云南省宣威地区肺癌研究进展
Research Progress of Lung Cancer in Xuanwei Area of Yunnan Province
DOI: 10.12677/WJCR.2022.122009, PDF, HTML, XML, 下载: 695  浏览: 1,667 
作者: 王慧敏, 陈亚娟*:昆明医科大学药学院,云南 昆明
关键词: 地方性肺癌易感性DNA甲基化非编码RNAEndemic Lung Cancer Susceptibility DNA Methylation Noncoding RNA
摘要: 肺癌严重危害着人类健康,是一个重大的公共卫生问题。位于云南省东北部的宣威地区是全球肺癌死亡率最高的地区之一。近十几年来,研究人员从不同角度探索与揭示宣威肺癌高发的原因及分子机制,从其特殊的环境因素到遗传易感性、DNA甲基化、非编码RNA等分子机制的研究都取得了显著进展。本文综述了宣威地区肺癌特点及其风险因素研究进展。
Abstract: Lung cancer seriously endangers human health and is a major public health problem. The Xuanwei region in northeastern Yunnan province has one of the highest lung cancer mortality rates in the world. In the past ten years, researchers have explored and revealed the causes and molecular mechanisms of the high incidence of lung cancer in Xuanwei from different perspectives. Significant progress has been made in the study of its special environmental factors to molecular mechanisms such as genetic susceptibility, DNA methylation, and noncoding RNA. This paper reviews the research progress on the characteristics and risk factors of lung cancer in Xuanwei area.
文章引用:王慧敏, 陈亚娟. 云南省宣威地区肺癌研究进展[J]. 世界肿瘤研究, 2022, 12(2): 67-73. https://doi.org/10.12677/WJCR.2022.122009

1. 引言

肺癌已成为全球死亡的主要原因之一,从世界范围内来看,肺癌的发病率和死亡率在迅速增加,在男性人口中,肺癌分别以14.3%的发生率和21.5%的死亡率位居首位,在女性人口中,肺癌死亡率也高达13.7%,仅次于乳腺癌 [1]。我国云南省肺癌发病率较高,尤其宣威地区,是全国乃至世界肺癌的高发区 [2]。本文就云南省宣威地区肺癌特点及其风险因素研究进展做一综述。

2. 云南省宣威地区肺癌特点

云南省宣威地区肺癌的流行有其独特的特点。第一,宣威地区肺癌发病率农村高于城市 [3]。第二,宣威人群中女性肺癌发病率远高于男性 [4]。农村妇女的肺癌患病率居全国首位,是中国其他地区的20倍,也是世界上女性肺癌死亡率最高的地区之一。第三,宣威地区肺癌患者的发病和死亡年龄有年轻化的趋势 [5]。第四,宣威地区肺癌流行具有明显的家族聚集性,基因突变及遗传可能在其中发挥着重要作用 [6]。

3. 风险因素

3.1. 环境影响

宣威地区有丰富的烟煤储量,传统的室内燃煤产生大量致癌物质如多芳环烃(PAHs)及SiO2等 [7]。上个世纪八十年代宣威市进行了大规模的改炉改灶工程,改造结束后,宣威市肺癌的死亡率仍维持在较高水平。改造后,无烟囱火塘使用率大大降低,但地炉、高灶或手提炉等的使用效果以及不同煤种燃烧后产生的烟雾物质还需要评估。比如通风炉灶比不通风炉灶、便携式炉灶和火炉具有更低的多环芳烃暴露量 [8],另一项研究通过对比有无长期接触烟煤的家庭妇女发现,前者患癌风险更高 [9]。而且在宣威不同地区、不同种类的煤炭燃烧后可导致的患癌风险也不一样,如宣威市来宾镇地处宣威中心地区,该地区呈口袋状,其烟煤燃烧污染物聚集,属于肺癌高发区 [6]。

同样,这些烟煤燃烧物中的颗粒物等会沉降在土壤、蔬菜、水果等食物中,绿色蔬菜、蘑菇、鲜肉等的摄入量增加与肺癌风险升高有关 [10],这可能是由于蔬菜等大面积暴露在空气中,对PAHs有较高的吸收能力 [11]。一项在2017年对宣威地区进行的病例对照研究设计中发现,三十多年前的烟雾污染对患癌风险存在滞后效应,这也可以解释为什么在改炉改灶后宣威肺癌死亡率没有出现明显下降趋势 [12]。

