2型糖尿病对乳腺癌发生、发展的相关性研究现状
Research Status of the Correlation between Type 2 Diabetes Mellitus and the Occurrence and Development of Breast Cancer
DOI: 10.12677/ACM.2022.124434, PDF, HTML, XML, 下载: 389  浏览: 636 
作者: 李 聪, 吴耀禄*:延安大学附属医院,陕西 延安
关键词: 乳腺癌2型糖尿病相关性Breast Cancer Type 2 Diabetes Mellitus Correlation
摘要: 随着我国人民饮食方式、生活环境的改变,乳腺癌和糖尿病已成为当前威胁人类生命健康的两大常见疾病。一些临床数据资料显示,糖尿病尤其是2型糖尿病患者中乳腺癌的发病率逐年在增加,乳腺癌患者中往往同时合并有2型糖尿病,因此,乳腺癌与2型糖尿病之间的关系也逐渐引起人们的重视,但关于二者之间的作用机制仍存在争议。本文对近年来关于乳腺癌与2型糖尿病关系的流行病学研究以及2型糖尿病对乳腺癌发生、发展之间的可能影响作一综述。
Abstract: With the changes of people’s diet and living environment in my country, breast cancer and diabetes have become two common diseases that threaten human life and health. Some clinical data show that the incidence of breast cancer in patients with diabetes, especially type 2 diabetes mellitus, is increasing year by year, and breast cancer patients often have type 2 diabetes mellitus at the same time. Therefore, the relationship between breast cancer and type 2 diabetes mellitus is gradually caused people’s attention, but the mechanism of action between the two is still controversial. This article reviews recent epidemiological studies on the relationship between breast cancer and type 2 diabetes mellitus and the possible impact of type 2 diabetes mellitus on the occurrence and development of breast cancer.
文章引用:李聪, 吴耀禄. 2型糖尿病对乳腺癌发生、发展的相关性研究现状[J]. 临床医学进展, 2022, 12(4): 3010-3017. https://doi.org/10.12677/ACM.2022.124434

1. 引言

乳腺癌(Breast cancer, BC)是最常见的恶性肿瘤之一,在过去三十年中,全球乳腺癌发病率一直在上升 [1],目前女性乳腺癌患病率已超过肺癌,成为最常见的癌症。据国家癌症中心报告,2020年乳腺癌病例总数为226万例,2040年将有100多万妇女死于乳腺癌 [2],乳腺癌已严重威胁着女性的生命健康。糖尿病(diabetes mellitus, DM)是常见的慢性消耗性疾病,国际糖尿病联合会报告,2019年全球约有4.63亿人被诊断为糖尿病,其年龄在20~79岁之间,预计到2045年,糖尿病患者的数量将上升到7亿人 [3]。糖尿病是癌症的一个危险因素,随着我国生活水平的提高,乳腺癌合并糖尿病,尤其是2型糖尿病(type 2 diabetes mellitus, T2DM)的发病率越来越高,关于两者间的关联性研究也越来越多。国内外大量临床及实验研究证实了乳腺癌与2型糖尿病有直接关系,认为2型糖尿病会使乳腺癌的病死率和患病率增加。

2. 乳腺癌与T2DM发病相关性的流行病学研究

国内外流行病学研究结果表明,2型糖尿病被认为是乳腺癌发展的危险因素之一,而且还与乳腺癌进展和不良预后相关 [4]。2019年,超过26.8万名被诊断为乳腺癌的女性中,约有20%将被确诊为2型糖尿病,这一数字还在增长。此外,同时患有两病的女性比仅患有乳腺癌女性的特异性死亡风险高38%,全因死亡风险高49% [5]。

