新型标志物对心血管疾病预测作用
Predictive Effect of Novel Markers on Cardiovascular Disease
摘要: 心血管疾病导致的发病和死亡风险显著增加,对人类生命健康造成重要影响。心血管疾病发生日益年轻化,人们对相关生物标记物对于心血管疾病的识别越来越感兴趣。生物标志物可分为四种类型:诊断性生物标志物促进疾病的早期诊断、预后生物标志物估计疾病进程、预测性生物标志物用于预测治疗的反应、治疗性生物标志物发现靶点。当前生物标志物除了传统的单指标对于心血管危险预测之外,某些多指标组合可能对于疾病的预测也被广泛提及,在改善心血管疾病风险预测方面显示出巨大潜力。进一步的研究需要评估生物标志物的有效性,以及将生物标志物纳入临床实践的策略是否有助于优化决策和治疗管理。
Abstract: Cardiovascular diseases significantly increase the risk of morbidity and mortality, which has a significant impact on human life and health. The incidence of cardiovascular disease is becoming younger and younger, and people are more and more interested in the identification of cardiovascular disease with related biomarkers. Biomarkers can be divided into four types: diagnostic biomarkers promote early diagnosis of disease, prognostic biomarkers estimate disease progression, predictive biomarkers are used to predict response to treatment, and therapeutic biomarkers discover targets. In addition to the traditional single-indicator prediction of cardiovascular risk, some combinations of multi-indicator predictors of disease have also been widely mentioned, which shows great potential in improving the prediction of cardiovascular disease risk. Further research is needed to assess the effectiveness of biomarkers and whether strategies to incorporate biomarkers into clinical practice can help optimize decision making and treatment management.
文章引用:邹京燕, 许慧宁. 新型标志物对心血管疾病预测作用[J]. 临床医学进展, 2022, 12(4): 2898-2903. https://doi.org/10.12677/ACM.2022.124417

1. 引言

心血管疾病(CVD)仍然是世界范围内死亡和发病的主要原因,据估计,心血管疾病在全世界造成1860万人死亡,另有3930万人患有残疾,美国每年心血管疾病的经济负担为3960亿美元。相关统计指出,预计到2030年将超过1万亿美元。冠心病及其主要成分动脉粥样硬化和炎症是受多种因素影响的复杂疾病,有些是不可改变的,如年龄、性别、遗传背景等,也有些是可改变的,比如高脂、吸烟、高血压、糖尿病、腹部肥胖、心理社会因素、食用水果/蔬菜、饮酒和定期体育活动。近几十年来在改善临床结果方面付出了巨大的努力,风险评估和预期生存期已成为预防心血管疾病的关键。对风险预测工具识别的心血管疾病高危人群,我们能够通过早期生活习惯调整、药物和其他保健干预措施来降低心血管疾病的发生率。

2. 新型体液生物标志物

2.1. 炎症标志物

中性粒细胞/淋巴细胞比值(Neutrophil/lymphocyte ratio, NLR),即中性粒细胞和淋巴细胞计数之间的比值,可用于常规全血计数分析,并可作为炎症、动脉粥样硬化进展和心血管并发症的系统性预测指标的一种经济有效的生物标志物。慢性NLR提示的低度炎症或亚临床炎症,其在在糖尿病、肥胖、血脂异常、高血压、代谢综合征和内皮功能障碍中发挥作用 [1] [2] [3]。WBC正常,但NLR较高表明动脉粥样硬化疾病的风险较高 [4]。NLR比任何其他白细胞亚型更能预测心血管疾病 [5],其发生机制可能为1) 通过募集巨噬细胞并与抗原提呈细胞相通过分泌炎症介质参与急性组织损伤。2) 通过蛋白水解酶释放花生四烯酸酸衍物、超氧化物自由基,使已形成的斑块更脆弱。3) 活化的中性粒细胞粘附于内皮细胞表面造成内皮功能紊乱,而促炎因子表达上调进一步加重血管炎症,导致血管平滑肌增殖、微小血管形成以及随后的动脉硬化 [6]。在一项包括849名韩国成年人的大型研究中,较高的NLR与动脉硬化和冠状动脉钙化评分独立相关,这表明较高的NLR可能是评估心血管风险的一种有用的附加措施 [7]。最近的一项研究报告说,NLR与急性冠状动脉综合征的死亡率增加和预后不良有关,尤其是当ST段抬高存在时 [8]。鉴于上述发现,NLR可能是评估炎症状态的一种有益且具有成本效益的方法。

