抑癌基因SPOP在前列腺癌中的研究进展
Tumor Suppressor Gene SPOP in Prostate Cancer: A Review of Research Progress
DOI: 10.12677/ACM.2022.124410, PDF, HTML, XML, 下载: 311  浏览: 510 
作者: 马俊豪, 李亚东, 谭 伟, 刘 川*:重庆医科大学附属第二医院泌尿外科,重庆
关键词: 前列腺癌(PCa)抑癌基因SPOP泛素化修饰Prostate Cancer (PCa) Tumor Suppressor Gene SPOP Ubiquitination Modification
摘要: 前列腺癌(prostate cancer, PCa)仍是全球男性第二大常见癌症,发病率逐年上升,严重威胁男性健康。随着基因组学及蛋白组学的发展,我们对前列腺的基因组及分子复杂性有了新的认识。斑点型锌指结构蛋白(speckle-type POZ (pox virus and zinc finger) protein, SPOP)作为一个抑癌基因,当其突变或下调时,可促进肿瘤发生,本文就SPOP在PCa中发挥的重要作用及其最新的研究进展作一个系统的综述。
Abstract: Prostate cancer is still the second most common cancer in men in the world, and its incidence is increasing year by year, seriously threatening men’s health. With the development of genomics and proteomics, we have a new understanding of the genome and molecular complexity of the prostate. SPOP, as a tumor suppressor gene, can promote tumorigenesis when it is mutated or down-regulated. This article provides a systematic review of SPOP’s important role in prostate cancer and its latest research progress.
文章引用:马俊豪, 李亚东, 谭伟, 刘川. 抑癌基因SPOP在前列腺癌中的研究进展[J]. 临床医学进展, 2022, 12(4): 2857-2863. https://doi.org/10.12677/ACM.2022.124410

1. 引言

前列腺癌(prostate cancer, PCa)仍是全球男性第二大常见癌症,每年有超过127.5万例新诊断和35万例死亡 [1]。它的特点是一个长期和可变的自然史,广泛的肿瘤内和肿瘤间异质性,和不同的临床行为 [2]。由于新一代测序技术和综合基因组学的出现,我们对PCa的基因组定义和分子复杂性的理解在过去十年中有了显著的提高。基因组重排和拷贝数畸变是PCa发生的驱动力之一 [3]。此外,最近的系统测序研究表明,在多个易感基因上反复发生的体细胞突变也是人类PCa的一个关键分子特征 [4]。

泛素蛋白酶体进行的蛋白质多聚泛素化及其随后的降解是真核生物中进化保守的翻译后修饰 [5]。它有助于维持细胞内蛋白水平,包括参与细胞周期进程、凋亡、DNA损伤和修复以及耐药性的蛋白水平 [6]。斑点型锌指结构蛋白(speckle-type POZ (pox virus and zinc finger) protein, SPOP)是cullin家族泛素化E3连接酶复合体的一个底物识别亚基,介导底物的泛素化修饰 [7]。SPOP在多种不同癌症亚型的肿瘤发生中起着重要作用。在PCa中,SPOP作为一个肿瘤抑制基因,当其突变或下调时,可促进肿瘤发生。本文就SPOP在PCa中的研究进展作一综述,并就SPOP在PCa中的临床价值作一展望。