Iliana C Lega等人 [6] 一项回顾性队列研究采用了加拿大安大略省的1200万居民人口的健康数据库,将糖尿病和非糖尿病女性乳腺癌患者的死亡率进行比较,研究结果表明,T2DM仍然是乳腺癌预后较差的一个风险因素,特别是对于长期患有糖尿病的女性。乔晓娟等 [7] 回顾性对内蒙古地区185例女性乳腺癌患者进行统计分析,研究结果表明内蒙古地区女性糖尿病与乳腺癌的患病率有一定关系,乳腺癌患者中T2DM的患病率比普通人群高。朱晴晴等 [8] 选取2019年1月~2020年2月收治的98例乳腺癌患者作为研究对象,建立Logistic多元回归模型检验,经Logistic回归分析,发现T2DM是导致乳腺癌病情发展及淋巴结转移的危险因素。目前,关于乳腺癌与T2DM的发病的相关性在我国研究报道并不多,还需要大量的临床数据支持。

3. T2DM对乳腺癌可能的影响

尽管有流行病学调查表明乳腺癌与2型糖尿病有一定的相关性,但它们之间的联系机制尚未完全明确,近几年国内外研究者指出2型糖尿病对乳腺癌的可能影响包括高血糖、胰岛素抵抗和高胰岛素血症、胰岛素样生长因子、脂肪细胞因子、炎症因子等。

3.1. 高血糖

2型糖尿病的典型特征之一为高血糖。高血糖可引起皮质醇、儿茶酚胺、胰高血糖素和生长激素的释放,导致胰岛素抵抗、高胰岛素血症、脂肪分解、糖异生和糖原分解,又进一步促进高血糖 [9]。之前有研究表明,在高血糖状态下,会促进产生过量的活性氧(reactive oxygen special, ROS)产生,造成氧化应激;同时高血糖也可刺激过量的钙进入细胞,导致线粒体碎裂,也会导致产生大量的ROS和相关的氧化应激,从而干扰正常的细胞代谢、细胞信号传导和细胞间稳态,最终导致肿瘤发生 [10]。Kellenberger等人 [11] 发现高血糖还促进酸性环境的形成,为恶性肿瘤细胞的生长提供有利的微环境。Wang Yong等人 [12] 还发现高血糖可通过HIF-1/VEGF (低氧诱导因子-1/血管内皮生长因子)途径诱导血管生成和肿瘤生长,其机制可能是高血糖损害了HIF-1抑制剂的功能,从而增加肿瘤微血管的形成和肿瘤的生长。其他研究者还发现,高血糖通过增加瘦素/胰岛素样生长因子-1受体(OB-R/IGF-1R)信号转导和激活AKT/mTOR通路 [13],促进乳腺癌上皮细胞增殖。

此外,Alisson等 [14] 发现,高血糖可诱导肺癌细胞A549分泌TGF-β。TGF-β是上皮间质转化(Epithelial-mesenchymal transition, ETM)的重要诱导因子,TGF-β信号传导可导致EMT,在肿瘤进展中增加细胞侵袭作用。Flores和Viedma两人均表明,高糖可通过诱导EMT增加乳腺癌细胞侵袭作用 [15] [16]。一项体内研究还发现。喂食高血糖指数食物的小鼠比喂食低血糖指数食物的小鼠患乳腺癌的速度更快,其研究证明了脂质代谢在乳腺癌进展中的重要性,脂肪酸合酶(FASN)的高表达对乳腺癌细胞增殖至关重要,而高糖可上调FASN的表达 [17]。另外,Adham等 [18] 发现高糖可通过NF-κB激活增加乳腺癌中VEGF和VEGFR的表达,促进了乳腺癌细胞的生长及肿瘤微环境生成。

近期,Jasmine Gajeton等 [19] 通过利用小鼠高血糖和癌症的模型以及来自高血糖乳腺癌(BC)患者的标本,确定了一种由高血糖激活的mirna依赖的新途径,该途径可促进乳腺癌组织血管和炎症的生成。该实验研究在小鼠高血糖模型中全身注射miR-467拮抗剂,与正常血糖对照组相比,高血糖小鼠肿瘤中巨噬细胞积累增加了两倍(p < 0.001),而miR-467拮抗剂可阻止TAM浸润(p < 0.001)。在恶性BC组织中,与正常血糖患者相比,高血糖患者miR-467水平上调258倍(p < 0.001),而在相邻正常组织中miR-467水平上调56倍(p = 0.008)。证明了高血糖可诱导miR-467驱动乳腺肿瘤的炎症和生长。miR-467可能被证明是一种有用的BC肿瘤标记物,然而关于miR-467通路的靶点还有待研究。