2.2. 视黄醇结合蛋白4

视黄醇结合蛋白4 (RBP4)是脂质运载蛋白家族的成员,也是血液中唯一的视黄醇转运蛋白,它主要由人体肝脏和脂肪组织分泌 [9]。研究表明,肥胖和T2DM患者的RBP4浓度升高,并与胰岛素抵抗有关 [10]。其他研究也表明RBP4水平升高与颈动脉IMT和代谢综合征的成分密切相关,这表明RBP4可能作为代谢并发症和动脉粥样硬化的标志物 [11] [12] [13]。最近的一项研究报告称,CAD患者的RBP4水平高于对照组,并且与CAD的患病率和严重程度呈正相关 [14]。在一项针对女性受试者的16年随访研究中,RBP4水平升高与CAD风险增加有关 [15]。也有报道称,在调整心血管危险因素后,血清RBP4水平是慢性HF患者不良心血管事件的独立预测因子,并显示出良好的预后表现。

2.3. 维生素D

维生素D (Vitamin D)是一种脂溶性类固醇激素,维生素D对骨骼健康是必要的,但也可能对骨骼有许多额外的影响。维生素D内分泌系统对许多与心血管系统相关的细胞和组织的基因和蛋白质表达有重要影响。其机制可能1) 内皮细胞与功能障碍:通过上调一氧化氮活性,增加前列环素合成,进而促进血管扩张。2) 免疫炎症:骨化三醇可通过增加调节性T细胞亚群、减少树突状细胞分化或激活VDR来减缓动脉粥样硬化的发展,还可以通过减少巨噬细胞聚集、促进胆固醇外流对载脂蛋白E维生素D通过抑制炎性细胞因子释放、阻止泡沫细胞形成发挥抗炎作用,从而对动脉粥样硬化发挥保护作用。3) 血脂异常:维生素D与胆固醇代谢密切相关,因为它们具有共同的前体7-脱氢胆固醇,将7-脱氢胆固醇转化为胆固醇的酶被认为是维生素D水平的调节因子。血清维生素D水平与总胆固醇、低密度脂蛋白和甘油三酯水平呈负相关,与高密度脂蛋白呈正相关。4) 体液调节:肾素–血管紧张素–醛固酮系统(renin-angiotensin-aldosterone system, RAAS)是血压调控的关键机制,因此RAAS功能的改变会促进高血压的发生并增加心血管事件的风险。维生素D通过抑制肾素基因启动子环磷酸腺苷反应元件的活性直接阻断肾素的表达,从而抑制RAAS,低血清25(OH)D水平促进人类RAAS的激活。

2.4. 血浆致动脉粥样硬化指数

血浆致动脉粥样硬化指数(Plasma atherogenic index, AIP):血浆致动脉粥样硬化指数(AIP)是一种新的综合血脂指数,指甘油三酯(TG)与高密度脂蛋白胆固醇(HDL-C)比值的对数转换值,其可以作为动脉粥样硬化和心血管疾病风险的良好指标 [16]。其机制总结如下:1) SdLDL因颗粒小更容易侵入动脉壁并沉积于动脉壁内膜,与动脉壁上糖蛋白结合,造成胆固醇在动脉壁上沉积。2) SdLDL不易与血浆LDL受体结合,造成清除率降低,更易被氧化,易被巨噬细胞摄取而形成泡沫细胞,泡沫细胞能融合并破裂,从而释放出大量胆固醇构成粥样斑块的核心部分,最终导致心血管风险升高。3) HDL-C是心血管疾病的保护因子,HDL-C具有促进外周胆固醇逆转运肝脏进行分解代谢、促进巨噬细胞内游离胆固醇流出、抗氧化、抗血栓、促进纤溶、抗炎症、保护血管内皮细胞等作用,降低增加罹患心血管疾病的风险 [17] [18] [19]。AIP值在−0.3~0.1为低心血管疾病风险,0.1~0.24为中等风险,>0.24为高心血管疾病风险 [20]。AIP为更精确地判定和预测血管粥样硬化提供了简单可行的方案。

