630 nm激光诱导的血卟啉衍生物联合顺铂对人肺腺癌A549细胞增殖抑制及化疗增敏作用的影响
Effects of 630 nm Laser-Induced Hematoporphyrin Derivatives Combined with Cisplatin on the Proliferation Inhibition and Chemotherapy Sensitization of Human Lung Adenocarcinoma A549 Cells
DOI: 10.12677/ACM.2022.124458, PDF, HTML, XML, 下载: 318  浏览: 441 
作者: 李吉燕, 肖宝红, 曹艺巍, 丁晓倩, 林存智*:青岛大学附属医院呼吸与危重症医学科,山东 青岛
关键词: 血卟啉衍生物光动力治疗顺铂细胞凋亡化疗增敏Hematoporphyrin Derivatives Photodynamic Therapy Cisplatin Apoptosis Chemosensitization
摘要: 目的:探讨630 nm激光诱导的血卟啉衍生物(Hematoporphyrin Derivative-Photodynamic Therapy HPD-PDT)与顺铂(Cisplatin DDP)单独或联合应用对人肺腺癌A549细胞株的增殖抑制作用及HPD-PDT对DDP化疗的增敏作用。方法:将对数生长期的A549细胞分为HPD-PDT组、DDP组、联合组(DDP + HPD-PDT组)和对照组。CCK-8法检测各组细胞的增殖抑制率,Hoechst33342染色、annexinV-FITC/PI双染法检测细胞的凋亡,RT-PCR检测各组Bcl-2、Bax、cleaved-PARP及Caspase-9 mRNA的表达。结果:CCK8结果显示:对照组、DDP组、HPD-PDT组、DDP + HPD-PDT组A549细胞成活率分别为100%,(88.56 ± 3.57)%,(84.61 ± 3.18)%、(74.34 ± 3.54)%。各用药组对人肺腺癌A549细胞株均有增殖抑制作用,尤其以联合组抑制作用最强;组间比较(除HPD-PDT组和DDP组)有统计学意义(均P < 0.05);Hoechst33342染色显示:HPD-PDT组,DDP组,DDP + HPD-PDT组均可见明显的凋亡细胞,以DDP + HPD-PDT组凋亡细胞数最多;流式细胞术检测结果显示:对照组、DDP组、HPD-PDT组、DDP + HPD-PDT组细胞早中期细胞凋亡率分别为(6.38 ± 0.36)%、(13.68 ± 0.67)%、(15.72 ± 0.56)%、(22.94 ± 0.55)%。各用药组与对照组比较,联合用药组与单独用药组比较,细胞凋亡率增加,差异均有统计学意义(均P < 0.05),DDP + HPD-PDT组凋亡细胞数最多;RT-PCR显示:HPD-PDT和DDP作用细胞后可以上调Bax和PARPmRNA及下调Caspas9、Bcl-2mRNA的表达,组间比较(除HPD-PDT和DDP组)有统计学意义(均P < 0.05)。结论:光动力治疗联合化疗对肺腺癌A549细胞的杀伤效果最明显。血卟啉衍生物介导的光动力治疗可增强A549细胞对顺铂化疗的敏感性。
Abstract: Objective: To investigate the proliferation inhibitory effect of 630 nm laser-induced hematoporphyrin derivative photodynamic therapy (HPD-PDT) and cisplatin (DDP) alone or in combination on human lung adenocarcinoma A549 cell line and the sensitization effect of HPD-PDT on DDP chemotherapy. Methods: A549 cells in logarithmic growth phase were divided into HPD-PDT group, DDP group, combined group (DDP and HPD-PDT group) and control group. The proliferation inhibition rate of cells in each group was detected by CCK-8 method, and the apoptosis of cells was detected by Hoechst33342 staining and annexin V-FITC/PI double staining method, and the expression levels of Bcl-2, Bax, PARP and caspase-9 mRNA were detected by RT-PCR. Results: The results of CCK8 showed that the survival rate of A549 cells in the control group, DDP group, HPD-PDT group, DDP and HPD-PDT group was 100%, (88.56 ± 3.57)%, (84.61 ± 3.18)%, (74.34 ± 3.54)% respectively. Each group had a proliferation inhibitory effect on the human lung adenocarcinoma A549 cell line, especially the combined group had the strongest inhibitory effect; The comparison between the groups (except the HPD-PDT group and the DDP group) was statistically significant (both P < 0.05). Hoechst33342 staining showed that HPD-PDT group, DDP group, DDP and HPD-PDT group had obvious apoptotic cells. The results of flow cytometry showed that the early and mid-term cell apoptosis rates of the control group, DDP group, HPD-PDT group, DDP and HPD-PDT group were (6.38 ± 0.36)%, (13.68 ± 0.67)%, (15.72 ± 0.56)%, (22.94 ± 0.55)% respectively. The apoptosis rate between each medication group with the control group or the combination medication group with the single medication group was increased, and the difference was statistically significant (P < 0.05), and the number of apoptotic cells in the DDP and HPD-PDT group was the largest; RT-PCR showed that HPD-PDT and DDP can up-regulate the expression of Bax, PARPmRNA and down-regulate the level of caspase-9 and Bcl-2mRNA after acting on cells. The comparison between groups (except HPD-PDT group and DDP group) was statistically significant (P < 0.05). Conclusion: The killing effect of photodynamic therapy and chemotherapy on lung adenocarcinoma A549 cells is the most obvious, and hematoporphyrin derivative-mediated photodynamic therapy might enhance the sensitivity of A549 cells to cisplatin chemotherapy.
文章引用:李吉燕, 肖宝红, 曹艺巍, 丁晓倩, 林存智. 630 nm激光诱导的血卟啉衍生物联合顺铂对人肺腺癌A549细胞增殖抑制及化疗增敏作用的影响[J]. 临床医学进展, 2022, 12(4): 3175-3184. https://doi.org/10.12677/ACM.2022.124458