3.2. 胰岛素抵抗和高胰岛素血症

胰岛素抵抗是大多数2型糖尿病患者的典型特征,胰岛素抵抗可导致高胰岛素血症。之前一些荟萃分析和研究报告称,胰岛素抵抗可能与乳腺癌风险增加和不良预后有关。胰岛素促进肿瘤生长的作用最早是在实验动物中被发现的,后来在大量的癌细胞体外研究中得到证实。如今,越来越多的研究证据表明胰岛素抵抗、高胰岛素血症和乳腺癌发展之间的关系。

有资料显示,高胰岛素血症可能通过PI3K/AKT/mTORC信号通路促进癌细胞生长并阻止乳腺癌细胞死亡。胰岛素与胰岛素受体(IR)通过结合可激活PI3K/AKT和MAPK下游信号通路,下游信号依赖转录因子(如MYC和NRF1)可刺激细胞增殖和代谢基因的转录,使乳腺癌细胞生长 [20];另外,PI3K/AKT通路也具有致癌特性,并能诱导mTOR信号通路促进细胞生长 [21]。此外,有学者提出除了PI3K/AKT/mTOR信号通路外,高胰岛素血症还可以通过MAPK/ERK通路促进癌细胞生长,此通路对细胞增殖至关重要 [22]。

高胰岛素血症也可影响胰岛素样生长因子-1 (IGF-1)水平而促进乳腺癌的发展。IGF1主要在肝脏生长激素的刺激下产生,在各种肿瘤的发生发展中发挥重要作用。胰岛素结合胰岛素受体(IR)和IGF-1受体(IGF-1R),酪氨酸激酶受体被激活,从而间接激活MAPK和PI3K信号通路 [23]。此外,高胰岛素血症还通过上调缺氧诱导因子-1α (HIF-1α)导致瘦素过表达,HIF-1α是一种转录因子,被认为是糖尿病患者癌症发生和进展的主要机制 [24]。另有研究者表明,高胰岛素血症也增加了卵巢雌激素和睾酮的产生,同时抑制肝脏合成性激素结合球蛋白,导致性激素升高,而雌激素水平升高则与乳腺癌直接相关 [25]。

3.3. 胰岛素样生长因子

2型糖尿病患者胰岛素抵抗所导致的持续性高胰岛素血症,胰岛素水平的升高可以提高IGF的生物活性,产生促进肿瘤生长的作用。Murphy等 [26] 研究认为IGF-1水平升高与雌激素受体阳性(ER+)乳腺癌风险增加相关。有文献报道,高胰岛素血症会驱动全身游离IGF-1和IGF-2的增加,而IGF-1和IGF-2表达的升高会促进肿瘤的生长 [27],其中,IGF-1促进乳腺癌可能机制在上文已说明。IGF-2失调可促进乳腺癌来自Bates等 [28] 对转基因小鼠的研究,其实验证明了IGF-2在乳腺上皮中的过表达,与促进肿瘤的形成有关。

3.4. 脂肪因子或多种肽类物质

脂肪组织可以分泌脂肪因子(多肽类物质),其对全身各器官有重要的调节功能。大约80%的乳房是由脂肪组织或脂肪组成的。糖尿病会使脂肪动员增加,导致脂肪因子分泌增多。近几年有研究证据表明,脂肪组织分泌脂联素、瘦素、抵抗素等在乳腺癌尤其是绝经后乳腺癌的发生、发展中发挥了重要作用。

3.4.1. 脂联素

脂联素能在一定程度上降低乳腺癌的发病风险。国内外有流行病学研究和回顾性研究发现脂联素水平与乳腺癌风险呈负相关 [29]。另外也有研究者发现脂联素在体外也能抑制多种乳腺癌细胞株的迁移和侵袭 [30]。虽然脂联素被发现抑制乳腺癌细胞的生长和转移,但其潜在的分子机制尚不清楚。