3. 其他标志物

成纤维细胞生长因子(Fibroblast growth factor, FGF)是调节细胞生长、分化和代谢的细胞因子超家族 [21] [22] [23] [24]。人类FGF已经被定义了23种形式,根据物种和编码序列可分为7个亚科。FGF21属于hFGF亚家族(FGF19、FGF21、FGF23),分离得到的cDNA编码蛋白由209个氨基酸组成,分子量约为22.3 kDa,氨基酸序列在哺乳动物中高度保守。FGF21是一种激素样FGF,肝脏、脂肪组织和胰腺中高度表达,调节糖和脂代谢,对心血管系统发挥有益作用,可作为心血管疾病的早期生物标志物。机制1) FGF21增强抗氧化系统的活性,并抑制氧化应激和内质网应激(ERS)。大在动脉粥样硬化大鼠中,上调FGF21可增加Nrf2/ARE通路相关蛋白和抗氧化系统相关分子的表达,并减轻内皮功能障碍,而下调FGF21可逆转这些变化ERS通过ATF4和CCAAT增强结合蛋白同源蛋白(CHOP)诱导FGF21的表达和分泌。2) FGF21进一步减少内皮细胞损伤和凋亡,从而抑制动脉粥样硬化的发展。FGF21与FGFR结合激活钙/钙调素依赖性蛋白激酶激酶2和AMPK信号通路,抑制氧化应激,增加内皮细胞eNOS磷酸化水平和一氧化氮生成水平。进而抑制高糖(HG)诱导的内皮细胞活性下降和迁移,减轻内皮功能障碍 [25] [26]。最近两个临床试验中对FGF21的抗动脉粥样硬化作用进行了研究,其中FGF21类似物治疗结果显示显著改善了2型糖尿病肥胖患者的心脏代谢状况。而动物和体外相关研究中,FGF21已被证明可以改善脂质谱并抑制动脉粥样硬化发病机制中的关键过程,它通过脂联素依赖和独立的机制对心血管系统发挥作用。FGF21几乎可以抑制动脉粥样硬化的所有致病事件,包括氧化应激、内皮细胞损伤和凋亡、脂质积累和炎症。

4. 新型诊断生物标记

颈动脉内膜中层厚度(Carotid intima-media thickness, IMT)、FMD是动脉粥样硬化过程的两个替代标志物 [27] [28]。其预测冠状动脉和脑血管事件的能力完全独立的各种风险因素 [29]。FMD以NO生物利用度降低为特征的内皮功能障碍与常见的CV危险因素有关,内皮功能也可以通过测量肱动脉直径因剪切应力(FMD)的增加而发生的变化来研究,FMD是CV病理生理学中研究内皮功能的金标准 [30]。FMD的改变与CIMT的改变有关,可用于CV风险受试者的早期识别。此外,FMD的改变先于IMT的改变,因此在动脉粥样硬化疾病的早期阶段是有用的。IMT已经成为反映全身动脉粥样硬化的常用替代指标之一,IMT增厚是全身动脉粥样硬化的早期征象,对心脑血管事件的发生率有较高的预测性。颈动脉内-中膜厚度增厚、血管内斑块形成和动脉狭窄可视为动脉粥样硬化的3种临床类型。动脉粥样硬化发展过程中可能导致心肌损伤和瘢痕形成,早期特征是小动脉的血管阻力增加,进而可能减少冠状动脉血流储备,再发缺血导致心肌休克,最终导致心肌收缩功能受损增加。CIMT与动脉壁胶原积累密切相关,导致动脉壁硬化,加重后负荷,左室质量,影响左室舒张功能。在MESA (动脉粥样硬化多种族研究)研究中,IMT测量被用作亚临床心血管疾病的替代指标和心血管事件的预测变量。在超过99%的MESA人群中,颈总动脉IMT测量是可用的,并可预测心血管事件。更重要的是,在颈内动脉和颈动脉球中进行的IMT和斑块厚度测量在98%以上的人群中都是可用的,并且也能强有力地预测心血管事件。在一篇聚焦于高胆固醇血症患者的论文中,该观察扩展到颈动脉壁或内膜-中膜厚度(IMT)的体内可视化。文章证明胆固醇水平升高的患者颈总动脉IMT较大。