3.2. 个体易感性

易感性是由基因遗传所决定的个体患病的风险。在环境等外界因素的影响下,基因表达也起着非常重要的作用,相同的基因型可能会有不同的基因表达。在一项以宣威肺癌为基础的病例对照研究表明,端粒长度维持基因中的三个SNPs与肺癌风险独立相关,分别是POT1、TERF2和TERT。进一步分析以上染色体端粒长度与肺癌易感性的关系发现端粒长度与肺癌风险并没有明显的相关性,但POT1上rs10244817位点与端粒长度和肺癌风险存在显著交互作用,并且在POT1rs10244817常见变异携带者中,端粒长度与肺癌危险性之间呈剂量–反应关系 [13]。

端粒长度失调与多种癌症风险增加有关 [14],对早期非小细胞肺癌患者的肿瘤组织中基因组拷贝数变化进行分析发现在78%的非小细胞肺癌患者组都出现了5p15.33区域增益,该区域的扩增标志着肺癌的易感位点 [15]。一项对宣威县非吸烟男性肺腺癌患者及其相应的非肿瘤组织进行的全基因组测序研究中发现5号染色体上的TERT基因在染色体区域高度增加 [16]。位于5p15.33的TERT是一种端粒酶逆转录酶 [17],端粒酶活性在大多数体细胞分化过程中受到抑制,但在肿瘤中强烈上调。端粒功能障碍是癌症发生的一个基本特征,这提示TERT可能参与了多种癌症的发生 [18]。此外,在1355例云南省非小细胞肺癌患者(宣威442例,其他地区913例)中,宣威地区不常见EGFR突变率为59.50%,显著高于非宣威地区 [19],另一项以临床为基础的病例对照研究表明有肺癌家族史的个体患肺癌的风险增加且一级女性亲属往往比一级男性亲属有更高的风险 [20]。在宣威家族性肺癌研究发现ANKRD20A2、ZNF812、ARHGEF5、ZNF595和MYO18B在宣威家族性肺癌和肺癌组织中的突变频率高于健康人群 [21],可能是潜在的种系突变基因。但家族史通常是由研究对象自己提供的,未经独立核实 [22],因此关于宣威肺癌的家族聚集性与遗传易感性之间的关系需要进一步研究与发现。

3.3. DNA甲基化

DNA甲基化能够在不改变DNA序列的前提下,改变遗传表现 [23] [24],DNA甲基化会受到环境暴露、饮食习惯等其他因素的共同影响,不同研究中同一基因的甲基化水平会因不同种族、肿瘤类型和环境而有差异。Zhang等人发现了4个候选基因(STXBP6、BCL6B、FZD10和HSPB6),与非癌肺组织相比,它们在大多数肿瘤组织中显著高甲基化并表达下调 [25]。另一项对宣威地区的肺腺癌组织及其非癌组织进行的基因表达谱分析发现UHRF1在七个上调基因中显著升高 [26]。

UHRF1可编码含有PHD和环指结构域1 (UHRF1)的泛素样蛋白 [27],作为表观遗传调控的关键因子它可以连接DNA甲基化和染色质修饰 [28]。UHRF1在调节免疫系统和肿瘤发生发展中起着重要作用 [29]。UHRF1在胸腺中高表达,其通过表观遗传沉默调节早期生长反应1 (EGR1)的表达,此外UHRF1与EGR1位点CpG启动子区域的DNA甲基转移酶1(DNMT1)相互作用,可影响染色质修饰 [30]。Tu等人发现UHRF1主要影响肺腺癌的生存和发展以及并与肺腺癌的不良预后有关,在肺腺癌中UHRF1的过表达可诱导UHRF1关键基因的低甲基化,并通过激活细胞周期途径来促进肺腺癌患者的生存期 [31]。由于干扰DNA甲基化是癌症临床治疗的重要途径,有研究发现细胞周期调节的蛋白质甲基转移酶SET8可通过甲基化介导的泛素依赖的降解来控制UHRF1的蛋白质稳定性,从而防止DNA过度甲基化,结果提示靶向UHRF1的化合物有望成为癌症治疗的靶点 [32]。