1. 引言

肺癌是全球最常见的癌症,GLOBOCAN数据显示:2020年有约220万新发癌症病例和180万例死亡。肺癌诊断病例约占全球癌症的十分之一(11.4%),仅次于乳腺癌,为第二位,而死亡病例居首位 [1]。肺癌亦是我国最常见的癌症类型和死亡的主要原因 [2]。非小细胞肺癌是肺癌最常见的亚型,约占肺癌的80% [3],尽管手术、放疗、化疗及生物靶向等联合治疗取得了一定的进展,但是由于早期无特异的症状,大多数患者诊断时已经到中晚期,以致五年生存率比较低 [4] [5] [6]。光动力疗法(photodynamic therapy PDT)越来越广泛地应用于临床治疗,PDT是以活性氧(reactive oxygen species ROS)的产生为基础,诱导细胞毒性作用。PDT共需要三个成分:光敏剂、分子氧和光 [7];光动力治疗是利用光敏剂癌细胞高浓度分布的特性,在特定激光波长照射下使光敏剂激发,产生不可逆的光化学反应,从而导致肿瘤细胞死亡 [8]。它有毒性低 [9]、微创 [10]、选择性高及可重复等优势 [11],治疗肺癌时取得了好的效果。PDT已用于治疗各种形式的肺癌 [12]。光动力治疗后亦复发,且受限于光在组织内的穿透力。DDP是临床上常用的化疗药物,70%~80%的联合化疗方案中要用到顺铂 [13]。研究证实,顺铂通过多种途径 [14] 来发挥其抗癌作用。它通常与基因组DNA (gDNA)或线粒体DNA (mtDNA)结合,以产生DNA病变,阻止DNA、mRNA和蛋白质的产生,阻止DNA复制,激活几个转导通路,最终导致坏死或凋亡 [15] [16] [17] [18] [19]。然而,由于副作用和耐药性,顺铂没有表现出其最大的潜力。联合应用不同毒性作用的治疗是提高肿瘤疗效的策略。目前国内外对抗肿瘤药物和光动力疗法的协同作用机制研究不多 [20] [21],本实验通过630 nm激光诱导血卟啉衍生物联合顺铂对肺腺癌A549细胞的体外实验研究,探讨联合治疗中光动力治疗对化疗的增敏作用,为肺癌的临床治疗提供指导。