5. 总结

近年来随着心血管疾病的发生率不断上升,其二级预防被不断提及。二级预防的重点是通过在任何严重和永久性损害之前进行早期诊断来减少疾病的影响,这有助于避免危及生命的情况和疾病的长期损害。而血管事件的发生往往在心肌梗死及中风状态下才能被诊断出来,此时重要器官往往处于危机状态下,对疾病的治疗往往存在延后性,可能对相关脏器造成严重或永久性损害。上文提及的生物标志物对于心血管疾病诊断和预防有着预测性,可能帮助临床医生在临床表现明显之前早期发现疾病,能够为患者提供早期诊断,可以将患者引导至所需的治疗,从而提供更高的生活质量,为疾病预防、诊断、治疗提供更多指导作用。

参考文献

[1] Nam, S.H., Kang, S.G. and Song, S.W. (2017) The Neutrophil-Lymphocyte Ratio Is Associated with Coronary Artery Calcification in Asymptomatic Korean Males: A Cross Sectionalstudy. BioMed Research International, 2017, Article ID: 1989417.
https://doi.org/10.1155/2017/1989417
[2] Karaman, M., Balta, S., Seyit Ahmet, A.Y., Cakar, M., Naharci, I., Demirkol, S., et al. (2013) The Comparative Effects of Valsartan and Amlodipine on VWF Levels and N/L Ratio in Patients with Newly Diagnosed Hypertension. Clinical and Experimental Hypertension, 35, 516-522.
https://doi.org/10.3109/10641963.2012.758734
[3] Balta, S., Kurtoglu, E., Kucuk, U., Demirkol, S. and Öztürk, C. (2014) Neutrophil-Lymphocyte Ratio as an Important Assessment Tool. Expert Review of Cardiovascular Therapy, 12, 537-538.
https://doi.org/10.1586/14779072.2014.902309
[4] Horne, B.D., Anderson, J.L., John, J.M., Weaver, A., Bair, T.L., Jensen, K.R., et al. (2005) Which White Blood Cell Subtypes Predict Increased Cardiovascularrisk? Journal of the American College of Cardiology, 45, 1638-1643.
https://doi.org/10.1016/j.jacc.2005.02.054
[5] Yu, X.Y., Li, X.S., Li, Y., Liu, T., Wang, R.T. (2015) Neutrophil-Lymphocyte Ratio Is Associated with Arterial Stiffness in Postmenopausal Women with Osteoporosis. Archives of Gerontology and Geriatrics, 61, 76-80.
https://doi.org/10.1016/j.archger.2015.03.011
[6] 董荣静, 石柔, 董雪娥, 颜穗珺, 李会芳. 中性粒细胞与淋巴细胞比值、血小板与淋巴细胞比值与2型糖尿病患者颈动脉粥样硬化的相关性[J]. 中华临床医师杂志(电子版), 2017, 11(2): 179-182.
[7] Park, B.J., Shim, J.Y., Lee, H.R., Lee, J.H., Jung, D.H., Kim, H.B., et al. (2011) Relationship of Neutrophil-Lymphocyte Ratio with Arterial Stiffness and Coronary Calcium Score. Clinica Chimica Acta, 412, 925-929.
https://doi.org/10.1016/j.cca.2011.01.021
[8] Park, J.J., Jang, H.J., Oh, I.Y., et al. (2013) Prognostic Value of Neutrophil to Lymphocyte Ratio in Patients Presenting With ST-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. American Journal of Cardiology, 111, 636-642.
[9] Kotnik, P., Fischer-Posovszky, P. and Wabitsch, M. (2011) RBP4: A Controversial Adipokine. European Journal of Endocrinology, 165, 703-711.
https://doi.org/10.1530/EJE-11-0431
[10] Yang, Q., Graham, T.E., Mody, N., Preitner, F., Peroni, O.D., Zabolotny, J.M., et al. (2005) Serum Retinol Binding Protein 4 Contributes to Insulin Resistance in Obesity and Type 2 Diabetes. Nature, 436, 356-362.
[11] Bobbert, T., Raila, J., Schwarz, F., Mai, K., Henze, A., Pfeiffer, A.F., et al. (2010) Relation between Retinol, Retinol-Binding Protein 4, Transthyretin and Carotid Intima Media Thickness. Atherosclerosis, 213, 549-551.