3.4. 非编码RNA

近年来越来越多的研究集中在宣威人群中非编码小分子RNA(miRNAs)、长链非编码RNA(LncRNAs)及其信号通路在肺癌发病机制中的作用。MiRNAs是一种长度为18-24个核苷酸的的非编码小RNA [33],miRNAs一般通过控制mRNA的稳定性、降解和基因翻译来调节基因的表达 [34]。MiRNAs可特异性识别并与靶mRNA 3´端非翻译区(UTR)上的互补位点结合从而导致转录后基因沉默 [33]。许多研究集中对宣威肺癌组织及其配对组织中miRNAs差异表达进行分析并得到了不同的结果 [35]。

与正常组织及细胞相比,宣威肺癌中miR-135b-3p、miR-485-5p、miR-135b-5p、miR-9-5p、miR-369-3p、miR-134-5p、miR-224-5p、miR-501-5p、miR-96-5p、miR-938均表达上调 [35],而miR-144 [36]、miR-144-5p、miR-598-3p、miR218 [37]、miR-34a [38] 表达下调 [39]。miR-135b-3p [40]、miR-485-5p [41]、miR-135b-5p [34] [42]、miR-9-5p [43]、miR-501-5p [44]、miR-96-5p [45]、miR-938 [46] 已在不同癌症中如三阴乳腺癌 [47]、胃癌 [34] [48]、宫颈癌 [49]、大肠癌 [50] 等中发现其过表达可促进细胞增殖、迁移和侵袭;其中miR-938过表达可促进肺腺癌细胞增殖 [51],miR-134-5p可促进早期肺腺癌转移和化疗耐药 [52],miR-501-5p在宣威肺癌中与患者年龄、TNM分期、血清CEA水平显著相关 [53]。有研究表明miR-302b-3p可通过下调N-乙酰氨基葡萄糖转移酶(GCNT3)来降低非小细胞肺癌细胞的增殖、侵袭和转移 [54]。

LncRNAs和mRNAs共表达网络分析确定差异表达的lncRNAs和mRNAs之间显著相关 [55] [56]。在宣威肺癌中显著上调的lncRNAs有:SGOL1-AS1,SNHG4,PVT1及显著下调的lncRNAs:FENDRR,H19,PWRN1 [56],对宣威肺癌的全基因组关联分析显示KLF在宣威肺癌中显著低表达可能降低患者的总体生存率且FENDDR与KLF的低表达可能会导致细胞周期过度激活从而加速宣威肺癌进展 [55]。许多研究表明在非小细胞癌中FENDRR表达显著下调,FENDRR可通过调节细胞的迁移、侵袭和转移而抑制肿瘤的进展 [57] [58]。此外lncRNA CAR10的过度表达与空气污染有关,研究表明烟煤燃烧致癌物二苯并[a, h]蒽通过增加转录因子FoxF2的表达上调CAR10的表达,从而促进肺癌细胞增殖 [59]。

