attenuation in Mice. Molecular Pharmaceutics, 16, 3534-3543.
https://doi.org/10.1021/acs.molpharmaceut.9b00369
[71] Lo, M., et al. (2017) Effector-Attenuating Substitutions That Maintain Antibody Stability and Reduce Toxicity in Mice. Journal of Biological Chemistry, 292, 3900-3908.
https://doi.org/10.1074/jbc.M116.767749
[72] Yu, Y.J., et al. (2014) Therapeutic Bispecific Antibodies Cross the Blood-Brain Barrier in Nonhuman Primates. Science Translational Medicine, 6, 261ra154.
https://doi.org/10.1126/scitranslmed.3009835
[73] Ruano-Salguero, J.S. and Lee, K.H. (2020) Antibody Transcytosis across Brain Endothelial-Like Cells Occurs Nonspecifically and Independent of FcRn. Scientific Reports, 10, Article No. 3685.
https://doi.org/10.1038/s41598-020-60438-z