有实验证明,脂联素可通过与脂联素受体结合,直接抑制对雌激素敏感的乳腺癌MCF-7细胞系的生长 [31],还有研究证明了脂联素可抑制对雌激素不敏感的乳腺上皮细胞系MDA-MB231的生长,并同时提高促细胞凋亡的基因Bax和P53的表达,从而可抑制肿瘤的生长 [32]。之前沈丽等 [33] 表明脂联素一方面可在肌肉组织中通过胰岛素受体的酪氨酸磷酸化作用增加胰岛素的敏感性,降低胰岛素抵抗,从而下调胰岛素/IGF-1相关信号通路,抑制肿瘤细胞的增殖;另一方面脂联素可被认为是一种类似抗炎因子,它可抑制炎症因子的表达和活性,从而抑制肿瘤细胞的活性,促进其凋亡。

目前,一项新的研究表明 [34],脂联素通过脂肪酸代谢重编程引发乳腺癌细胞死亡。一方面,脂联素通过抑制SREBP-1 (细胞内脂类代谢关键转录因子)及其在FAS (一种I型跨膜蛋白)新生通路中的表达来抑制脂肪生成。另一方面,脂联素也会激活脂肪吞噬,然后通过FAO (脂肪酸分解β氧化)诱导脂肪酸降解。总之,这些代谢改变导致细胞脂肪酸池的缺乏、脂肪代谢紊乱,从而导致相关信号传导中断和乳腺癌细胞的凋亡。

3.4.2. 瘦素

胰岛素抵抗伴随高胰岛素血症,而胰岛素又是促进瘦素的一种因素。有流行病学研究表明,瘦素水平升高与乳腺癌的侵袭性和不良预后有关。Hui Pan等 [35] 通过一项荟萃分析的结果表明,瘦素可能是女性乳腺癌风险的潜在生物标志物,它可能有助于识别高危乳腺癌患者。

据报道,高瘦素水平和瘦素受体(OB-R)过表达与乳腺癌患者总生存率的降低呈正相关 [36]。首先瘦素可与瘦素受体(OB-R)结合,激活JAK2-STAT3、MAPKS、PI3K/AKT等信号通路,诱导乳腺癌细胞分裂、增殖、入侵和转移 [37] [38]。另外瘦素可被认为是人类上皮乳腺细胞中短期ROS产生的直接潜在激活因子 [39],瘦素在癌细胞自噬和抑制凋亡中的重要作用也曾被提出 [40]。有研究发现,瘦素一方面通过刺激IL-18、IL-8来促进肿瘤生长和转移 [41],另一方面,高胰岛素血症也通过瘦素表达依赖机制诱导乳腺癌进展。有学者提出,瘦素在乳腺肿瘤中过表达的机制之一似乎与HIF-1α有关,HIF-1α是HIF转录因子的一个组成部分,可以在缺氧和高胰岛素血症中上调 [41]。

3.4.3. 抵抗素

抵抗素是Steppan等发现的另一种由脂肪细胞来源的多肽激素,因诱导胰岛素抵抗而得名。有人发现,这种新的脂肪细胞因子在乳腺癌患者的血清和肿瘤组织中呈现高表达 [31]。也有报道称,高抵抗素水平与肿瘤大小、肿瘤分期、淋巴结转移、炎症、代谢等密切相关,有可能成为乳腺癌诊断和内分泌治疗监测的有效生物标志物 [42] [43]。

一项体外研究发现抵抗素治疗不仅通过上调BCL-2和BCL-XL提高乳腺癌细胞生存,而且可通过IL-6诱导下游STAT3的激活和toll样受体4 (toll-like receptor 4, TLR4)介导的NF-κB信号通路促进乳腺癌细胞生长、迁移和侵袭 [44] [45]。另一项研究表明,抵抗素相关乳腺癌细胞的迁移和侵袭是由细胞内钙浓度升高引起的,导致src介导的蛋白磷酸酶2A (PP2A)的激活和PKCα从细胞质到质膜的易位 [46]。此外,有研究发现,抵抗素能激活PCKα/PP2A/C-SRC和JAK-STAT信号通路,从而诱导多种乳腺癌细胞如MDA-MB-231、MDA-MB-468和MCF-7细胞的增殖、侵袭和转移 [45] [47]。

