|
[1]
|
Roth, G.A., Mensah, G.A., Johnson, C.O., et al. (2020) Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study [Published Correction Appears in J Am Coll Cardiol. 2021 Apr 20; 77(15): 1958-1959]. Journal of the American College of Cardiology, 76, 2982-3021.
|
|
[2]
|
Alissa, E.M. and Ferns, G.A. (2011) Heavy Metal Poisoning and Cardiovascular Disease. Journal of Toxicology, 2011, Article ID: 870125. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hansson, G.K. (2005) Inflammation, Atherosclerosis, and Coronary Artery Disease. The New England Journal of Medicine, 352, 1685-1695. [Google Scholar] [CrossRef]
|
|
[4]
|
Lyngbakken, M.N., Myhre, P.L., Røsjø, H., et al. (2019) Novel Biomarkers of Cardiovascular Disease: Applications in Clinical Practice. Critical Reviews in Clinical Laboratory Sciences, 56, 33-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Cao, M., Luo, H., Li, D., et al. (2022) Research Advances on Circulating Long Noncoding RNAs as Biomarkers of Cardiovascular Diseases. International Journal of Cardiology, 353, 109-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Yayan, J. (2013) Emerging Families of Biomarkers for Coronary Artery Disease: Inflammatory Mediators. Vascular Health and Risk Management, 9, 435-456. [Google Scholar] [CrossRef]
|
|
[7]
|
Emdin, M., Aimo, A., Vergaro, G., et al. (2018) sST2 Predicts Outcome in Chronic Heart Failure Beyond NT-proBNP and High-Sensitivity Troponin T. Journal of the American College of Cardiology, 72, 2309-2320. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
中华医学会心血管病学分会心力衰竭学组, 中国医师协会心力衰竭专业委员会, 中华心血管病杂志编辑委员会. 中国心力衰竭诊断和治疗指南2018 [J]. 中华心血管病杂志, 2018, 46(10): 760-789.
|
|
[9]
|
Averill, M.M., Kerkhoff, C. and Bornfeldt, K.E. (2012) S100A8 and S100A9 in Cardiovascular Biology and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 223-229. [Google Scholar] [CrossRef]
|
|
[10]
|
Schiopu, A. and Cotoi, O.S. (2013) S100A8 and S100A9: DAMPs at the Crossroads between Innate Immunity, Traditional Risk Factors, and Cardiovascular Disease. Mediators of Inflammation, 2013, Article ID: 828354. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ionita, M.G., Vink, A., Dijke, I.E., et al. (2009) High Levels of Myeloid-Related Protein 14 in Human Atherosclerotic Plaques Correlate with the Characteristics of Rupture-Prone Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1220-1227. [Google Scholar] [CrossRef]
|
|
[12]
|
McCormick, M.M., Rahimi, F., Bobryshev, Y.V., et al. (2005) S100A8 and S100A9 in Human Arterial Wall. Implications for Atherogenesis. Journal of Biological Chemistry, 280, 41521-41529. [Google Scholar] [CrossRef]
|
|
[13]
|
Sreejit, G., Abdel-Latif, A., Athmanathan, B., et al. (2020) Neutrophil-Derived S100A8/A9 Amplify Granulopoiesis after Myocardial Infarction. Circulation, 141, 1080-1094. [Google Scholar] [CrossRef]
|
|
[14]
|
Boyd, J.H., Kan, B., Roberts, H., et al. (2008) S100A8 and S100A9 Mediate Endotoxin-Induced Cardiomyocyte Dysfunction via the Receptor for Advanced Glycation End Products. Circulation Research, 102, 1239-1246. [Google Scholar] [CrossRef]
|
|
[15]
|
Moore, B.W. (1965) A Soluble Protein Characteristic of the Nervous System. Biochemical and Biophysical Research Communications, 19, 739-744. [Google Scholar] [CrossRef]
|
|
[16]
|
Gonzalez, L.L., Garrie, K. and Turner, M.D. (2020) Role of S100 Proteins in Health and Disease. Biochimica et Biophysica Acta: Molecular Cell Research, 1867, Article ID: 118677. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Vogl, T., Ludwig, S., Goebeler, M., et al. (2004) MRP8 and MRP14 Control Microtubule Reorganization during Transendothelial Migration of Phagocytes. Blood, 104, 4260-4268. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kerkhoff, C., Eue, I. and Sorg, C. (1999) The Regulatory Role of MRP8 (S100A8) and MRP14 (S100A9) in the Transendothelial Migration of Human Leukocytes. Pathobiology, 67, 230-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kerkhoff, C., Klempt, M., Kaever, V., et al. (1999) The Two Calcium-Binding Proteins, S100A8 and S100A9, Are Involved in the Metabolism of Arachidonic Acid in Human Neutrophils. Journal of Biological Chemistry, 274, 32672-32679. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Hobbs, J.A., May, R., Tanousis, K., et al. (2003) Myeloid Cell Function in MRP-14 (S100A9) Null Mice. Molecular and Cellular Biology, 23, 2564-2576. [Google Scholar] [CrossRef]
|
|
[21]
|
Averill, M.M., Barnhart, S., Becker, L., et al. (2011) S100A9 Differentially Modifies Phenotypic States of Neutrophils, Macrophages, and Dendritic Cells: Implications for Atherosclerosis and Adipose Tissue Inflammation. Circulation, 123, 1216-1226. [Google Scholar] [CrossRef]
|
|
[22]
|
Edgeworth, J., Gorman, M., Bennett, R., et al. (1991) Identification of p8,14 as a Highly Abundant Heterodimeric Calcium Binding Protein Complex of Myeloid Cells. Journal of Biological Chemistry, 266, 7706-7713. [Google Scholar] [CrossRef]
