|
[1]
|
C. M. Ho, W. Y. Yu and C. M. Che. Ruthenium nanoparticles supported on hydroxyapatite as an efficient and recyclable cata- lyst for cis-dihydroxylation and oxidative cleavage of alkenes. Angew. Angewandte Chemie International Edition England, 2004, 43: 3303-3307.
|
|
[2]
|
S. Sebti, R. Tahir, R. Nazih,et al. Hydroxyapatite as a new solid support for the Knoevenagel reaction in heterogeneous media without solvent. Applied Catalysis, 2002, 228: 155-159.
|
|
[3]
|
E. M. Rivera, M. Araiza, W. Brostow, et al. Synthesis of hydro- xyapatite from eggshells. Materials Letters, 1999, 41(3): 128- 134.
|
|
[4]
|
Y. Xu, D. Wang, L. Yang, et al. Hydrothermal conversion of coral into hydroxyapatite. Materials Characterization, 2001, 47(2): 83-87.
|
|
[5]
|
L. E. L. Hammari, A. Laghzizil, P. Barboux, et al. Retention of flu- oride ions from aqueous solution using porous hydroxyapatite: Structure and conduction properties. Journal of Hazardous Ma- terials, 2004, 114(1-3): 41-44.
|
|
[6]
|
Y. Liu, H. Xu, Z. Huang, et al. Factors affecting the adsorption of Aqueous Cadmium (Ⅱ) on Hy droxyapaties. Acta Petrologica et Mineralogica, 2001, 20(4): 583-586.
|
|
[7]
|
M. Zahouily, Y. Abrouki, B. Bahlaouan, et al. Hydroxyapatite: New efficient catalyst for the Michael addition. Catalysis Com- munications, 2003, 4(10): 521-524.
|
|
[8]
|
H. Nishikawa. A high active type of hydroxyapatite for photo- catalytic decomposition of dimethyl sulfide under UV irradiation. Journal of Molecular Catalysis A: Chemical, 2004, 207(2): 149- 153.
|
|
[9]
|
S. Tanaka, N. Shiba and M. Senna. Change in the morphology of hydroxyapatite nanocrystals in the presence of bioaffinitive poly- meric species under the application of electrical field. Science and Technology of Advanced Materials, 2006, 7(2): 226-228.
|
|
[10]
|
P. Honarmandi. Fabrication of single-crystal nanospherical hydro- xyapatite powder for biomedical applications. Proceedings of ASME Global Congress, NEMB, 2010: 239-240.
|
|
[11]
|
P. Wang, C. Li, H. Gong, et al. Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technology, 2010, 203(2): 315-321.
|
|
[12]
|
X. Lu, Y. Leng. Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials, 2005, 26(10): 1097-1108.
|
|
[13]
|
H. R. Ramay, M. Zhang. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials, 2003, 24(19): 3293-3302.
|
|
[14]
|
A. J. V. Golumbfskie, S. A. Pande and K. Chakraborty. Simu- lation of biomimetic recognition between polymers and surfaces. Proceedings of the National Academy of Sciences, 1999, 96: 11707.
|
|
[15]
|
Z. Huang, L. Zhang, Y. Liu, et al. Controlled growth of the hy- droxyapatite (HAP) crystal morphology by template-mediated/ homogeneous-precipitation. Journal of Synthetic Crystals, 2006, 35(2): 261-264.
|
|
[16]
|
C. Chen, W. Yuan, J. Li, et al. Characterization of carbonated hydroxyapatite whiskers prepared by hydrothermal synthesis. CrystEngCommunity, 2011, 13: 1632-1637.
|
|
[17]
|
Q. He, Z. Huang. Controlled synthesis and morphological evolution of dendritic porous microspheres of calcium phosphates. Journal of Porous Materials, 2009, 16(6): 683-689.
|
|
[18]
|
X. Cheng, Q. He, J. Li, et al. Self-assembled growth and pore size control of the bubble-template porous carbonated hydro- xyapatite microsphere. Crystal Growth & Design, 2010, 10(3): 1180-1188.
|
|
[19]
|
R. Kern, I. Sunagawa. The equilibrium form of a crystal, morphology of crystals. Tokyo: Terra, 1987: 79.
|