2. 材料与方法

2.1. 材料

1) 人肺腺癌A549细胞株由青岛大学附属医院科研中心实验室收藏提供。

2) 仪器LED-IIB光动力治疗仪,武汉亚格光电技术有限公司生产。本实验所用红光输出波长(633 ± 10) nm,激光功率选择50 mW/cm2光斑直径约为10 cm,照射时间120 s,照射发射口与孔板底部垂直距离约10 cm,本实验所用药物浓度及实验条件根据课题组之前实验结果及预实验结果选定 [22]。

3) 主要试剂 DMEM高糖培养基、胎牛血淸购于普诺赛生命科技有限公司;胰蛋白酶、青霉素/链霉素溶液(100×无菌),CCK8化学发光试剂盒购自大连美仑生物技术有限公司。Hoechst33342试剂盒、Annexin V-FITC/PI细胞凋亡检测试剂盒购于北京索莱宝科技有限公司;RNAiso plus RNA提取试剂购于日本TaKaRa公司;反转录试剂盒、SYBR qPCR Green荧光定量PCR试剂盒均购于南京诺唯赞生物科技股份有限公司。

4) 光敏剂 血卟啉衍生物(HPD)用血卟啉注射液(Hematoporphyrin Injection)配制,购于重庆迈乐生物制药有限公司,顺铂注射液购于江苏豪森药业集团有限公司,分装后于−20℃避光冷藏,用含1%的青链双抗、10%的灭活胎牛血清的DMEM高糖培养基现配现用。

2.2. 方法

1) 细胞培养 肺腺癌A549细胞在含10%血清的培养基中,5% CO2,37℃饱和湿度的孵育箱中培养。

2) CCK8检测细胞增殖–毒性以1 × 104/孔细胞数接种于96孔板中,设3个复孔,培养24小时,待细胞贴壁状态稳定后弃废液,实验设有对照组(无加药照光处理)、HPD-PDT组(加入含血卟啉衍生物5 ug/ml的培养液培养4小时后在630 nm激光下50 mW/cm2照射2 min)、DDP组(加入含顺铂0.50 ug/ml的培养液培养4小时)、DDP + HPD-PDT组(先加入顺铂培养4小时后按HPD-PDT组处理)。所有组均需避光培养,用药处理后继续培养24小时,每孔更换100 ul含10%CCK8的培养液,增加空白对照组(仅有含10% CCK8培养液),避光培养30分钟后,自动酶标仪检测吸光度值,波长450 nm,实验重复三次,结果以均数 ± 标准差表示。存活率 = [(A实验组 − A空白对照组)/(A对照组 − A空白对照组)] × 100%。比较各组药物对肺腺癌A549细胞的存活率影响,筛选出最适药物浓度用于后续实验。

3) Hoechst33342染色检测细胞凋亡 将对数生长期的A549细胞接种于24孔板培养过夜,贴壁后随机分组,分组及处理同CCK8,处理完成后更换培养液继续孵24小时,各孔先后加入500 ul的细胞染色缓冲液、5 ul的Hoechst染色液,混匀后4℃孵育30分钟,PBS洗后倒置荧光显微镜下观察细胞变化。

4) AnnexinV-FITC/PI双染检测细胞凋亡 将细胞铺于6孔板中,过夜后给予相应处理(分组及处理同上),处理完成后培养48小时,收集细胞并计数,离心、PBS洗2次后用100 ul 1 × Binding buffer重悬细胞,按分组避光加入5 ul的AnnexinV-FITC和10 ul的PI染色剂,并设立双阴,单染AnnexinV-FITC组和单染PI组,混匀后避光孵育15 min,再加300 ul的1 × Binding buffer,过滤后用流式细胞仪进行检测。