2. SPOP结构与功能

2009年Zhuang等对野生型SPOP进行了纯化,发现其由374个氨基酸和两个结构域组成。N端包含28~166 (SPOPMATH)和C端残基172~329 (SPOP BTB) [8]。SPOP通过其N末端MATH结构域选择性地招募底物蛋白,有趣的是,在PCa中,所有的突变都位于这个结构域,这些突变最终导致细胞中结合亲和力受损和底物持久性增加 [4]。而SPOP-Cul3识别主要是通过BTB结构域。通过这样相互作用,SPOP参与泛素化和蛋白降解 [8]。SPOP的中心BTB结构域是锌指转录因子和Cul3底物适配器中常见的结构元件,BTB结构域通常与其他相互作用结构域相关 [9],但BTB和MATH结构域的结合在人类蛋白质组中并不常见,只出现在SPOP和其同源斑点型锌指结构样蛋白(speckle-type POZ like protein, SPOPL)中 [10]。二聚体SPOP BTB结构域与Cullin基因的一个亚型CUL3组合,生成由两个底物结合位点和两个催化核组成的二聚体泛素连接酶。由于这种二聚体结构,SPOP域可以招募底物并将泛素链拉长到简单、多样和灵活的方向,从而获得更高的活性和更多的构象选择来介导泛素化。SPOP通过BTB结构域与CUL3结合,形成泛素化靶蛋白的复合物 [11]。

3. SPOP在PCa中突变

PCa中常可见PTEN基因,NKX3.1基因,TP53基因和CDH1基因缺失,雄激素受体(androgen receptor, AR)增加,TMPRSS2基因与ERG基因融合,ZNF595基因,FOXA1基因,TP53基因,IDH基因和SPOP基因突变 [4] [12] - [21]。SPOP是最常见的突变基因之一,存在于6%~15%的局限性和晚期PCa,但在良性前列腺组织和前列腺间质中没有发现。在PCa中,SPOP突变通常位于底物MATH区域,如Y87、F102、S119、F125、K129、W131、F133和K134,提示这些SPOP突变具有生物学上的相关性。此外,SPOP突变已被确定为PCa发生和进展的早期事件,部分是通过基因组不稳定性发生的。SPOP基因突变与人类PCa高度相关,突变率为10%~15% [22]。SPOP可灵活降解各种蛋白底物,如AR、DEK、类固醇受体共激活因子3 (steroid receptor coactivator 3, SRC3)、三重基序蛋白24 (Tripartite motif containing 24, TRIM24)、溴结构域家族蛋白4 (bromodomain-containing protein 4, BRD4)、细胞程序性死亡蛋白配体-1 (programmed cell death protein ligand 1, PD-L1)和ETS相关基因(ETS-related gene, ERG),从而调控PCa的增殖和侵袭 [23] - [28]。SPOP突变已被发现导致BRCA1失活和随后的DNA双链断裂(DNA double-strand break, DSB)的同源性定向修复(homology-directed repair, HDR)受损,导致基因组维护受损和基因组不稳定性 [29]。

3.1. SPOP与AR关系

AR在前列腺组织的发育和PCa的发生发展中起着重要作用。AR引导良性管腔上皮细胞的细胞分化和稳态稳定;然而,在PCa中,AR反而会导致这些细胞不受控制地增殖。这种“雄激素受体恶性转换”(androgen receptor malignancy shift, AMS)是肿瘤发生的一个中心事件 [30]。SPOP与AR结合、泛素化和降解的方式被PCa相关的SPOP突变破坏,这随后促进了AR信号的增加 [24]。SPOP和AR之间的相互作用是由AR铰链区域中完美匹配的SPOP结合序列介导的 [25]。这一发现很重要,因为通常发现的AR剪接变体缺少铰链区域,缺失铰链结构域的AR剪接变体在22Rv1 PCa细胞中逃脱了SPOP介导的降解。雄激素治疗阻断了SPOP介导的AR降解,而抗雄激素治疗增强了SPOP介导的AR降解。从而表明只有某些AR变体受到SPOP介导的降解 [24]。但SPOP的突变可能导致AMS。由于SPOP在E3泛素连接酶复合体中发挥作用,提示它是通过不同的机制引起AMS的。PCa中发现的SPOP突变不能识别AR;这降低了AR的泛素化和降解,提高了AR的稳定性和AR介导的转录。转移性PCa动物模型显示,单纯的AR过表达导致AR的改变,这可能是SPOP突变导致AR转移的原因 [30]。