3.5. 炎症因子

Virchow [48] 首先提出了慢性炎症可以促进肿瘤发生。糖尿病患者长期高血糖状态下的代谢失调会引起一系列的促炎因子产生。IL-6是一种多功能的细胞因子,作用靶细胞广泛,在免疫调节和肿瘤中发挥多重效应,IL-6一方面可诱导上皮间质转化(EMT),另一方面IL-6介导的炎性环境可诱导细胞因子信号抑制蛋白-3 (SOCS3可作为一种重要的抑癌基因)表达,抑制NF-κB通路,进而导致该途径的失活,从而促进了乳腺癌细胞生长 [49]。而TNF-α可通过NF-κB通路调节免疫应答细胞中的血管生成,间接参与肿瘤与炎症因子之间的关联 [50]。目前有关炎症因子与乳腺癌的相关性仍在探索中。

4. 小结与展望

随着社会的发展,人们生活水平不断提高,乳腺癌与2型糖尿病的发病率均不断升高,关于两者之间的相关性近年来广泛讨论。2型糖尿病被认为是乳腺癌发展的危险因素之一,同时它可能是乳腺癌的一个潜在预后不良的因素,但2型糖尿病与乳腺癌发生、发展关系还有待进一步研究。我们要提倡对糖尿病高危人群进行乳腺癌筛查,提醒其定期健康体检,对于及早发现、及早进行干预乳腺癌具有重要意义。