5) RT-PCR检测 检测Bcl-2、Bax、cleaved-PARP及Caspase-9 mRNA的表达水平。分组处理同CCK8,细胞处理24小时后PBS洗1次,各孔加入1 ml RNAiso Plus静置5 min,然后加入200 ul氯仿,混匀后离心,将上清移入新的离心管中,加入与异丙醇后离心,倒掉上清液,加入乙醇混匀后离心,弃上清,加入DEPC水检测浓度,根据诺唯赞反转录试剂说明书及PCR仪(37℃ 15 min; 85℃ 5 s; 4℃)逆转录得到cDNA第一链,以cDNA为模板,在RT-PCR 20 ul反应体系下用FIC-3000溶解曲线细胞仪对cDNA为模板进行目的片段的扩增。分析每个组别内模板的循环数(Ct),以GAPDH为内参计算各组各基因的起始拷贝数(2ΔΔCt)。结果以均数 ± 标准差表示。

2.3. 统计学方法

所有实验均独立重复至少3次,所得计量资料用(X ± S)表示,采用统计学软件SPSS 26.00版进行数据分析,多组之间比较均数用单因素方差分析,P < 0.05有统计学意义。

3. 结果

3.1. CCK8检测结果

注:与对照组相比*P < 0.05;HPD-PDT组、DDP组与联合组相比^P < 0.05。

Figure 1. The effect of different groups on the survival rate of lung adenocarcinoma A549 cells after 24 hours

图1. 不同分组处理24小时后肺腺癌A549细胞存活率的影响

DDP、HPD-PDT均可杀伤肺腺癌A549细胞,联合组的杀伤效应明显优于单独用药组。比较观察各组细胞吸光度值及成活率(见图1),五组细胞处理24小时的存活率分别为:对照组:100%,DDP组:(88.56 ± 3.57)%;HPD-PDT组:(84.61 ± 3.18)%;DDP + HPD-PDT组:(74.34 ± 3.54)%;组间比较(除DDP组和HPD-PDT组)有统计学意义(P < 0.05),以DDP + HPD-PDT组成活率最低,其细胞增殖抑制率最明显。计算两药相互作用系数(CDI)值,24小时的CDI值为:0.99,表明两药联合有协同作用。

3.2. Hoechst33342染色

各组细胞处理24小时后在倒置荧光显微镜下观察,对照组无明显亮蓝染的细胞,HPD-PDT组、DDP组及联合用药组都能观察到呈致密浓染颜色发白的凋亡细胞,核固缩及核碎裂明显,DDP + HPD-PDT组最多见,且细胞密度较其他组也最低(见图2)。

注:(A) 空白对照组;(B) DDP组;(C) HPD-PDT组;(D) DDP + HPD-PDT组

Figure 2. Comparison results of each group of cells stained by Hoechst 33342 under an inverted fluorescence microscope.

图2. 倒置荧光显微镜下各组细胞经Hoechst33342染色对比结果

3.3. 流式双染检测A549细胞凋亡率

对照组、DDP组、HPD-PDT组、DDP + HPD-PDT组凋亡率分别是(6.38 ± 0.36)%、(13.68 ± 0.67)%、(15.72 ± 0.56)%、(22.94 ± 0.55)%,除了HPD-PDT组与DDP组之外(P > 0.05),组间比较差异均有统计学意义(P < 0.05) (见图3)联合组、HPD-PDT组、DDP 组与对照组比较,细胞凋亡率均升高(P < 0.05),以联合组(DDP + HPD-PDT组)细胞凋亡率最高。表明联合组诱导凋亡的效果较各单独用药组好,差异有统计学意义(P < 0.05)。

3.4. RT-PCR检测结果

与对照组比较,DDP组、HPD-PDT组及DDP + HPD-PDT组细胞中Bax、cleaved-PARP的相对表达量均升高,Bcl-2、Caspase-9蛋白的表达量均降低。尤以联合组DDP + HPD-PDT的差异性最明显,各组之间(除DDP组和HPD-PDT组外)蛋白表达差异均有统计学意义(P < 0.05) (见图4)。