3.2. SPOP与ERG关系

染色体重排形成的几种融合基因在多种人类癌症的癌变中发挥重要作用,如PCa中最常见的融合基因之一TMPRSS2-ERG [31]。雄激素敏感的TMPRSS2基因启动子与ERG基因编码区,促进TMPRSS2-ERG融合基因的形成。TMPRSS2受到AR和ERG调节 [32]。ERG属于成红细胞转化特异性(erythroblast transformation specificity, ETS)转录因子家族,通过调节细胞增殖、分化和凋亡,从而发挥其致癌作用。近50%的PCa基因融合导致转录因子ERG过表达,而10%的PCa基因编码E3泛素连接酶SPOP反复突变。一项研究表明,SPOP-cul3复合物可以作为ERG的泛素连接酶,表明SPOP可以与ERG相互作用,促进其泛素化,并以泛素化的方式促进降解。这些研究的结论是,SPOP突变和ERG重排之间的互排性是由于功能冗余,ERG稳定是SPOP突变在PCa中致癌作用的重要下游事 [22] [33]。此外,另一些研究并没有发现ERG蛋白在大多数SPOP突变的PCa样本中表达 [26] [34]。此外,在基因工程SPOP-F133V突变小鼠模型中,正常前列腺(Pten+/+ Pb-Cre)、高级别前列腺上皮内瘤变(PtenL/+ Pb-Cre)和侵袭性PCa (PtenL/L Pb-Cre)中均未检测到ERG蛋白表达。提示SPOP介导的ERG降解可能参与了SPOP在前列腺组织中的抑瘤功能。但此外,在SPOP突变的PCa基因工程小鼠模型中,PCa相关SPOP突变的表达并没有导致ERG蛋白在组织学正常前列腺、高级别前列腺上皮内瘤变、侵袭性PCa或前列腺组织中表达。因此,SPOP与ERG的关系仍值得我们探索,是否两者可以同时出现,或者ERG出现的原因是否与SPOP突变相关 [35] [36]。

3.3. SPOP与DNA损伤的关系

染色体不稳定是癌症的标志,与不良预后和耐药性有关,基因组不稳定的两个主要来源是DSB和复制应激 [37]。Kim等人发现野生型(wild type, WT)的SPOP与核心转录、剪接体和mRNA存在复杂的关系,在SPOP敲低时观察到的RAD51、BRCA2、ATR和CHK1转录的衰减。SPOP不能明确定位到诱导的DNA DSB的位点。当其发生突变时,则没有这样的作用。这与SPOP通过促进修复因子的正常表达来促进基因组稳定性的间接作用是一致的,SPOP耗尽的细胞同时出现RAD51和BRCA2水平的下降,这在将RAD51加载到单链DNA (single-stranded DNA, ssDNA)中起关键作用,这为SPOP缺陷肿瘤的同源重组(homologous recombination, HR)缺陷和基因组不稳定性提供了新的机制。当SPOP表达降低时,RAD51位点的形成和CHK1的激活以应对复制应激,并影响从复制叉停止恢复。此外,一项SPOP相互作用分析表明,DSB的识别和切除似乎正常进行,主要HR缺陷停留在RAD51负载水平 [29] [38] [39]。最近的一项转录组分析研究表明:无论是基因突变还是基因敲除,SPOP的解除均可通过损害DNA损伤应答(DNA damage response, DDR)增强PCa模型的辐射反应,并通过RAD51病灶的减少在功能上得到证实 [22]。SPOP沉默也导致RAD51和CHK1表达显著下调,这与HR受损一致。结果表明,SPOP通过下调RAD51和CHK1而损害DDR,从而在PCa中发挥放射增敏作用 [38]。临床PCa中最常见的SPOP突变F133V SPOP的稳定表达能够改善PCa小鼠异种移植体对5gy照射的体内反应。显示基因敲除能够诱导出与SPOP突变体相同的辐射敏化效应 [22]。最近,通过对条件性SPOP-f133v转基因小鼠前列腺组织中途径的分析,即通过基因突变或SPOP下调,始终能够改善PCa模型的辐射反应。DNA修复基因,包括DNA修复机制,相关的所有路径是表达下调SPOP突变 [35] [40]。这些发现表明,突变或下调的SPOP的存在,虽然不影响对辐射诱导的DNA损伤的诱导和识别,但通过干扰RAD51对DNA DSB诱导的响应,显著损害了PCa细胞的HR修复通路。此外,同时证实了突变的SPOP可能是一种新的辐射敏感性生物标志物的观点,也强调了在使用SPOP下调方法的基础上开发新的辐射增敏策略的可能性。