https://doi.org/10.1016/j.atherosclerosis.2010.07.063
[12] Liu, Y., Wang, D., Li, D., Sun, R. and Xia, M. (2014) Associations of Retinol-Binding Protein 4 with Oxidative Stress, Inflammatory Markers, and Metabolic Syndrome in a Middle-Aged and Elderly Chinese Population. Diabetology & Metabolic Syndrome, 6, Article No. 25.
https://doi.org/10.1186/1758-5996-6-25
[13] Majerczyk, M., Kocelak, P., Choreza, P., Arabzada, H., Owczarek, A.J., Bozentowicz Wikarek, M., et al. (2018) Components of Metabolic Syndrome in Relation to Plasma Levels of Retinol Binding Protein 4 (RBP4) in a Cohort of People Aged 65 Years and Older. Journal of Endocrinological Investigation, 41, 1211-1219.
https://doi.org/10.1007/s40618-018-0856-6
[14] Lambadiari, V., Kadoglou, N.P., Stasinos, V., Maratou, E., Antoniadis, A., Kolokathis, F., et al. (2014) Serum Levels of Retinol-Binding Protein-4 Are Associated with the Presence and Severity of Coronary Artery Disease. Cardiovascular Diabetology, 13, Article No. 121.
https://doi.org/10.1186/s12933-014-0121-z
[15] Sun, Q., Kiernan, U.A., Shi, L., Phillips, D.A., Kahn, B.B., Hu, F.B., et al. (2013) Plasma Retinol-Binding Protein 4 (RBP4) Levels and Risk of Coronary Heart Disease: A Prospective Analysis among Women in the Nurses’ Health Study. Circulation, 127, 1938-1987.
https://doi.org/10.1161/CIRCULATIONAHA.113.002073
[16] Rodríguez-Morales, A.J., Bonilla-Aldana, D.K., Suárez, J.A., Franco-Paredes, C., Forero-Peña, D.A., Mattar, S., et al. (2021) Yellow Fever Reemergence in Venezuela Implications for International Travelers and Latin American Countries during the COVID-19 Pandemic. Travel Medicine and Infectious Disease, 44, 102192.
https://doi.org/10.1016/j.tmaid.2021.102192
[17] Ahn, N. and Kim, K. (2016) High-Density Lipoprotein Cholesterol (HDL-C) in Cardiovascular Disease: Effect of Exercise Training. Integrative Medicine Research, 5, 212-215.
https://doi.org/10.1016/j.imr.2016.07.001
[18] Kosmas, C.E., Martinez, I., Sourlas, A., Campos, F.N., Torres, V., Montan, P.D., et al. (2018) High-Density Lipoprotein (HDL) Functionality and Its Relevance to Atherosclerotic Cardiovascular Disease. Drugs in Context, 7, Article ID: 212525.
https://doi.org/10.7573/dic.212525
[19] Decharatchakul, N., Settasatian, C., Settasatian, N., Komanasin, N., Kukongviriyapan, U., Intharaphet, P., et al. (2019) Association of Genetic Polymorphisms in SOD2, SOD3, GPX3, and GSTT1 with Hypertriglyceridemia and Low HDL-C Level in Subjects with High Risk of Coronary Artery Disease. PeerJ, 7, Article No. e7407.
https://doi.org/10.7717/peerj.7407
[20] 陈明丹. 血浆致动脉硬化指数在心血管疾病中的应用进展[J]. 中国动脉硬化杂志, 2020, 28(3): 273-276.
[21] Staiger, H., Keuper, M., Berti, L., Hrabe, D.A.M. and Haring, H.U. (2017) Fibroblast Growth Factor 21-Metabolic Role in Mice and Men. Endocrine Reviews, 38, 468-488.