注:与对照组相比*P < 0.05;HPD-PDT组、DDP组与联合组相比^P < 0.05。

Figure 3. The effect of combined treatment of PDT and DDP on A549 cell apoptosis

图3. PDT和DDP联合治疗对A549细胞凋亡的影响

注:各组与对照组相比*P < 0.05;HPD-PDT组、DDP组与联合组相比^P < 0.05。

Figure 4. The expression levels of cleaved-PARP, Bcl-2, Bax, Caspase-9 mRNA after PDT and DDP treatment

图4. 经PDT、DDP治疗后cleaved-PARP、Bcl-2、Bax、Caspase-9 mRNA的表达水平

4. 讨论

肺癌是中国癌症相关死亡的主要原因 [23],NSCLC约占目前全世界观察到的肺癌病例的85% [24]。因其被发现时大都处于晚期,化疗仍然是其主要的治疗方式。而顺铂(DDP)是NSCLC治疗 [25] [26] 的主要化疗剂之一。联合疗法,PDT和化疗可以促进协同作用,提高癌症治疗的功效 [27]。王丽 [28] 等通过体外实验研究证实PDT或联合DDP对肺癌A549/DDP细胞具有明显杀伤作用,主要通过ROS‒线粒体途径促进细胞凋亡;PDT与DDP具有相加效应。滕理送等 [20] 通过研究光动力疗法与化疗药物联合对人直肠腺癌细胞HR8348的作用,验证了顺铂确实能增加光敏剂的光敏杀伤作用,两者联合有协同增效作用。张建桥 [29] 等通过观察了顺铂联合光动力对荷H22肝癌小鼠移植瘤的影响亦证实了光动力疗法与顺铂作用于不同的周期细胞,具有协同增效作用。以及许多研究 [30] [31] [32] 已经证明,PDT与化疗相结合可以提高疗效。但是在肺癌的治疗中,光动力治疗对化疗的增敏作用少有研究。

本实验结果显示:顺铂和光动力单独或联合治疗对肺腺癌A549细胞均有杀伤作用,联合组A549细胞成活率明显降低,细胞集落数量明显减少,以DDP + HPD-PDT组成活率最低,表明联合组杀伤作用优于单药组。Hoechst33342染色结果看出,用药后可见A549细胞染色质固缩,细胞核呈致密浓染或呈碎片状致密浓染,颜色发白及高蓝光改变,而对照组细胞则未见明显凋亡改变,提示DDP及HPD-PDT的抗肿瘤作用与细胞凋亡密切相关。AnnexinV-FITC/PI双染法测凋亡结果显示联合组凋亡细胞明显多于对照组、DDP组及HPD-PDT组,进一步提示两者的抗肿瘤作用通过诱导细胞凋亡而实现。

淋巴细胞瘤-2基因(B-cell lymphoma-2, Bcl-2)家族蛋白通过形成异源或者同源二聚体,在线粒体凋亡途径中占有重要地位,Bcl-2是该家族中重要的抗凋亡蛋白,Bax是重要的促凋亡蛋白,Bcl-2和Bax在细胞凋亡的调节中起着重要的作用 [33] [34],本研究显示,DDP、HPD-PDT单独和联合作用后,肺腺癌A549细胞中的Bax基因mRNA表达上调,Bcl-2基因mRNA表达下调、Bax/Bcl-2比值增高,从而促进了肺腺癌A549细胞的凋亡。Bcl-2表达增加,可以稳定细胞线粒体膜,避免细胞内蛋白水解,抑制线粒体膜电位的变化及抑制细胞色素c从线粒体内膜释放 [35],抑制caspase-9 (Cysteine aspartic acid specific protease-9)自活化后激活caspase-3,从而抑制细胞凋亡 [36]。而PARP是caspase-3作用底物的一种DNA损伤传感器,是典型的蛋白质翻译的后修饰酶,对DNA断端非常敏感。病理状态下,DNA损伤严重时,细胞内PARP被大量激活,致使多聚ADP核糖积聚,凋亡诱导因子核转位等一系列病理改变,进一步诱导DNA断裂,导致细胞凋亡的发生 [37]。本实验结果中DDP、HPD-PDT作用A549细胞后Bcl-2基因mRNA表达降低,促进了caspase-9的活化,从而激活caspase-3,进而激活PARP,最终促进A549细胞的凋亡。因此,DDP与HPD-PDT联合主要是通过诱导线粒体途径凋亡而抑制肺癌细胞的增殖。