NOTES

*通讯作者。

参考文献

[1] Hu, K., Ding, P., Wu, Y., et al. (2019) Global Patterns and Trends in the Breast Cancer Incidence and Mortality According to Sociodemographic Indices: An Observational Study Based on the Global Burden of Diseases. BMJ Open, 9, e28461.
https://doi.org/10.1136/bmjopen-2018-028461
[2] Ferlay, J., Colombet, M., Soerjomataram, I., et al. (2021) Cancer Statistics for the Year 2020: An Overview. International Journal of Cancer, 149, 778-789.
https://doi.org/10.1002/ijc.33588
[3] Saeedi, P., Petersohn, I., Salpea, P., et al. (2019) Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clinical Practice, 157, Article ID: 107843.
https://doi.org/10.1016/j.diabres.2019.107843
[4] Widschwendter, P., Friedl, T.W., Schwentner, L., et al. (2015) The Influence of Obesity on Survival in Early, High-Risk Breast Cancer: Results from the Randomized SUCCESS A Trial. Breast Cancer Research, 17, 129.
https://doi.org/10.1186/s13058-015-0639-3
[5] He, D.E., Bai, J.W., Liu, J., et al. (2015) Clinicopathological Characteristics and Prognosis of Breast Cancer Patients with Type 2 Diabetes Mellitus. Molecular and Clinical Oncology, 3, 607-612.
https://doi.org/10.3892/mco.2015.522
[6] Lega, I.C., Austin, P.C., Fischer, H.D., et al. (2018) The Impact of Diabetes on Breast Cancer Treatments and Outcomes: A Population-Based Study. Diabetes Care, 41, 755-761.
https://doi.org/10.2337/dc17-2012
[7] 乔晓娟, 李昊昌, 李云霞, 等. 内蒙古地区女性乳腺癌与2型糖尿病关系的回顾性分析[J]. 中国医药科学, 2013, 3(22): 161-162.
[8] 朱晴晴. 2型糖尿病对乳腺癌患者病情发展及淋巴结转移的影响[J]. 航空航天医学杂志, 2021, 32(4): 408-409.
[9] Smiley, D. and Umpierrez, G.E. (2010) Management of Hyperglycemia in Hospitalized Patients. Annals of the New York Academy of Sciences, 1212, 1-11.
https://doi.org/10.1111/j.1749-6632.2010.05805.x
[10] Ziech, D., Franco, R., Georgakilas, A.G., et al. (2010) The Role of Reactive Oxygen Species and Oxidative Stress in Environmental Carcinogenesis and Biomarker Development. Chemico-Biological Interactions, 188, 334-339.
https://doi.org/10.1016/j.cbi.2010.07.010
[11] Kellenberger, L.D., Bruin, J.E., Greenaway, J., et al. (2010) The Role of Dysregulated Glucose Metabolism in Epithelial Ovarian Cancer. Journal of Oncology, 2010, Article ID: 514310.
https://doi.org/10.1155/2010/514310
[12] Wang, Y., Zhu, Y.D., Gui, Q., et al. (2014) Glucagon-Induced Angiogenesis and Tumor Growth through the HIF-1-VEGF-Dependent Pathway in Hyperglycemic Nude Mice. Genetics and Molecular Research, 13, 7173-7183.
https://doi.org/10.4238/2014.September.5.3
[13] Lopez, R., Arumugam, A., Joseph, R., et al. (2013) Hyperglycemia Enhances the Proliferation of Non-Tumorigenic and Malignant Mammary Epithelial Cells through Increased leptin/IGF1R Signaling and Activation of AKT/mTOR. PLoS ONE, 8, e79708.
https://doi.org/10.1371/journal.pone.0079708
[14] Alisson-Silva, F., Freire-de-Lima, L., Donadio, J.L., et al. (2013) Increase of O-Glycosylated Oncofetal Fibronectin in High Glucose-Induced Epithelial-Mesenchymal Transition of Cultured Human Epithelial Cells. PLoS ONE, 8, e60471.
https://doi.org/10.1371/journal.pone.0060471
[15] Flores-López, L.A., Martínez-Hernández, M.G., Viedma-Rodríguez, R., et al. (2016) High Glucose and Insulin Enhance uPA Expression, ROS Formation and Invasiveness in Breast Cancer-Derived Cells. Cellular Oncology, 39, 365-378.
https://doi.org/10.1007/s13402-016-0282-8
[16] Viedma-Rodríguez, R., Martínez-Hernández, M.G., Flores-López, L.A., et al. (2018) Epsilon-Aminocaproic Acid Prevents High Glucose and Insulin Induced-Invasiveness in MDA-MB-231 Breast Cancer Cells, Modulating the Plasminogen Activator System. Molecular and Cellular Biochemistry, 437, 65-80.
https://doi.org/10.1007/s11010-017-3096-8
[17] Zielinska, H.A., Holly, J.M.P., Bahl, A., et al. (2018) Inhibition of FASN and ERα Signalling during Hyperglycaemia-Induced Matrix-Specific EMT Promotes Breast Cancer Cell Invasion via a Caveolin-1-Dependent Mechanism. Cancer Letters, 419, 187-202.