3.4. SPOP与Nanog的关系

Nanog具有致癌特征,如增强癌细胞迁移和侵袭,并且在各种人类恶性肿瘤中经常上调 [41],部分促进肿瘤发生SPOP突变可能集中于前列腺肿瘤起始细胞或前列腺肿瘤干细胞(cancer stem cells, CSCs)中,从而控制PCa的发生 [42]。此外,肿瘤患者来源的Nanog突变体S68Y,也缺乏与SPOP的结合。Nanog突变体S68Y通过逃避SPOP介导的Nanog破坏,进而赋予前列腺肿瘤干细胞特征,从而促进肿瘤发生,Pin1癌蛋白作为SPOP介导的Nanog降解的上游分子,从而促进肿瘤的发生及其干细胞特性的转化 [43]。因此,Pin1抑制剂可以抑制前列腺Nanog介导的干细胞特性。

腺苷酸活化蛋白激酶(AMP-actvated protein kinase, AMPK)是一种主要的代谢调节剂,已成为各种癌症治疗的潜在治疗靶点,如乳腺癌和PCa。AMPK激活剂如5-氨基咪唑-4-甲酰胺核苷酸(5-Aminoimidazole-4-carboxamide nucleotide, AICAR)和二甲双胍已被证明可以抑制PCa细胞的增殖 [44]。AMPK的直接激活剂可抑制雄激素敏感和去势耐药PCa模型中PCa细胞的生长。二甲双胍与化疗通过靶向乳腺癌细胞系CSCs阻断肿瘤生长并延长缓解期 [45]。然而,二甲双胍作用于CSCs的机制尚不清楚。AMPK的激活减弱了Nanog Ser68位点的磷酸化,从而使Nanog失活。因此,AMPK激活可能是PCa治疗的一种新的治疗策略,因为它专门针对CSCs。在体内前列腺微环境中,激活B-Raf/Erk通路可协同促进雄激素的独立。然而,在前列腺CSCs中的Raf信号通路尚未被很好地了解 [46]。最近一项研究发现鼠类肉瘤滤过性毒菌致癌同源体B1 (v-RAF murine sarcoma viral oncogene homolog B1, BRAF)可以磷酸化和稳定Nanog,从而促进PCa干细胞样特性 [47]。作为一种重要的E3泛素连接,SPOP通过降解Nanog来控制PCa的干细胞特性。

4. SPOP作为生物标志物

在PCa中SPOP突变是一个常见事件,在肿瘤发生发展过程中,SPOP充当了一个重要的抑癌基因的角色,越来越多的研究表明,通过检测SPOP的表达及其突变情况可以较好的预测及指导PCa的治疗及预后 [4]。最近一项队列研究显示,在接受阿比特龙治疗的新诊断的转移性去势敏感性前列腺癌(metastatic hormone-sensitive prostate cancer, mHSPC)患者中,具有SPOP突变的患者与野生型的SPOP患者相比,其无疾病进展生存期(progression-free survival, PFS)和总生存(overall survival, OS)有所改善,虽然样本量比较少,但对于我们具有重大的临床指导意义 [48]。