4. 小结

肺癌的发生发展是一个极其复杂的过程,宣威地区肺癌是否有特殊的发病机制还需大量体内外的生物学实验来探究。从宣威地区独特的环境因素到人群个体易感性、DNA甲基化、非编码RNA等多方面的探索为揭示宣威肺癌高发的原因提供了基础。综上,宣威肺癌是环境因素和遗传因素长期共同作用的结果,为进一步探究和了解宣威肺癌发生的复杂机制,积极探索宣威肺癌发生的环境因素与遗传因素的交互作用对研究宣威肺癌是重要且必须的。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Liu, L., Wan, X., Chen, G., et al. (2017) Risk Factors of Lung Cancer in Xuanwei, Yunnan Province, China. Chinese Journal of Lung Cancer, 20, 528-537.
[3] 李继华, 何俊, 张云生, 黄云超, 刘石安, 李云, 许军, 何兴舟, Qing LAN. 云南宣威、富源地区非吸烟女性肺癌生存分析[J]. 中国肺癌杂志, 2019, 22(8): 477-487.
[4] 刘晓燕, 刘利群, 邹小农, 马祥云, 宁伯福, 宁友飞, 万霞. 1990-2016年云南省宣威市肺癌死亡流行特征分析[J]. 中国医学科学院学报, 2019, 41(3): 338-343.
[5] 王昆, 黄云超, 赵光强, 赵敏. 2013-2014年云南省肿瘤医院收治肺癌患者的临床流行病学特征[J]. 云南医药, 2016, 37(2): 246-249.
[6] Ren, H., Cao, W., Chen, G., et al. (2016) Lung Cancer Mortality and Topography: A Xuanwei Case Study. International Journal of Environmental Research and Public Health, 13, 473.
https://doi.org/10.3390/ijerph13050473
[7] Hu, W., Downward, G., Wong, J., et al. (2020) Characterization of Outdoor Air Pollution from Solid Fuel Combustion in Xuanwei and Fuyuan, a Rural Region of China. Scientific Reports, 10, Article No. 11335.
https://doi.org/10.1038/s41598-020-68229-2
[8] Downward, G.S., Hu, W., Rothman, N., et al. (2014) Polycyclic Aromatic Hydrocarbon Exposure in Household Air Pollution from Solid Fuel Combustion among the Female Population of Xuanwei and Fuyuan Counties, China. Environmental Science & Technology, 48, 14632-14641.
https://doi.org/10.1021/es504102z
[9] Wong, J.Y.Y., Downward, G.S., Hu, W., et al. (2019) Lung Cancer Risk by Geologic Coal Deposits: A Case-Control Study of Female Never-Smokers from Xuanwei and Fuyuan, China. International Journal of Cancer, 144, 2918-2927.
https://doi.org/10.1002/ijc.32034
[10] Zhang, L., Lv, J. and Liao, C. (2012) Dietary Exposure Estimates of 14 Trace Elements in Xuanwei and Fuyuan, Two High Lung Cancer Incidence Areas in China. Biological Trace Element Research, 146, 287-292.
https://doi.org/10.1007/s12011-011-9252-1
[11] Shen, M., Chapman, R.S., He, X., et al. (2008) Dietary Factors, Food Contamination and Lung Cancer Risk in Xuanwei, China. Lung Cancer, 61, 275-282.
https://doi.org/10.1016/j.lungcan.2007.12.024
[12] Liu, L., Liu, X., Ma, X., et al. (2020) Analysis of the Associations of Indoor Air Pollution and Tobacco Use with Morbidity of Lung Cancer in Xuanwei, China. Science of the Total Environment, 717, Article ID: 135232.
https://doi.org/10.1016/j.scitotenv.2019.135232
[13] Hosgood, H.D., Cawthon, R., He, X., et al. (2009) Genetic Variation in Telomere Maintenance Genes, Telomere Length, and Lung Cancer Susceptibility. Lung Cancer, 66, 157-161.
https://doi.org/10.1016/j.lungcan.2009.02.005
[14] Calvete, O., Garcia-Pavia, P., Dominguez, F., et al. (2017) The Wide Spectrum of POT1 Gene Variants Correlates with Multiple Cancer Types. European Journal of Human Genetics, 25, 1278-1281.
https://doi.org/10.1038/ejhg.2017.134
[15] Kang, J.U., Koo, S.H., Kwon, K.C., et al. (2008) Gain at Chromosomal Region 5p15. 33, Containing TERT, Is the Most Frequent Genetic Event in Early Stages of Non-Small Cell Lung Cancer. Cancer Genetics and Cytogenetics, 182, 1-11.
https://doi.org/10.1016/j.cancergencyto.2007.12.004
[16] Wang, X., Li, J., Duan, Y., et al. (2017) Whole Genome Sequencing Analysis of Lung Adenocarcinoma in Xuanwei, China. Thoracic Cancer, 8, 88-96.