https://doi.org/10.1016/j.canlet.2018.01.028
[18] Adham, S.A., Al, R.H., Habib, S., et al. (2014) Modeling of Hypo/Hyperglycemia and Their Impact on Breast Cancer Progression Related Molecules. PLoS ONE, 9, e113103.
https://doi.org/10.1371/journal.pone.0113103
[19] Gajeton, J., Krukovets, I., Muppala, S., et al. (2021) Hyperglycemia-Induced miR-467 Drives Tumor Inflammation and Growth in Breast Cancer. Cancers, 13, 1346.
https://doi.org/10.3390/cancers13061346
[20] Saltiel, A.R., Kahn, C.R. (2001) Insulin Signalling and the Regulation of Glucose and Lipid Metabolism. Nature, 414, 799-806.
https://doi.org/10.1038/414799a
[21] Engelman, J.A., Luo, J. and Cantley, L.C. (2006) The Evolution of Phosphatidylinositol 3-Kinases as Regulators of Growth and Metabolism. Nature Reviews Genetics, 7, 606-619.
https://doi.org/10.1038/nrg1879
[22] Zhang, A.M.Y., Wellberg, E.A., Kopp, J.L., et al. (2021) Hyperinsulinemia in Obesity, Inflammation, and Cancer. Diabetes & Metabolism Journal, 45, 285-311.
https://doi.org/10.4093/dmj.2020.0250
[23] LeRoith, D. and Roberts, C.T. (2003) The Insulin-Like Growth Factor System and Cancer. Cancer Letters, 195, 127-137.
https://doi.org/10.1016/S0304-3835(03)00159-9
[24] Cascio, S., Bartella, V., Auriemma, A., et al. (2008) Mechanism of Leptin Expression in Breast Cancer Cells: Role of Hypoxia-Inducible Factor-1. Oncogene, 27, 540-547.
https://doi.org/10.1038/sj.onc.1210660
[25] Cordero-Franco, H.F., Salinas-Martínez, A.M., Abundis, A., et al. (2014) The Effect of Insulin Resistance on Breast Cancer Risk in Latinas of Mexican Origin. Metabolic Syndrome and Related Disorders, 12, 477-483.
https://doi.org/10.1089/met.2014.0071
[26] Murphy, N., Knuppel, A., Papadimitriou, N., et al. (2020) Insulin-Like Growth Factor-1, Insulin-Like Growth Factor-Binding Protein-3, and Breast Cancer Risk: Observational and Mendelian Randomization Analyses with ~430,000 Women. Annals of Oncology, 31, 641-649.
https://doi.org/10.1016/j.annonc.2020.01.066
[27] De, Vincenzo, A., Belli, S., Franco, P., et al. (2019) Paracrine Recruitment and Activation of Fibroblasts by c-Myc Expressing Breast Epithelial Cells through the IGFs/IGF-1R Axis. International Journal of Cancer, 145, 2827-2839.
https://doi.org/10.1002/ijc.32613
[28] Bates, P., Fisher, R., Ward, A., et al. (1995) Mammary Cancer in Transgenic Mice Expressing Insulin-Like Growth Factor II (IGF-II). British Journal of Cancer, 72, 1189-1193.
https://doi.org/10.1038/bjc.1995.484
[29] Tworoger, S.S., Eliassen, A.H., Kelesidis, T., et al. (2007) Plasma Adiponectin Concentrations and Risk of Incident Breast Cancer. The Journal of Clinical Endocrinology & Metabolism, 92, 1510-1516.
https://doi.org/10.1210/jc.2006-1975
[30] Taliaferro-Smith, L., Nagalingam, A., Knight, B.B., et al. (2013) Integral Role of PTP1B in Adiponectin-Mediated Inhibition of Oncogenic Actions of Leptin in Breast Carcinogenesis. Neoplasia, 15, 11-23.
https://doi.org/10.1593/neo.121502
[31] Dos, S.E., Benaitreau, D., Dieudonne, M.N., et al. (2008) Adiponectin Mediates an Antiproliferative Response in Human MDA-MB 231 Breast Cancer Cells. Oncology Reports, 20, 971-977.
[32] Taliaferro-Smith, L., Nagalingam, A., Zhong, D., et al. (2009) LKB1 Is Required for Adiponectin-Mediated Modulation of AMPK-S6K Axis and Inhibition of Migration and Invasion of Breast Cancer Cells. Oncogene, 28, 2621-2633.
https://doi.org/10.1038/onc.2009.129
[33] 沈丽, 段卫明, 陶敏. 乳腺癌与糖尿病关联研究的新进展[J]. 现代仪器与医疗, 2014, 20(1): 17-21.
[34] Pham, D. and Park, P. (2022) Adiponectin Triggers Breast Cancer Cell Death via Fatty Acid Metabolic Reprogramming. Journal of Experimental & Clinical Cancer Research, 41, Article No. 9.
https://doi.org/10.1186/s13046-021-02223-y
