水资源研究  >> Vol. 1 No. 5 (October 2012)

人类活动对河湖水系连通关系的影响及量化评估
Analysis and Quantitative Evaluation of Human Activities Affecting River System Network Interconnected Relationship

DOI: 10.12677/JWRR.2012.15050, PDF, HTML, 下载: 2,798  浏览: 7,390  国家自然科学基金支持

作者: 崔国韬*, 左其亭*:郑州大学水科学研究中心

关键词: 河湖水系连通连通关系人类活动影响量化评估Interconnected River System Network (IRSN); Interconnected Relationship; Human Activities; Influence; Quantitative Evaluation

摘要: 良好的河湖水系连通关系是河湖水系自然功能和社会功能发挥的基石,然而当前人类活动已经成为影响河湖水系连通关系的直接因素。本文在理解当前河湖水系连通战略理念的基础上,从流域宏观角度分析人类活动对河湖水系连通关系的影响,将其分为水系形态分布和水系连通状态两个影响方面。然后构建了人类活动对河湖水系连通影响量化指标体系和评估方法,通过单指标子影响系数的量化,最终得出分类层和目标层的影响量化评估等级。从人类活动影响剧烈的淮河流域实例研究结果来看,本文所构建的指标体系和量化方法是可行的。
Abstract: The favorable quality of River System Network Interconnected Relationship (RSNIR) is the cor-nerstone of effective natural and social functioning in Interconnected River System Network (IRSN). How-ever, human activities have become a direct factor affecting RSNIR in recent years. Taking into account na-tional strategy IRSN, this paper discusses influence of RSNIR caused by human activities from macroscopic perspective of watershed. The influence is divided into 2 types: IRSN Form Distribution Influence and Con-necting State Influence. The quantitative evaluation index system and method for human activities affecting RSNIR is established. The index system is composed of three layers, namely target layer, classification layer and index layer. By quantifying influence coefficient in each index layer according to the quantitative de-scription of single index, the influence degree in classification layer and target layer can be calculated. As a case study, the application to Huaihe River basin with intense human activity shows that the proposed system and method are feasible.

文章引用: 崔国韬, 左其亭. 人类活动对河湖水系连通关系的影响及量化评估[J]. 水资源研究, 2012, 1(5): 326-333. http://dx.doi.org/10.12677/JWRR.2012.15050

参考文献

[1] 左其亭, 崔国韬. 河湖水系连通理论体系框架研究[J]. 水电能源科学, 2012, 1: 1-5. ZUO Qiting, CUI Guotao. Study on theoretical system and framework of interconnected river system network. Water Re- sources and Power, 2012, 1: 1-5. (in Chinese)
[2] 崔国韬, 左其亭, 李宗礼, 窦明. 河湖水系连通功能及适应性分析[J]. 水电能源科学, 2012, 2: 1-5. CUI Guotao, ZUO Qiting, LI Zongli and DOU Ming. Analysis of function and adaptability for interconnected river system network. Water Resources and Power, 2012, 2: 1-5. (in Chinese)
[3] 张欧阳, 熊文, 丁洪亮. 长江流域水系连通特征及其影响因素分析[J]. 人民长江, 2010, 1: 1-5, 78. ZHANG Ouyang, XIONG Wen and DING Hongliang. Drainage connectivity characteristics and influential factors of Yangtze River Basin. Yangtze River, 2010, 1: 1-5, 78. (in Chinese)
[4] 张欧阳, 卜惠峰, 王翠平, 等. 长江流域水系连通性对河流健康的影响[J]. 人民长江, 2010, 2: 1-5, 17. ZHANG Ouyang, PU Huifeng, WANG Cuiping, et al. Impact of drainage connectivity on river health in Yangtze River Basin. Yangtze River, 2010, 2: 1-5, 17. (in Chinese)
[5] WARD, J. V. The four dimensional natures of lotic ecosystems. Journal of the North American Benthological Society, 1989, 8: 2-8.
[6] JAIN, V., TANDON, S. K. Conceptual assessment of (dis)con- nectivity and its application to the Ganga River dispersal system. Geomorphology, 2010, 118: 349-358.
[7] 张俊勇, 陈立, 吴华林, 等. 水系形成与发展的元胞自动机模型研究[J]. 水科学进展, 2007, 5: 95-700. ZHANG Junyong, CHEN Li, WU Hualin, et al. Cellular model for the form and development of drainage system. Advances in Water Science, 2007, 5: 95-700. (in Chinese)
[8] 左其亭, 高洋洋, 刘子辉. 闸坝对重污染河流水质水量作用规律的分析与讨论[J]. 资源科学, 2010, 32(2): 261-266. ZUO Qiting, GAO Yangyang and LIU Zihui. Analysis and discussion about the mechanisms of the impacts of dams on water quality and quantity of Heavily Polluted Rivers. Resources Science, 2010, 32(2): 261-266. (in Chinese)
[9] 马宗伟, 许有鹏, 李嘉峻. 河流形态的分维及与洪水关系的探讨——以长江中下游为例[J]. 水科学进展, 2005, 4: 530-534. MA Zong-wei, XU Youpeng and LI Jiajun. River fractal dimension and the relationship between river fractal dimension and river flood: Case study in the middle and lower course of the Yangtze River. Advances in Water Science, 2005, 4: 530-534. (in Chinese)
[10] 何钢, 蔡运龙. 不同比例尺下中国水系分维数关系研究[J]. 地理科学, 2006, 4: 4461-4465. HE Gang, CAI Yunlong. Comparative study on fractal dimen- sions of river basins in china at different map scales. Scientia Geographica Sinica, 2006, 4: 4461-4465. (in Chinese)
[11] 秦霞, 顾政华, 李旭宏. 区域公路网布局规划方案的连通度评价指标研究[J]. 土木工程学报, 2006, 1: 112-116. QIN Xia, GU Zhenghua and LI Xuhong. Research on evaluative index of connectivity for regional road network layout planning project. China Civil Engineering Journal, 2006, 1: 112-116. (in Chinese)
[12] 郭怀成, 王金凤, 刘永, 等. 城市水系功能治理方法及应用[J]. 地理研究, 2006, 25(4): 596-605. GUO Huaicheng, WANG Jinfeng, LIU Yong, et al. The frame- work for functional control of urban water systems and its appli- cation. Geographical Research, 2006, 25(4): 596-605. (in Chin- ese)
[13] 王丽, 曾辉. 深圳市道路网络结构特征的成因及其景观格局效应[J]. 地理研究, 2012, 5: 853-862. WANG Li, ZENG Hui. The principle of road network structures and its ecological effects on landscape in Shenzhen. Geographi- cal Research, 2012, 5: 853-862. (in Chinese)
[14] 左其亭, 张云, 林平. 人水和谐评价指标及量化方法研究[J]. 水利学报, 2008, 4: 440-447. ZUO Qiting, ZHANG Yun and LIN Ping. Index system and quantification method for human-water harmony. Journal of Hydraulic Engineering, 2008, 4: 440-447. (in Chinese)
[15] 左其亭. 和谐论: 理论, 方法, 应用[M]. 北京: 科学出版社, 2012: 69-73. ZUO Qiting. Harmony theory: Theory, method, application. Bei- jing: Science Press, 2012: 69-73. (in Chinese)
[16] 杨秀春, 朱晓华. 中国七大流域水系与洪涝的分维及其关系研究[J]. 灾害学, 2002, 3: 10-14. YANG Xiuchun, ZHU Xiaohua. Fractal analysis applied to the 7 drainage basins and the flood in China. Journal of Catastrophol- ogy, 2002, 3: 10-14. (in Chinese)