https://doi.org/10.1111/1759-7714.12411
[17] Yuan, X., Larsson, C. and Xu, D. (2019) Mechanisms Underlying the Activation of TERT Transcription and Telomerase Activity in Human Cancer: Old Actors and New Players. Oncogene, 38, 6172-6183.
https://doi.org/10.1038/s41388-019-0872-9
[18] Hofer, P., Baierl, A., Bernhart, K., et al. (2012) Association of Genetic Variants of Human Telomerase with Colorectal Polyps and Colorectal Cancer Risk. Molecular Carcinogenesis, 51, E176-E182.
https://doi.org/10.1002/mc.21911
[19] Lv, L., Liu, Z., Liu, Y., et al. (2020) Distinct EGFR Mutation Pattern in Patients with Non-Small Cell Lung Cancer in Xuanwei Region of China: A Systematic Review and Meta-Analysis. Frontiers in Oncology, 10, Article ID: 519073.
https://doi.org/10.3389/fonc.2020.519073
[20] Lin, H., Huang, Y.S., Yan, H.H., et al. (2015) A Family History of Cancer and Lung Cancer Risk in Never-Smokers: A Clinic-Based Case-Control Study. Lung Cancer, 89, 94-98.
https://doi.org/10.1016/j.lungcan.2015.05.017
[21] Kanwal, M., Ding, X.J., Ma, Z.H., et al. (2018) Characterization of Germline Mutations in Familial Lung Cancer from the Chinese Population. Gene, 641, 94-104.
https://doi.org/10.1016/j.gene.2017.10.020
[22] Jin, Y.T., Xu, Y.C., Yang, R.D., et al. (2005) Familial Aggregation of Lung Cancer in a High Incidence Area in China. British Journal of Cancer, 92, 1321-1325.
https://doi.org/10.1038/sj.bjc.6602465
[23] Deans, C. and Maggert, K.A. (2015) What Do You Mean, “Epigenetic”? Genetics, 199, 887-896.
https://doi.org/10.1534/genetics.114.173492
[24] Kanwal, R., Gupta, K. and Gupta, S. (2015) Cancer Epigenetics: An Introduction. Methods in Molecular Biology (Clifton, N.J.), 1238, 3-25.
https://doi.org/10.1007/978-1-4939-1804-1_1
[25] Wang, J., Duan, Y., Meng, Q.H., et al. (2018) Integrated Analysis of DNA Methylation Profiling and Gene Expression Profiling Identifies Novel Markers in Lung Cancer in Xuanwei, China. PLoS ONE, 13, e0203155.
https://doi.org/10.1371/journal.pone.0203155
[26] Wu, H., Meng, S., Xu, Q., et al. (2016) Gene Expression Profiling of Lung Adenocarcinoma in Xuanwei, China. European Journal of Cancer Prevention, 25, 508-517.
https://doi.org/10.1097/CEJ.0000000000000214
[27] Tauber, M., Kreuz, S., Lemak, A., et al. (2020) Alternative Splicing and Allosteric Regulation Modulate the Chromatin Binding of UHRF1. Nucleic Acids Research, 48, 7728-7747.
https://doi.org/10.1093/nar/gkaa520
[28] Hahm, J., Park, J., Kang, J., et al. (2020) Acetylation of UHRF1 Regulates Hemi-Methylated DNA Binding and Maintenance of Genome-Wide DNA Methylation. Cell Reports, 32, Article ID: 107958.
https://doi.org/10.1016/j.celrep.2020.107958
[29] Ashraf, W., Ibrahim, A., Alhosin, M., et al. (2017) The Epigenetic Integrator UHRF1: On the Road to Become a Universal Biomarker for Cancer. Oncotarget, 8, 51946-51962.
https://doi.org/10.18632/oncotarget.17393
[30] Zhang, Y., Chen, Y., Ma, R., et al. (2020) UHRF1 Controls Thymocyte Fate Decisions through the Epigenetic Regulation of EGR1 Expression. Journal of Immunology, 204, 3248-3261.
https://doi.org/10.4049/jimmunol.1901471
[31] Tu, Z., Deng, X., Hou, S., et al. (2020) UHRF1 Predicts Poor Prognosis by Triggering Cell Cycle in Lung Adenocarcinoma. Journal of Cellular and Molecular Medicine, 24, 8069-8077.