https://doi.org/10.1210/er.2017-00016
[22] Recinella, L., Leone, S., Ferrante, C., Chiavaroli, A., Di Nisio, C., Martinotti, S., et al (2017) Effects of Central Fibroblast Growth Factor 21 (FGF21) in Energy Balance. Journal of Biological Regulators and Homeostatic Agents, 31, 603-613.
[23] Sheehan, S.M. and Allen, R.E. (1999) Skeletal Muscle Satellite Cell Proliferation in Response to Members of the Fibroblast Growth Factor Family and Hepatocyte Growth Factor. Journal of Cellular Physiology, 181, 499-506.
https://doi.org/10.1002/(SICI)1097-4652(199912)181:3<499::AID-JCP14>3.0.CO;2-1
[24] Krejci, P., Prochazkova, J., Bryja, V., Kozubik, A. and Wilcox, W.R. (2009) Molecular Pathology of the Fibroblast Growth Factor Family. Human Mutation, 30, 1245-1255.
https://doi.org/10.1002/humu.21067
[25] Ying, L., Li, N., He, Z., Zeng, X., Nan, Y., Chen, J., et al. (2019) Fibroblast Growth Factor 21 Ameliorates Diabetes-Induced Endothelial Dysfunction in Mouse Aorta via Activation of the CaMKK2/AMPKa Signaling Pathway. Cell Death & Disease, 10, Article No. 665.
https://doi.org/10.1038/s41419-019-1893-6
[26] Wang, X.M., Song, S.S., Xiao, H., Gao, P., Li, X.J. and Si, L.Y. (2014) Fibroblast Growth Factor 21 Protects against High Glucose Induced Cellular Damage and Dysfunction of Endothelial Nitric-Oxide Synthase in Endothelial Cells. Cellular Physiology and Biochemistry, 34, 658-671.
https://doi.org/10.1159/000363031
[27] Corrado, E., Rizzo, M., Tantillo, R., Muratori, I., Bonura, F., Vitale, G., et al. (2006) Markers of Inflammation and Infection Influence the Outcome of Patients with Baseline Asymptomatic Carotid Lesions: A 5-Year Follow-Up Study. Stroke, 37, 482-486.
https://doi.org/10.1161/01.STR.0000198813.56398.14
[28] Corrado, E., Rizzo, M., Coppola, G., Muratori, I., Carella, M. and Novo, S. (2008) Endothelial Dysfunction and Carotid Lesions Are Strong Predictors of Clinical Events in Patients with Early Stages of Atherosclerosis: A 24-Month Follow-up Study. Coronary Artery Disease, 19, 139-144.
https://doi.org/10.1097/MCA.0b013e3282f3fbde
[29] Burke, G.L., Evans, G.W., Riley, W.A., Sharrett, A.R., Howard, G., Barnes, R.W., et al. (1995) Arterial Wall Thickness Is Associated with Prevalent Cardiovascular Disease in Middle-Aged Adults. The Atherosclerosis Risk in Communities (ARIC) Study. Stroke, 26, 386-391.
https://doi.org/10.1161/01.STR.26.3.386
[30] Corretti, M.C., Anderson, T.J., Benjamin, E.J., Celermajer, D., Charbonneau, F., Creager, M.A., et al. (2002) Guidelines for the Ultrasound Assessment of Endothelialdependent Flow-Mediated Vasodilation of the Brachial Artery: A Report of the International Brachial Artery Reactivity Task Force. Journal of the American College of Cardiology, 39, 257-265.
https://doi.org/10.1016/S0735-1097(01)01746-6