|
|
[23]
|
Ehrchen, J.M., Sunderkötter, C., Foell, D., et al. (2009) The Endogenous Toll-Like Receptor 4 Agonist S100A8/S100A9 (Calprotectin) as Innate Amplifier of Infection, Autoimmunity, and Cancer. Journal of Leukocyte Biology, 86, 557-566. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Cotoi, O.S., Dunér, P., Ko, N., et al. (2014) Plasma S100A8/A9 Correlates with Blood Neutrophil Counts, Traditional Risk Factors, and Cardiovascular Disease in Middle-Aged Healthy Individuals. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 202-210. [Google Scholar] [CrossRef]
|
|
[25]
|
Croce, K., Gao, H., Wang, Y., et al. (2009) Myeloid-Related Protein-8/14 Is Critical for the Biological Response to Vascular Injury. Circulation, 120, 427-436. [Google Scholar] [CrossRef]
|
|
[26]
|
Volz, H.C., Laohachewin, D., Seidel, C., et al. (2012) S100A8/A9 Aggravates Post-Ischemic Heart Failure through Activation of RAGE-Dependent NF-κB Signaling. Basic Research in Cardiology, 107, 250. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yao, D. and Brownlee, M. (2010) Hyperglycemia-Induced Reactive Oxygen Species Increase Expression of the Receptor for Advanced Glycation End Products (RAGE) and RAGE Ligands. Diabetes, 59, 249-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Nagareddy, P.R., Murphy, A.J., Stirzaker, R.A., et al. (2013) Hyperglycemia Promotes Myelopoiesis and Impairs the Resolution of Atherosclerosis. Cell Metabolism, 17, 695-708. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Ortega, F.J., Sabater, M., Moreno-Navarrete, J.M., et al. (2012) Serum and Urinary Concentrations of Calprotectin as Markers of Insulin Resistance and Type 2 Diabetes. European Journal of Endocrinology, 167, 569-578. [Google Scholar] [CrossRef]
|
|
[30]
|
Smith, M.R., Kinmonth, A.L., Luben, R.N., et al. (2003) Smoking Status and Differential White Cell Count in Men and Women in the EPIC-Norfolk Population. Atherosclerosis, 169, 331-337. [Google Scholar] [CrossRef]
|
|
[31]
|
Drechsler, M., Megens, R.T., van Zandvoort, M., et al. (2010) Hyperlipidemia-Triggered Neutrophilia Promotes Early Atherosclerosis. Circulation, 122, 1837-1845. [Google Scholar] [CrossRef]
|
|
[32]
|
Soehnlein, O. (2012) Multiple Roles for Neutrophils in Atherosclerosis. Circulation Research, 110, 875-888. [Google Scholar] [CrossRef]
|
|
[33]
|
Michelsen, K.S., Wong, M.H., Shah, P.K., et al. (2004) Lack of Toll-Like Receptor 4 or Myeloid Differentiation Factor 88 Reduces Atherosclerosis and Alters Plaque Phenotype in Mice Deficient in Apolipoprotein E. Proceedings of the National Academy of Sciences of the United States of America, 101, 10679-10684. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Harja, E., Bu, D.X., Hudson, B.I., et al. (2008) Vascular and Inflammatory Stresses Mediate Atherosclerosis via RAGE and Its Ligands in apoE-/-Mice. Journal of Clinical Investigation, 118, 183-194. [Google Scholar] [CrossRef]
|
|
[35]
|
Peng, W.H., Jian, W.X., Li, H.L., et al. (2011) Increased Serum Myeloid-Related Protein 8/14 Level Is Associated with Atherosclerosis in Type 2 Diabetic Patients. Cardiovascular Diabetology, 10, 41. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
霍勇, 葛均波, 韩雅玲, 等. 急性冠状动脉综合征患者强化他汀治疗专家共识[J]. 中国介入心脏病学杂志, 2014, 22(1): 4-6.
|
|
[37]
|
Altwegg, L.A., Neidhart, M., Hersberger, M., et al. (2007) Myeloid-Related Protein 8/14 Complex Is Released by Monocytes and Granulocytes at the Site of Coronary Occlusion: A Novel, Early, and Sensitive Marker of Acute Coronary Syndromes. European Heart Journal, 28, 941-948. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Katashima, T., Naruko, T., Terasaki, F., et al. (2010) Enhanced Expression of the S100A8/A9 Complex in Acute Myocardial Infarction Patients. Circulation Journal, 74, 741-748. [Google Scholar] [CrossRef]
|
|
[39]
|
王冬梅, 田芸. 慢性收缩性心力衰竭的新概念、新指南[J]. 中国循证心血管医学杂志, 2012, 4(1): 1-2.
|
|
[40]
|
Satoh, M., Shimoda, Y., Maesawa, C., et al. (2006) Activated Toll-Like Receptor 4 in Monocytes Is Associated with Heart Failure after Acute Myocardial Infarction. International Journal of Cardiology, 109, 226-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zhao, P., Wang, J., He, L., et al. (2009) Deficiency in TLR4 Signal Transduction Ameliorates Cardiac Injury and Cardiomyocyte Contractile Dysfunction during Ischemia. Journal of Cellular and Molecular Medicine, 13, 1513-1525. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Singer, M., Deutschman, C.S., Seymour, C.W., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Boyd, J.H., Mathur, S., Wang, Y., et al. (2006) Toll-Like Receptor Stimulation in Cardiomyoctes Decreases Contractility and Initiates an NF-kappaB Dependent Inflammatory Response. Cardiovascular Research, 72, 384-393. [Google Scholar] [CrossRef] [PubMed]
|