5. 结论

综上所述:HPD-PDT或与DDP都能促进A549细胞的凋亡、抑制A549细胞增殖,两者联合作用明显,即HPD-PDT能增加A549细胞对DDP化疗的敏感性。其对顺铂化疗增敏作用产生的机制可能与上调cleaved-PARP、Bax的基因mRNA的表达以及下调Bcl-2、caspase-9的基因mRNA的表达有关 ,从而影响细胞线粒体凋亡通路及促进DNA损伤。但具体机制需进一步实验验证。该研究只采取一种肺癌细胞株,亦未能在动物上进行相关验证,需要进一步实验证实。

声明

该实验获得医院伦理委员会批准。

参考文献

NOTES

*通讯作者Email: lindoc@126.com

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Cao, W., Chen, H.D., Yu, Y.W., Li, N. and Chen, W.Q. (2021) Changing Profiles of Cancer Burden Worldwide and in China: A Secondary Analysis of the Global Cancer Statistics 2020. Chinese Medical Journal, 134, 783-791.
https://doi.org/10.1097/CM9.0000000000001474
[3] 戴冰, 占美, 吴斌, 吴逢波, 杨甜, 徐珽. 奈达铂与顺铂治疗晚期或复发性鳞状细胞非小细胞肺癌的成本-效果分析[J]. 中国药房, 2020, 31(4): 473-477.
[4] Wood, S.L., Pernemalm, M., Crosbie, P.A. and Whetton, A.D. (2015) Molecular Histology of Lung Cancer: From Targets to Treatments. Nature Reviews Clinical Oncology, 41, 361-375.
https://doi.org/10.1016/j.ctrv.2015.02.008
[5] 张晋, 任立红, 刘冬, 刘子昀, 张晓钰, 乌伊萍, 等. 安罗替尼治疗晚期非小细胞肺癌的成本效果分析[J]. 中国新药与临床杂志, 2020, 39(6): 380-384.
[6] 中华医学会, 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2019版) [J]. 中华肿瘤杂志, 2020, 42(4): 257-287.
[7] Li, X., Lovell, J.F., Yoon, J. and Chen, X. (2020) Clinical Development and Potential of Photothermal and Photodynamic therapies for cancer. Nature Reviews Clinical Oncology, 17, 657-674.
https://doi.org/10.1038/s41571-020-0410-2
[8] Wang, Y., Lin, Y., Zhang, H.G. and Zhu, J. (2016) A Photodynamic Therapy Combined with Topical 5-Aminolevulinic Acid and Systemic Hematoporphyrin Derivative Is More Efficient but Less Phototoxic for Cancer. Journal of Cancer Research and Clinical Oncology, 142, 813-821.
https://doi.org/10.1007/s00432-015-2066-3
[9] Sanfilippo, N.J., His, A., DeNittis, A.S., Ginsberg, G.G., Kochman, M.L., Friedberg, J.S., et al. (2001) Toxicity of Photodynamic Therapy after Combined External Beam Radiotherapy and Intraluminal Brachytherapy for Carcinoma of the Upper Aerodigestive Tract. Lasers in Surgery and Medicine, 28, 278-281.
https://doi.org/10.1002/lsm.1051
[10] Hopper, C. (2000) Photodynamic Therapy: A Clinical Reality in the Treatment of Cancer. The Lancet, 1, 212-219.
https://doi.org/10.1016/S1470-2045(00)00166-2
[11] Xu, P., Chen, J., Chen, Z., Zhou, S., Hu, P., Chen, X., et al. (2012) Receptor-Targeting Phthalocyanine Photosensitizer for Improving Antitumor Photocytotoxicity. PLoS ONE, 7, Article ID: e37051.
https://doi.org/10.1371/journal.pone.0037051
[12] Simone 2nd, C.B. and Cengel, K.A. (2014) Photodynamic Therapy for Lung Cancer and Malignant Pleural Mesothelioma. Seminars in Oncology, 41, 820-830.