同时,在另外一个研究中,Zhu等人利用基因工程小鼠模型和修饰的人前列腺细胞系,发现SPOP和DNA结合蛋白1 (DNA-binding protein 1, CHD1)在协同促进前列腺上皮细胞中自然发生或化学诱导的DNA损伤修复过程中发挥着重要作用。SPOP和CHD1缺陷可能导致PCa的基因组不稳定性。尽管如此,前列腺的SPOP/CHD1亚型需要其他功能驱动因素来参与前列腺癌发展。临床上,这类PCa亚型的病可能对聚腺苷二磷酸核糖聚合酶(poly(ADP-ribose)polymerase, PARP)抑制剂或DNA破坏剂特别敏感,这为指导临床精准治疗及预后的判断有着重要的意义 [49]。

5. 总结与展望

作为cul3连接酶的接头蛋白,SPOP介导多种蛋白质的泛素化修饰及其降解,SPOP突变已被证明影响多种信号通路,如SRC-3/AR、TNF/JNK和ERG通路。研究表明,SPOP在PCa、乳腺癌以及其他实体肿瘤形成中具有抑癌作用。然而,有报道显示SPOP对透明细胞肾癌则是促进肿瘤发生的作用。SPOP突变和表达缺失均可导致SPOP丧失抑癌功能,导致基因组的不稳定性发生。除了参与介导泛素化外,有令人信服的证据表明SPOP在DNA损伤反应、表观遗传调控和肿瘤免疫反应中发挥关键作用。同时,需要更多的研究证明SPOP在PCa中更深层次的作用及机制,为PCa治疗提供更多可行性靶点及方法。毋庸置疑,SPOP将在PCa的诊断、预后和治疗中发挥重要作用。