https://doi.org/10.1111/jcmm.15438
[32] Zhang, H., Gao, Q., Tan, S., et al. (2019) SET8 Prevents Excessive DNA Methylation by Methylation-Mediated Degradation of UHRF1 and DNMT1. Nucleic Acids Research, 47, 9053-9068.
https://doi.org/10.1093/nar/gkz626
[33] Iqbal, M.A., Arora, S., Prakasam, G., et al. (2019) MicroRNA in Lung Cancer: Role, Mechanisms, Pathways and Therapeutic Relevance. Molecular Aspects of Medicine, 70, 3-20.
https://doi.org/10.1016/j.mam.2018.07.003
[34] Chen, Z., Gao, Y., Gao, S., et al. (2020) MiR-135b-5p Promotes Viability, Proliferation, Migration and Invasion of Gastric Cancer Cells by Targeting Kruppel-Like Factor 4 (KLF4). Archives of Medical Science, 16, 167-176.
https://doi.org/10.5114/aoms.2019.87761
[35] Hu, Z., Wang, X., Yang, Y., et al. (2019) MicroRNA Expression Profiling of Lung Adenocarcinoma in Xuanwei, China: A Preliminary Study. Medicine (Baltimore), 98, e15717.
https://doi.org/10.1097/MD.0000000000015717
[36] Pan, H.L., Wen, Z.S., Huang, Y.C., et al. (2015) Down-Regulation of microRNA-144 in Air Pollution-Related Lung Cancer. Scientific Reports, 5, Article No. 14331.
https://doi.org/10.1038/srep14331
[37] Chen, Y., Yang, J.L., Xue, Z.Z., et al. (2021) Effects and Mechanism of microRNA 218 against Lung Cancer. Molecular Medicine Reports, 23, 28.
https://doi.org/10.3892/mmr.2020.11666
[38] Chen, Y., Hou, C., Zhao, L.X., et al. (2021) The Association of microRNA-34a with High Incidence and Metastasis of Lung Cancer in Gejiu and Xuanwei Yunnan. Frontiers in Oncology, 11, Article No. 619346.
https://doi.org/10.3389/fonc.2021.619346
[39] 陈帅, 周永春, 陈颖, 陈小波, 李光剑, 杨加鹏, 雷玉洁, 赵光强, 黄秋博, 杨长绍, 杜亚茜, 黄云超. 宣威地区肺腺癌病人肺组织特异miRNAs表达谱和靶基因及其信号通路预测[J]. 南方医科大学学报, 2017, 37(2): 238-244.
[40] Bao, C., Lu, Y., Chen, J., et al. (2019) Exploring Specific Prognostic Biomarkers in Triple-Negative Breast Cancer. Cell Death & Disease, 10, 807.
https://doi.org/10.1038/s41419-019-2043-x
[41] Wang, F.R., Xu, S.H., Wang, B.M., et al. (2018) MiR-485-5p Inhibits Metastasis and Proliferation of Osteosarcoma by Targeting CX3CL1. European Review for Medical and Pharmacological Sciences, 22, 7197-7204.
[42] Zhang, Z., Che, X., Yang, N., et al. (2017) miR-135b-5p Promotes Migration, Invasion and EMT of Pancreatic Cancer Cells by Targeting NR3C2. Biomedicine & Pharmacotherapy, 96, 1341-1348.
https://doi.org/10.1016/j.biopha.2017.11.074
[43] Li, G., Wu, F., Yang, H., et al. (2017) MiR-9-5p Promotes Cell Growth and Metastasis in Non-Small Cell Lung Cancer through the Repression of TGFBR2. Biomedicine & Pharmacotherapy, 96, 1170-1178.
https://doi.org/10.1016/j.biopha.2017.11.105
[44] Fan, D., Ren, B., Yang, X., et al. (2016) Upregulation of miR-501-5p Activates the wnt/beta-Catenin Signaling Pathway and Enhances Stem Cell-Like Phenotype in Gastric Cancer. Journal of Experimental & Clinical Cancer Research, 35, 177.
https://doi.org/10.1186/s13046-016-0432-x
[45] Wang, B., Liu, X. and Meng, X. (2020) miR-96-5p Enhances Cell Proliferation and Invasion via Targeted Regulation of ZDHHC5 in Gastric Cancer. BioScientific Reports, 40, BSR20191845.
https://doi.org/10.1042/BSR-20191845_RET
[46] Li, C.F., Li, Y.C., Jin, J.P., et al. (2017) miR-938 Promotes Colorectal Cancer Cell Proliferation via Targeting Tumor Suppressor PHLPP2. European Journal of Pharmacology, 807, 168-173.