[35] Pan, H., Deng, L., Cui, J., et al. (2018) Association between Serum Leptin Levels and Breast Cancer Risk. Medicine, 97, e11345.
https://doi.org/10.1097/MD.0000000000011345
[36] Niu, J., Jiang, L., Guo, W., et al. (2013) The Association between Leptin Level and Breast Cancer: A Meta-Analysis. PLoS ONE, 8, e67349.
https://doi.org/10.1371/journal.pone.0067349
[37] And, Ã.S., Barone, I., Giordano, C., et al. (2014) The Multifaceted Mechanism of Leptin Signaling within Tumor Microenvironment in Driving Breast Cancer Growth and Progression. Frontiers in Oncology, 4, Article No. 340.
https://doi.org/10.3389/fonc.2014.00340
[38] Wu, L., Chen, G., Liu, W., et al. (2017) Intramuscular Injection of Exogenous Leptin Induces Adiposity, Glucose Intolerance and Fatty Liver by Repressing the JAK2-STAT3/PI3K Pathway in a Rat Model. General and Comparative Endocrinology, 252, 88-96.
https://doi.org/10.1016/j.ygcen.2017.02.012
[39] Mahbouli, S., Der Vartanian, A., Ortega, S., et al. (2017) Leptin Induces ROS via NOX5 in Healthy and Neoplastic Mammary Epithelial Cells. Oncology Reports, 38, 3254-3264.
https://doi.org/10.3892/or.2017.6009
[40] Nepal, S., Jin, K.M., Hong, J.T., et al. (2015) Autophagy Induction by Leptin Contributes to Suppression of Apoptosis in Cancer Cells and Xenograft Model: Involvement of p53/FoxO3A Axis. Oncotarget, 6, 7166-7181.
https://doi.org/10.18632/oncotarget.3347
[41] Li, K., Wei, L., Huang, Y., et al. (2016) Leptin Promotes Breast Cancer Cell Migration and Invasion via IL-18 Expression and Secretion. International Journal of Oncology, 48, 2479-2487.
https://doi.org/10.3892/ijo.2016.3483
[42] Dalamaga, M., Sotiropoulos, G., Karmaniolas, K., et al. (2013) Serum Resistin: A Biomarker of Breast Cancer in Postmenopausal Women? Association with Clinicopathological Characteristics, Tumor Markers, Inflammatory and Metabolic Parameters. Clinical Biochemistry, 46, 584-590.
https://doi.org/10.1016/j.clinbiochem.2013.01.001
[43] Lee, Y., Chen, Y., Wu, C., et al. (2012) Resistin Expression in Breast Cancer Tissue as a Marker of Prognosis and Hormone Therapy Stratification. Gynecologic Oncology, 125, 742-750.
https://doi.org/10.1016/j.ygyno.2012.02.032
[44] Wang, C., Wang, P., Hsieh, Y., et al. (2018) Resistin Facilitates Breast Cancer Progression via TLR4-Mediated Induction of Mesenchymal Phenotypes and Stemness Properties. Oncogene, 37, 589-600.
https://doi.org/10.1038/onc.2017.357
[45] Deshmukh, S.K., Srivastava, S.K., Bhardwaj, A., et al. (2015) Resistin and Interleukin-6 Exhibit Racially-Disparate Expression in Breast Cancer Patients, Display Molecular Association and Promote Growth and Aggressiveness of Tumor Cells through STAT3 Activation. Oncotarget, 6, 11231-11241.
https://doi.org/10.18632/oncotarget.3591
[46] Lee, J.O., Kim, N., Lee, H.J., et al. (2016) Resistin, a Fat-Derived Secretory Factor, Promotes Metastasis of MDA-MB-231 Human Breast Cancer Cells through ERM Activation. Scientific Reports, 6, Article No. 18923.
https://doi.org/10.1038/srep18923
[47] Yu, H., Lee, H., Herrmann, A., et al. (2014) Revisiting STAT3 Signalling in Cancer: New and Unexpected Biological Functions. Nature Reviews Cancer, 14, 736-746.
https://doi.org/10.1038/nrc3818
[48] Balkwill, F. and Mantovani, A. (2001) Inflammation and Cancer: Back to Virchow? The Lancet, 357, 539-545.
https://doi.org/10.1016/S0140-6736(00)04046-0
[49] Kim, G., Ouzounova, M., Quraishi, A.A., et al. (2015) SOCS3-Mediated Regulation of Inflammatory Cytokines in PTEN and p53 Inactivated Triple Negative Breast Cancer Model. Oncogene, 34, 671-680.
https://doi.org/10.1038/onc.2014.4
[50] Chang, S. and Yang, W.V. (2016) Hyperglycemia, Tumorigenesis, and Chronic Inflammation. Critical Reviews in Oncology/Hematology, 108, 146-153.
https://doi.org/10.1016/j.critrevonc.2016.11.003