NOTES

*通讯作者。

参考文献

[1] Bray, F., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[2] Shoag, J., et al. (2016) Clinical Variability and Molecular Heterogeneity in Prostate Cancer. Asian Journal of Andrology, 18, 543-548.
https://doi.org/10.4103/1008-682X.178852
[3] Beroukhim, R., Mermel, C.H., Porter, D., et al. (2010) The Landscape of Somatic Copy-Number Alteration across Human Cancers. Nature, 463, 899-905.
[4] Barbieri, C.E., et al. (2012) Exome Sequencing Identifies Recurrent SPOP, FOXA1 and MED12 Mutations in Prostate Cancer. Nature Genetics, 44, 685-689.
https://doi.org/10.1038/ng.2279
[5] Petroski, M.D. and Deshaies, R.J. (2005) Function and Regulation of cullin-RING Ubiquitin Ligases. Nature Reviews Molecular Cell Biology, 6, 9-20.
https://doi.org/10.1038/nrm1547
[6] Wang, Z., Liu, P., Inuzuka, H., et al. (2014) Roles of F-Box Proteins in Cancer. Nature Reviews Cancer, 14, 233-247.
https://doi.org/10.1038/nrc3700
[7] Errington, W.J., Khan, M.Q., Bueler, S.A., et al. (2012) Adaptor Protein Self-Assembly Drives the Control of a Cullin-RING Ubiquitin Ligase. Structure, 20, 1141-1153.
https://doi.org/10.1016/j.str.2012.04.009
[8] Zhuang, M., Calabrese, M.F., Liu, J., et al. (2009) Structures of SPOP-Substrate Complexes: Insights into Molecular Architectures of BTB-Cul3 Ubiquitin Ligases. Molecular Cell, 36, 39-50.
https://doi.org/10.1016/j.molcel.2009.09.022
[9] Stogios, P.J., Downs, G.S., Jauhal, J.J., et al. (2005) Sequence and Structural Analysis of BTB Domain Proteins. Genome Biology, 6, R82.
https://doi.org/10.1186/gb-2005-6-10-r82
[10] El-Gebali, S., Mistry, J., Bateman, A., et al. (2019) The Pfam Protein Families Database in 2019. Nucleic Acids Research, 47, D427-D432.
https://doi.org/10.1093/nar/gky995
[11] Choo, K.B., Chuang, T.J., Lin, W.Y., et al. (2010) Evolutionary Expansion of SPOP and Associated TD/POZ Gene Family: Impact of Evolutionary Route on Gene Expression Pattern. Gene, 460, 39-47.
https://doi.org/10.1016/j.gene.2010.04.003
[12] Kim, M.S., Je, E.M., Oh, J.E., et al. (2013) Mutational and Ex-pressional Analyses of SPOP, a Candidate Tumor Suppressor Gene, in Prostate, Gastric and Colorectal Cancers. APMIS, 121, 626-633.
https://doi.org/10.1111/apm.12030
[13] Berger, M.F., Lawrence, M.S., Demichelis, F., et al. (2011) The Genomic Complexity of Primary Human Prostate Cancer. Nature, 470, 214-220.
https://doi.org/10.1038/nature09744
[14] Beltran, H., Wyatt, A.W., Chedgy, E.C., et al. (2017) Impact of Therapy on Genomics and Transcriptomics in High-Risk Prostate Cancer Treated with Neoadjuvant Docetaxel and Androgen Deprivation Therapy. Clinical Cancer Research, 23, 6802-6811.
https://doi.org/10.1158/1078-0432.CCR-17-1034
[15] Boysen, G., Rodrigues, D.N., Rescigno, P., et al. (2018) SPOP-Mutated/CHD1-Deleted Lethal Prostate Cancer and Abiraterone Sensitivity. Clinical Cancer Research, 24, 5585-5593.
https://doi.org/10.1158/1078-0432.CCR-18-0937
[16] Blattner, M., Lee, D.J., O’Reilly, C., et al. (2014) SPOP Mutations in Prostate Cancer across Demographically Diverse Patient Cohorts. Neoplasia, 16, 14-20.
https://doi.org/10.1593/neo.131704
[17] Böttcher, R., Kweldam, C.F., Livingstone, J., et al. (2018) Cribriform and Intraductal Prostate Cancer Are Associated with Increased Genomic Instability and Distinct Genomic Alterations. BMC Cancer, 18, Article No. 8.
https://doi.org/10.1186/s12885-017-3976-z
[18] Manson-Bahr, D., Ball, R., Gundem, G., et al. (2015) Mutation Detection in Formalin-Fixed Prostate Cancer Biopsies Taken at the Time of Diagnosis Using Next-Generation DNA Sequencing. Journal of Clinical Pathology, 68, 212-217.