https://doi.org/10.1053/j.seminoncol.2014.09.017
[13] 王旭杰, 王松, 冯卫华, 于春鹏. 铂类药物在原发性肝癌介入治疗中的临床研究进展[J]. 齐鲁医学杂志, 2014, 29(4): 373-374.
[14] Florea, A.M. and Büsselberg, D. (2011) Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects. Cancers, 3, 1351-1371.
https://doi.org/10.3390/cancers3011351
[15] Ciccarelli, R.B., Solomon, M.J., Varshavsky, A. and Lippard, S.J. (1985) In Vivo Effects of Cis- and Trans-Diamminedichloroplatinum (II) on SV40 Chromosomes: Differential Repair, DNA-Protein Cross-Linking, and Inhibition of Replication. Biochemistry, 24, 7533-7540.
https://doi.org/10.1021/bi00347a005
[16] Jordan, P. and Carmo-Fonseca, M. (2000) Molecular Mechanisms Involved in Cisplatin Cytotoxicity. Cellular and Molecular Life Sciences, 57, 1229-1235.
https://doi.org/10.1007/PL00000762
[17] Siddik, Z.H. (2003) Cisplatin: Mode of Cytotoxic Action and Molecular Basis of Resistance. Oncogene, 22, 7265-7279.
https://doi.org/10.1038/sj.onc.1206933
[18] Riddell, I.A. (2018) Cisplatin and Oxaliplatin: Our Current Understanding of Their Actions. Metal Ions in Life Sciences Vol. 18.
[19] Achkar, I.W., Abdulrahman, N., Al-Sulaiti, H., Joseph, J.M., Uddin, S. and Mraiche, F. (2018) Cisplatin Based Therapy: The Role of the Mitogen Activated Protein Kinase Signaling Pathway. Journal of Translational Medicine, 16, Article No. 96.
https://doi.org/10.1186/s12967-018-1471-1
[20] 滕理送, 郑树, 吴金民, 余海. 光动力学疗法结合化疗药物对人直肠腺癌细胞杀伤作用的研究[J]. 中国激光医学杂志, 1997(1): 16-20.
[21] 宋东兴. 光动力学疗法联合化疗治疗晚期贲门癌的疗效分析[J]. 中国激光医学杂志, 2007(6): 357-361.
[22] 张媛媛, 曹艺巍, 崔世超, 李容, 林存智. 630 nm激光对血卟啉衍生物介导的人肺腺癌A549细胞体外杀伤效应及诱导凋亡实验研究[J]. 中国激光医学杂志, 2019, 28(1): 7-12+60.
[23] Siegel, R.L., Miller, K.D. and Jemal, A. (2015) Cancer Statistics, 2015. CA: A Cancer Journal for Clinicians, 65, 5-29.
https://doi.org/10.3322/caac.21254
[24] Rolfo, C., Mack, P.C., Scagliotti, G.V., Baas, P., Barlesi, F., Bivona, T.G., et al. (2018) Liquid Biopsy for Advanced Non-Small Cell Lung Cancer (NSCLC): A Statement Paper from the IASLC. Journal of Thoracic Oncology, 13, 1248-1268.
https://doi.org/10.1016/j.jtho.2018.05.030
[25] Reed, J.C. (1999) Mechanisms of Apoptosis Avoidance in Cancer. Current Opinion in Oncologyl, 11, 68.
https://doi.org/10.1097/00001622-199901000-00014
[26] Judson, I. and Kelland, L.R. (2000) New Developments and Approaches in the Platinum Arena. Drugs, 59, 29-36; discussion 37-38.
https://doi.org/10.2165/00003495-200059004-00004