https://doi.org/10.1016/j.ejphar.2017.04.023
[47] Zhang, Y., Xia, F., Zhang, F., et al. (2019) miR-135b-5p Enhances Doxorubicin-Sensitivity of Breast Cancer Cells through Targeting Anterior Gradient 2. Journal of Experimental & Clinical Cancer Research, 38, 26.
https://doi.org/10.1186/s13046-019-1024-3
[48] Ma, X., Feng, J., Lu, M., et al. (2020) microRNA-501-5p Promotes Cell Proliferation and Migration in Gastric Cancer by Downregulating LPAR1. Journal of Cellular Biochemistry, 121, 1911-1922.
https://doi.org/10.1002/jcb.29426
[49] Qin, W.Y., Feng, S.C., Sun, Y.Q., et al. (2020) MiR-96-5p Promotes Breast Cancer Migration by Activating MEK/ ERK Signaling. The Journal of Gene Medicine, 22, e3188.
https://doi.org/10.1002/jgm.3188
[50] Zhao, X., Weng, W., Long, Y., et al. (2020) LINC00665/miR-9-5p/ATF1 Is a Novel Axis Involved in the Progression of Colorectal Cancer. Human Cell, 33, 1142-1154.
https://doi.org/10.1007/s13577-020-00393-z
[51] Qian, T., Shi, S., Xie, L., et al. (2019) miR-938 Promotes Cell Proliferation by Regulating RBM5 in Lung Adenocarcinoma Cells. Cell Biology International, 44, 295-305.
https://doi.org/10.1002/cbin.11233
[52] Zhang, L., Huang, P., Li, Q., et al. (2019) miR-134-5p Promotes Stage I Lung Adenocarcinoma Metastasis and Chemoresistance by Targeting DAB2. Molecular Therapy Nucleic Acids, 18, 627-637.
https://doi.org/10.1016/j.omtn.2019.09.025
[53] Yang, Y., Chen, K., Zhou, Y., et al. (2018) Application of Serum microRNA-9-5p, 21-5p, and 223-3p Combined with Tumor Markers in the Diagnosis of Non-Small-Cell Lung Cancer in Yunnan in Southwestern China. OncoTargets and Therapy, 11, 587-597.
https://doi.org/10.2147/OTT.S152957
[54] Li, Q., Ran, P., Zhang, X., et al. (2018) Downregulation of N-Acetylglucosaminyltransferase GCNT3 by miR-302b-3p Decreases Non-Small Cell Lung Cancer (NSCLC) Cell Proliferation, Migration and Invasion. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 50, 987-1004.
https://doi.org/10.1159/000494482
[55] Duan, Y., Li, W. X., Wang, Y., et al. (2020) Integrated Analysis of lncRNAs and mRNAs Identifies a Potential Driver lncRNA FENDRR in Lung Cancer in Xuanwei, China. Nutrition and Cancer, 73, 6983-6995.
https://doi.org/10.1080/01635581.2020.1779323
[56] Ju, Q., Zhao, Y.J., Ma, S., et al. (2020) Genome-Wide Analysis of Prognostic-Related lncRNAs, miRNAs and mRNAs Forming a Competing Endogenous RNA Network in Lung Squamous Cell Carcinoma. Journal of Cancer Research and Clinical Oncology, 146, 1711-1723.
https://doi.org/10.1007/s00432-020-03224-8
[57] Acha-Sagredo, A., Uko, B., Pantazi, P., et al. (2020) Long Non-Coding RNA Dysregulation Is a Frequent Event in Non-Small Cell Lung Carcinoma Pathogenesis. British Journal of Cancer, 122, 1050-1058.
https://doi.org/10.1038/s41416-020-0742-9
[58] Zheng, Q., Zhang, Q., Yu, X., et al. (2021) FENDRR: A Pivotal, Cancer-Related, Long Non-Coding RNA. Biomedicine & Pharmacotherapy, 137, Article ID: 111390.
https://doi.org/10.1016/j.biopha.2021.111390
[59] Wei, M., Zhou, Y., Wen, Z., et al. (2016) Long Non-Coding RNA Stabilizes the Y-Box-Binding Protein 1 and Regulates the Epidermal Growth Factor Receptor to Promote Lung Carcinogenesis. Oncotarget, 7, 59556-59571.
https://doi.org/10.18632/oncotarget.10006