https://doi.org/10.1136/jclinpath-2014-202754
[19] Zuhlke, K.A., Johnson, A.M., Tomlins, S.A., et al. (2014) Identification of a Novel Germline SPOP Mutation in a Family with Hereditary Prostate Cancer. Prostate, 74, 983-990.
https://doi.org/10.1002/pros.22818
[20] Buckles, E., Qian, C., Tadros, A., et al. (2014) Identification of Speck-le-Type POZ Protein Somatic Mutations in African American Prostate Cancer. Asian Journal of Andrology, 16, 829-832.
https://doi.org/10.4103/1008-682X.132470
[21] Vinceneux, A., Bruyère, F., Haillot, O., et al. (2017) Ductal Adenocarcinoma of the Prostate: Clinical and Biological Profiles. Profile, 77, 1242-1250.
https://doi.org/10.1002/pros.23383
[22] Abeshouse, A., et al. (2015) The Molecular Taxonomy of Primary Prostate Cancer. Cell, 163, 1011-1025.
[23] Li, C., Ao, J., Fu, J., et al. (2011) Tumor-Suppressor Role for the SPOP Ubiquitin Ligase in Signal-Dependent Proteolysis of the Oncogenic Co-Activator SRC-3/AIB1. Oncogene, 30, 4350-4364.
https://doi.org/10.1038/onc.2011.151
[24] An, J., Wang, C., Deng, Y., et al. (2014) Destruction of Full-Length Androgen Receptor by Wild-Type SPOP, But Not Prostate-Cancer-Associated Mutants. Cell Reports, 6, 657-669.
https://doi.org/10.1016/j.celrep.2014.01.013
[25] Geng, C., Rajapakshe, K., Shah, S.S., et al. (2014) Androgen Receptor Is the Key Transcriptional Mediator of the Tumor Suppressor SPOP in Prostate Cancer. Cancer Research, 74, 5631-5643.
https://doi.org/10.1158/0008-5472.CAN-14-0476
[26] An, J., Ren, S., Murphy, S.J., et al. (2015) Truncated ERG Oncoproteins from TMPRSS2-ERG Fusions Are Resistant to SPOP-Mediated Proteasome Degradation. Molecular Cell, 59, 904-916.
https://doi.org/10.1016/j.molcel.2015.07.025
[27] Zhang, J., Bu, X., Wang, H., et al. (2018) Cyclin D-CDK4 Ki-nase Destabilizes PD-L1 via Cullin 3-SPOP to Control Cancer Immune Surveillance. Nature, 553, 91-95.
https://doi.org/10.1038/nature25015
[28] Dai, X., Gan, W., Li, X., et al. (2017) Prostate Cancer-Associated SPOP Mutations Confer Resistance to BET Inhibitors through Stabilization of BRD4. Nature Medicine, 23, 1063-1071.
https://doi.org/10.1038/nm.4378
[29] Boysen, G., Barbieri, C.E., Prandi, D., et al. (2015) SPOP Mutation Leads to Genomic Instability in Prostate Cancer. Elife, 4, e09207.
https://doi.org/10.7554/eLife.09207
[30] Copeland, B.T., Du, J., Pal, S.K., et al. (2019) Factors That Influence the Androgen Receptor Cistrome in Benign and Malignant Prostate Cells. Molecular Oncology, 13, 2616-2632.
https://doi.org/10.1002/1878-0261.12572
[31] Tomlins, S.A., Rhodes, D.R., Perner, S., et al. (2005) Recurrent Fusion of TMPRSS2 and ETS Transcription Factor Genes in Prostate Cancer. Science, 310, 644-648.
https://doi.org/10.1126/science.1117679
[32] Nam, R.K., Sugar, L., Yang, W., et al. (2007) Expression of the TMPRSS2:ERG Fusion Gene Predicts Cancer Recurrence after Surgery for Localised Prostate Cancer. British Journal of Cancer, 97, 1690-1695.
https://doi.org/10.1038/sj.bjc.6604054
[33] Shoag, J. and Barbieri, C.E. (2016) Clinical Variability and Molecular Heterogeneity in Prostate Cancer. Asian Journal of Andrology, 18, 543-548.
https://doi.org/10.4103/1008-682X.178852
[34] Gan, W., Dai, X., Lunardi, A., et al. (2015) SPOP Promotes Ubiquitination and Degradation of the ERG Oncoprotein to Suppress Prostate Cancer Progression. Molecular Cell, 59, 917-930.