[27] Choudhary, S., Nouri, K. and Elsaie, M.L. (2009) Photodynamic Therapy in Dermatology: A Review. Lasers in Medical Science, 24, 971-980.
https://doi.org/10.1007/s10103-009-0716-x
[28] 王丽, 张莹, 万彪, 戴乐和颐, 马婉莹, 于廷和. 光动力治疗联合顺铂对顺铂耐药肺癌细胞的体外治疗效应[J]. 肿瘤, 2017, 37(5): 457-465.
[29] 张建桥, 刘斌. 顺铂联合光动力疗法增加肝癌细胞敏感性的研究[J]. 中国激光医学杂志, 2016, 25(5): 263.
[30] Canti, G., Nicolin, A., Cubeddu, R., Taroni, P., Bandieramonte, G. and Valentini, G. (1998) Antitumor Efficacy of the Combination of Photodynamic Therapy and Chemotherapy in Murine Tumors. Cancer Letters, 125, 39-44.
https://doi.org/10.1016/S0304-3835(97)00502-8
[31] Crescenzi, E., Chiaviello, A., Canti, G., Reddi, E., Veneziani, B.M. and Palumbo, G. (2006) Low Doses of Cisplatin or Gemcitabine plus Photofrin/Photodynamic Therapy: Disjointed Cell Cycle Phase-Related Activity Accounts for Synergistic Outcome in Metastatic Non-Small Cell Lung Cancer Cells (H1299). Molecular Cancer Therapeutics, 5, 776-785.
https://doi.org/10.1158/1535-7163.MCT-05-0425
[32] Chen, Y.S., Peng, Y.B., Yao, M., Teng, J.P., Ni, D., Zhu, Z.J., et al. (2017) Cisplatin and Photodynamic Therapy Exert Synergistic Inhibitory Effects on Small-Cell Lung Cancer Cell Viability and Xenograft Tumor Growth. Biochemical & Biophysical Research Communications, 487, 567-572.
https://doi.org/10.1016/j.bbrc.2017.04.089
[33] Burlacu, A. (2003) Regulation of Apoptosis by Bcl-2 Family Proteins. Journal of Cellular and Molecular Medicine, 7, 249-257.
https://doi.org/10.1111/j.1582-4934.2003.tb00225.x
[34] Soriano, M.E. and Scorrano, L. (2010) The Interplay between BCL-2 Family Proteins and Mitochondrial Morphology in the Regulation of Apoptosis. In: Hetz, C., Ed., BCL-2 Protein Family, Vol. 687, Springer, New York, 97-114.
https://doi.org/10.1007/978-1-4419-6706-0_6
[35] Hoi, S.W., Wong, H.M., Chan, J.Y., Yue, G.G., Tse, G.M., Law, B.K., et al. (2012) Photodynamic Therapy of Pheophorbide a Inhibits the Proliferation of Human Breast Tumour via Both Caspase-Dependent and -Independent Apoptotic Pathways in In Vitro and In Vivo Models. Phytotherapy Research, 26, 734-742.
https://doi.org/10.1002/ptr.3607
[36] Lončarević-Vasiljković, N., Milanović, D., Pešić, V., Tešić, V., Brkić, M., Lazić, D., et al. (2016) Dietary Restriction Suppresses Apoptotic Cell Death, Promotes Bcl-2 and Bcl-xl mRNA Expression and Increases the Bcl-2/Bax Protein Ratio in the Rat Cortex after Cortical Injury. Neurochemistry International, 96, 69-76.
https://doi.org/10.1016/j.neuint.2016.02.017
[37] 张培浩, 孙孟菲, 徐一达, 朱营利, 贾雪冰, 李阳, 等. 帕金森病模型小鼠海马神经炎症、凋亡及自噬蛋白的表达研究[J]. 延安大学学报(医学科学版), 2018, 16(4): 1-5+9.