PM  >> Vol. 2 No. 4 (October 2012)

    关于正负相间二项式系数倒数级数
    On Series Alternated with Positive and Negative Involving Reciprocals of Binominal Coefficients

  • 全文下载: PDF(183KB) HTML    PP.192-201   DOI: 10.12677/PM.2012.24030  
  • 下载量: 2,385  浏览量: 5,396  

作者:  

及万会,张来萍:银川大学基础部

关键词:
二项式系数裂项倒数级数封闭形正负相间Binomial Coefficients; Split Terms; Reciprocals; Series; Form Closed; Alternated with Positive and Negative

摘要:

利用已知级数,通过裂项构造出一批新的正负相间二项式系数倒数级数,它们的分母分别含有15个奇因子与二项式系数的乘积表达式。所给出正负相间二项式系数倒数级数的和式是封闭形的。并给出正负相间二项式系数数倒数值级数恒等式。裂项的方法研究二项式系数倒数变换是组合分析的新手段,也是产生新级数的一个初等方法。

Using one known series, we can structure several new alternated with positive and negative Series of reciprocals of binominal coefficients by splitting items. These denominators of series contains different the multiplication of one to five odd factors and binominal coefficients. And some identities of series of numbers values of reciprocals of binominal coefficients are given. The method of split items offered in this paper is a new combinatorial analysis way and an elementary method to construct new series.

文章引用:
及万会, 张来萍. 关于正负相间二项式系数倒数级数[J]. 理论数学, 2012, 2(4): 192-201. http://dx.doi.org/10.12677/PM.2012.24030

参考文献

[1] B. Sury, T. N. Wang and F.-Z. Zhao. Some identities involving of binomial coefficients. Journal of Integer Sequences, 2004, 7: Article 04.2.8.
[2] A. Sofo. General properties involving reciprocal of binomial coefficients. Journal of Integral Sequences, 2006, 9: Article 06.4.5.
[3] J.-H. Yang, F.-Z. Zhao. Sums involving the inverses of binomial coefficients. Journal of Integer Sequences, 2006, 9: Article 06.4.2.
[4] S. Amghibech. On sum involving binomial coefficient. Journal of Integer Sequences, 2007, 10: Article 07.2.1.
[5] T. Trif. Combinatorial sums and series involving inverses of binomial coefficients. Fibonacci Quarterly, 2000, 38(1): 79-84.
[6] F.-Z Zhao, T. Wang. Some results for sums of the inverses of binomial coefficients. Integers: Electronic Journal of Combinatorial Number Theory, 2005, 5(1): A22.
[7] R. Sprugnoli. Sums of reciprocals of the central binomial coefficients. Integers: Electronic Journal of Combinatorial Number Theory, 2006, 6: A27.
[8] I. S. Gradshteyn, I. M. Zyzhik. A table of integral, series and products (7th edition). Amsterdam: Elsevier, 2007: 54.