https://doi.org/10.1016/j.molcel.2015.07.026
[35] Blattner, M., Liu, D., Robinson, B.D., et al. (2017) SPOP Mutation Drives Prostate Tumorigenesis in Vivo through Coordinate Regulation of PI3K/mTOR and AR Signaling. Cancer Cell, 31, 436-451.
https://doi.org/10.1016/j.ccell.2017.02.004
[36] Shoag, J., Liu, D., Blattner, M., et al. (2018) SPOP Mutation Drives Prostate Neoplasia without Stabilizing Oncogenic Transcription Factor ERG. Journal of Clinical Investigation, 128, 381-386.
https://doi.org/10.1172/JCI96551
[37] Jeggo, P.A., Pearl, L.H. and Carr, A.M. (2016) DNA Repair, Genome Stability and Cancer: A Historical Perspective. Nature Reviews Cancer, 16, 35-42.
https://doi.org/10.1038/nrc.2015.4
[38] Hjorth-Jensen, K., Maya-Mendoza, A., Dalgaard, N., et al. (2018) SPOP Promotes Transcriptional Expression of DNA Repair and Replication Factors to Prevent Replication Stress and Genomic Instability. Nucleic Acids Research, 46, 9484-9495.
https://doi.org/10.1093/nar/gky719
[39] Zhang, D., Wang, H., Sun, M., et al. (2014) Speckle-Type POZ Protein, SPOP, Is Involved in the DNA Damage Response. Carcinogenesis, 35, 1691-1697.
https://doi.org/10.1093/carcin/bgu022
[40] El Bezawy, R., Tripari, M., Percio, S., et al. (2020) SPOP Deregulation Improves the Radiation Response of Prostate Cancer Models by Impairing DNA Damage Repair. Cancers, 12, 1462.
https://doi.org/10.3390/cancers12061462
[41] Siu, M.K., Wong, E.S., Kong, D.S., et al. (2013) Stem Cell Transcription Factor NANOG Controls Cell Migration and Invasion via Dysregulation of E-Cadherin and FoxJ1 and Contributes to Adverse Clinical Outcome in Ovarian Cancers. Oncogene, 32, 3500-3509.
https://doi.org/10.1038/onc.2012.363
[42] Wong, O.G. and Cheung, A.N. (2016) Stem Cell Transcription Factor NANOG in Cancers—Is Eternal Youth a Curse? Expert Opinion on Therapeutic Targets, 20, 407-417.
https://doi.org/10.1517/14728222.2016.1112791
[43] Zhang, J., Chen, M., Zhu, Y., et al. (2019) SPOP Promotes Nanog Destruction to Suppress Stem Cell Traits and Prostate Cancer Progression. Developmental Cell, 48, 329-344.e325.
https://doi.org/10.1016/j.devcel.2018.11.035
[44] Huang, X., Wullschleger, S., Shpiro, N., et al. (2008) Important Role of the LKB1-AMPK Pathway in Suppressing Tumorigenesis in PTEN-Deficient Mice. Biochemical Journal, 412, 211-221.
https://doi.org/10.1042/BJ20080557
[45] Zadra, G., Photopoulos, C., Tyekucheva, S., et al. (2014) A Novel Direct Activator of AMPK Inhibits Prostate Cancer Growth by Blocking Lipogenesis. EMBO Molecular Medicine, 6, 519-538.
https://doi.org/10.1002/emmm.201302734
[46] Hirsch, H.A., Iliopoulos, D., Tsichlis, P.N., et al. (2009) Metformin Selectively Targets Cancer Stem Cells, and Acts Together with Chemotherapy to Block Tumor Growth and Prolong Remission. Cancer Research, 69, 7507-7511.
https://doi.org/10.1158/0008-5472.CAN-09-2994
[47] Wang, X., Jin, J., Wan, F., et al. (2019) AMPK Promotes SPOP-Mediated NANOG Degradation to Regulate Prostate Cancer Cell Stemness. Developmental Cell, 48, 345-360.e347.
https://doi.org/10.1016/j.devcel.2018.11.033
[48] Swami, U., Isaacsson Velho, P., Nussenzveig, R., et al. (2020) Association of SPOP Mutations with Outcomes in Men with de Novo Metastatic Castration-Sensitive Prostate Cancer. European Urology, 78, 652-656.
https://doi.org/10.1016/j.eururo.2020.06.033
[49] Zhu, Y., Wen, J., Huang, G., et al. (2021) CHD1 and SPOP Synergistically Protect Prostate Epithelial Cells from DNA Damage. Prostate, 81, 81-88.
https://doi.org/10.1002/pros.24080